50
12-Jan-02 W.A. Zajc 1 PHENIX PHENIX for Beginners for Beginners W.A. Zajc Columbia University

12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

Embed Size (px)

Citation preview

Page 1: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

1

                       

PHENIXPHENIX for Beginners for Beginners

W.A. ZajcColumbia University

Page 2: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

2

                       

The PHENIX The PHENIX CollaborationCollaboration

A strongly international venture: 11 nations

Brazil, China, France, Germany, India, Israel, Japan, South Korea, Russia, Sweden, United States

51 institutions

Page 3: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

3

                       

Outline and GoalsOutline and Goals

What is the QGP phase transition?

What is the best strategy for observing it?

How has PHENIX implemented that strategy? An introduction to PHENIX physics results A (very) brief introduction to PHENIX detector

technologies Goals:

Provide overview of the many observables already measured by PHENIX in RHIC Run-1

Understand the trade-offs made by experimenters in optimizing a detector

Understand vast potential of PHENIX in future RHIC runs

Page 4: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

4

                       

Need better control of dimensional analysis:

Relevant Thermal PhysicsRelevant Thermal Physics

Q. How to liberate quarks and gluons from ~1 fm confinement scale?

A. Create an energy density

??densitynuclear Normal ~fm GeV /2.0~)fm1/(~ 34

42

30Tg

Energy density for “g” massless d.o.f

42

303222

8

782 Tcfasg

8 gluons, 2 spins;

2 quark flavors, anti-quarks, 2 spins, 3 colors

3

4

4 fm GeV /4.21

1212

fmT

“Reasonable” estimate

42

3037 T 37 (!)

Page 5: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

5

                       

37 B,- 90

42

gTgPQGP Pressure in plasma phase with

“Bag constant” B ~ 0.2 GeV / fm3

42

903 TP

Pressure of “pure” pion gas at temperature T

Rough EstimateRough Estimate Compare

Phase transition at T ~ 140 MeV with latent heat ~0.8 GeV / fm3

-0.25

0

0.25

0.5

0 100 200

Temperature (MeV)

Pressure

(GeV / fm3)

Pion Phase

QGP Phase PQGP

P

Select system with higher pressure:

Compare to best estimates (Karsch, QM01) from lattice calculations:

T ~ 150-170 MeV latent heat ~ 0.70.3 GeV / fm3

Page 6: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

6

                       

Hadron 'level' diagram

0

500

1000

1500

0 10 20 30 40

Degeneracy

Mass (MeV)

Kfo

Aside 1Aside 1 Previous approach

(using a “pure” pion gas) works because QCD is a theory with a mass gap

{ This gap is a

manifestation of the approximate SU(2)R x SU(2)L chiral symmetry of QCD with pions as the Nambu-Goldstone bosons

Page 7: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

7

                       

Aside 2Aside 2The frightening density of hadronic levels led to concepts of

A “limiting temperature” TH (Hagedorn, 1965)

A phase transition(?) in hadronic matter

before quarks were understood as underlying constituents

Density of States vs Energy

0

50

100

150

200

250

0 500 1000 1500 2000

Mass (MeV)

Number of available

states

HTmaemdm

dnm /~)(

dmem

dmem

TTm

a

Tm

H

)11

(

/

~

)(

requires T < THFit to this form

with TH = 163 MeV

Page 8: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

8

                       

Making Something from Making Something from NothingNothing

Experimental method:Energetic collisions of heavy nuclei

Experimental measurements:Use probes that are Auto-generated Sensitive to all time/length scales

Perturbative Vacuum

cc

MeV 200 ~)f 1(/~ etemperatur requires mT

Color Screening

cc

Explore non-perturbative “vacuum” that confines color flux by melting it

Non-perturbative Vacuum

Perturbative Vacuum

cc Particle production Our ‘perturbative’ region

is filled with gluons quark-antiquark pairs

A Quark-Gluon Plasma (QGP)

Page 9: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

9

                       

Question: How to proceed with experimental design when

(Partial) answers: The QGP phase transition will not be “seen” at RHIC

Instead it will emerge as a consistent framework for describing the observed phenomena

Avoid single-signal detectors There are no* cross sections at RHIC

Except GEOM ~ few barns CENTRAL ~ (1-10)% GEOM

but QGP ~ CENTRAL ?? Preserve high-rate and triggering capabilities

Expect the unexpected High gluon density production of exotics? Color topology high anti-baryon production? New vacuum large isospin fluctuations? Maintain flexibility as long as $’s allow

Design Guidelines for QGP Design Guidelines for QGP DetectionDetection

( Guidance written in 1991 )

Page 10: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

10

                       

Studying Complex Studying Complex PhenomenaPhenomena

Ample historical evidence for categorizing complex physics through correlation of observables For example, Hertzprung-

Russell in astronomy PHENIX will approach QGP

via as many channels as possible

Page 11: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

11

                       

PHENIX Approach to QGP PHENIX Approach to QGP DetectionDetection

1. DeconfinementR() ~ 0.13 fm < R(J/) ~ 0.29 fm < R(’ )

~ 0.56 fm Electrons, Muons

2. Chiral Symmetry RestorationMass, width, branching ratio of to e+e-, K+K-

with M < 5 Mev: Electrons, Muons, Charged HadronsBaryon susceptibility, color fluctuations, anti-

baryon production: Charged hadronsDCC’s, Isospin fluctuations: Photons, Charged Hadrons

3. Thermal Radiation of Hot GasPrompt , Prompt * to e+e-, +- :

Photons, Electrons, Muons

4. Strangeness and Charm Production

Production of K+, K- mesons: HadronsProduction of , J/, D mesons: Electrons, Muons

5. Jet QuenchingHigh pT jet via leading particle spectra:

Hadrons, Photons

6. Space-Time EvolutionHBT Correlations of ± ±, K± K± :

Hadrons

Summary: Electrons, Muons, Photons, Charged Hadrons

Page 12: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

12

                       

Measuring all TimescalesMeasuring all Timescales PHENIX can and will

do this program Early timescales in

collision typically probed by “hard processes”.

“Hard” high momentum transfer rare luminosity limited

Run-1 (Summer 2000): < ~1 b-1 recorded ~5M “minimum bias”

events Run-2 (2001-2)

~24 b-1 recorded ~200M events

“sampled”

Timescale Probe

Available

Run-1?

Available

Run-2?

Initial Collision Hard ScatteringSingle "jet" via leading particle Yes Yesphoton + "jet" No Yes?

Deconfinement High-Mass Vector Mesons

J / , ' screening No Observation (non)screening No No

Chiral Restoration Low-Mass Vector Mesons mass, width No Yes? branching ratios No Yes?

QGP Thermalization Photons 0

, ' 0 only Yescontinuum direct; very soft No Yes

QGP Thermalization Dileptonsnon-resonant: 1-3 GeV No Yes? soft continuum, <1 GeV No No

QGP Thermalization Heavy Quark Productionopen charm No Noopen charm via single lepton Yes Yes

Hadronization HadronsHBT Interferometry, /K Yes Yesstrangeness production: K, Yes Yesspectra of identified hadrons Yes Yes

Hydrodynamics Global VariablesET, dN/dy Yes Yes

Page 13: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

13

                       

Copyright, 1996 © Dale Carnegie & Associates, Inc.

General Issues of Experimental General Issues of Experimental DesignDesign

One must deal with hadronic and electromagnetic interactions at ~all length scales (I.e., not just

the first 10 fm) Convenient

to represent on a “logarithmic light-cone”

More importantly, PHENIX faced severe design contraints: Central arms-

minimize material in aperture

Muon arms-maximize absorber in aperture

Page 14: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

14

                       

PHENIX at RHICPHENIX at RHIC

2 central spectrometers

2 forward spectrometers

3 global detectors

West

EastSouth

North

Page 15: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

15

                       

Central Magnet

East Carriage

West Carriage

Ring Imaging CerenkovDrift Chamber

Beam-Beam Counter

PHENIX CentralPHENIX Central

Page 16: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

16

                       

ScheduleSchedule

2 central spectrometers

2 forward spectrometers

3 global detectors

1999

20002001

2002

Page 17: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

17

                       

Run-1 ConfigurationRun-1 Configuration

Two central arms Mechanically

~complete Roughly half of aperture

instrumented Global detectors

Zero-degree Calorimeters (ZDCs)

Beam-Beam Counters (BBCs)

Multiplicity and Vertex Detector (MVD, engineering run)

Page 18: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

18

                       

Run-1 Run-1 AccomplishmentsAccomplishments

First collisions:15-Jun-00 Last collisions: 04-Sep-00

During this period: Commissioned Zero-Degree Calorimeters Beam-Beam Counters Multiplicity and Vertex Counter Drift Chambers Pad Chambers Ring Imaging Cerenkov Counter Time Expansion Chamber Time-of-Flight Counters Electromagnetic Calorimeter Muon Identifier Minimum Bias Triggers Data Acquisition System

Recorded ~5M minimum bias events

Page 19: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

19

                       

Topic 1Topic 1

Charged particle multiplicity How many particles are produced? What to they tell us about underlying reaction

mechanism?

Answered in

“Centrality Dependence of Charged Particle Multiplicity in Au-Au Collisions at sqrt(s) = 130 GeV”, K. Adcox et al, PRL 86 (2001) 3500,   preprint nucl-ex/0012008.

Page 20: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

20

                       

Tracking Detectors: Pad Tracking Detectors: Pad ChambersChambers

PC3

PC1

Pixel Pad Cathode Pattern

Min bias multiplicity distribution at mid-rapidity

Cathode wire chambers using fine granularity pixel pad readout 2-D hit position, x = y ~ O( mm) 173k channels total, ~ 100 m2 detector coverage

Low-mass , rigid honeycomb/circuit board construction

All signal digitization takes place on-board in detector active region. Solves interconnect problem.

Page 21: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

21

                       

~2A

PHOBOS Result on dNPHOBOS Result on dNchch/d/dQ. How many charged particles per nucleon-nucleon collision?

A: Express using dNch/d ~ “generic” dNch/dy

Npart

Number of participating nucleons

= 2 for p-p collision~2A for central A-A collision

Plot multiplicity per N-N collision ( dNch/d ) / ( Npart/2 )

Does not (quite) distinguish between “Saturation” models,

dominated by gg g “Cascade” models,

dominated by gg gg, gg ggq

( X.N. Wang and M. Gyulassy, nucl-th/0008014 )

Page 22: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

22

                       

Determining NDetermining NPARTPART

Best approach (for fixed target!): Directly measure in a “zero degree

calorimeter”

(for A+A collisions)

Strongly (anti)-correlated with produced transverse energy:

PerNucleon

ZDCPART E

EAN 2

ET

ET

EZDC

NA50

Page 23: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

23

                       

b

Fixing Initial Fixing Initial ConditionsConditions

Event characterization Impact parameter b

is well-defined in heavy ion collisions Event multiplicity predominantly determined

by collision geometry Characterize this by global measures

of multiplicity and/or transverse energy correlated with

ZDC Zero Degree Calorimeter Goals:

Uniform luminosity monitoring at all 4 intersections Uniform event characterization by all 4 experiments

Process: Correlated Forward-Backward Dissociation tot = 11.0 Barns (+/- few %)

0-5%5-10%

10-15%15-20%

Page 24: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

24

                       0-5%

5-10%

10-15%15-20%

Determining N(participants)Determining N(participants)

Use combination of Zero Degree Calorimeters Beam-Beam Counters

to define centrality classes Glauber modeling

to extract Nparticipants

determines Multiplicity vs. Centrality

i.e

dNch/d vs.

Nparticipants

which is presented as “specific particle production”

multiplicity per N-N collision ( dNch/d ) / ( Npart/2 )

Page 25: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

25

                       

“Specific multiplicity” is not flat Yields grow significantly faster

than Nparticipants

Evidence for term ~ Ncollisionscollpartch NBNAddN

0

PHENIX ResultsPHENIX Results

28.088.0 A12.034.0 B19.038.0/ AB

In this cartoon are there

5 N-N collisions 5 x Npp?

OR

6 participants 3 x Npp?

Qualitatively consistent with HIJING Inconsistent with

some saturation models One interpretation:

Evidence for both “soft ” ( ~ Nparticipants)

“hard” (~ Ncollisions ) processes

Page 26: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

26

                       

Consistency between ExperimentsConsistency between Experiments Trend

incompatible with final-state gluon saturation model

Good agreement with model based on initial-state saturation (Kharzeev and Nardi, nucl-th/0012025)

dN/d

/ .5N

part

Npart

Excellent agreement between (non-trivial) PHENIX and PHOBOS analyses of this systematic variation with nuclear overlap.

Page 27: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

27

                       

1 J.P Blaizot, A.H. Mueller, Nucl. Phys. B289, 847 (1987)

Saturation condition ~ 1

QS2 ~ S A xG(x,Q2) / R2 ~ A1/3

Gluon saturation at RHICGluon saturation at RHICWhen do the gluons overlap

significantly?

2R m/pz

/ xpz

2R

Longitudinal

dT = /Q

Transverse

D. Kharzeev, nucl-th/0107033

So for /mx ~ 2R , ~ all constituents contribute

Parton density ~ A xG(x,Q2) / R2

Parton cross section

~ S 2 / Q2

Page 28: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

28

                       

Initial State Partons?Initial State Partons? Procedure:

Determine scale QS2 as function of nuclear

overlap QS

2 ~ A1/3 ~ Npart1/3

Assume final-state multiplicities proportional to number of initial-state gluons in this saturated regime: dN/d = c Npart xG(x, QS

2)

Note that DGLAP requires evolution of xG(x, QS

2) :

xG(x, QS2) ~ ln (QS

2 / QCD2)

Results: “Running” of the multiplicity yield

directly from from xG(x, Q2) +DGLAP

Page 29: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

29

                       

Topic 2Topic 2

Energy Density What energy densities are achieved in

central collisions at RHIC? How does this compare to previous

experiments?

Answered in

"Measurement of the Midrapidity Transverse Energy Distribution from sqrt(s) = 130 GeV Au-Au Collisions at RHIC", K. Adcox et al., PRL 87 (2001) 052301,   preprint nucl-ex/0104015,   or from the PHENIX site: pdf,   ps,   ps.gz.

Page 30: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

30

                       

dydz

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

-6 -4 -2 0 2 4 6

y

dy

dn

Dynamics 101Dynamics 101

Q. How to estimate initial energy density?A. From rapidity density

“Highly relativistic nucleus-nucleus collisions: The central rapidity region”, J.D. Bjorken, Phys. Rev. D27, 140 (1983).

Assumes ~ 1-d hydrodynamic expansion

Invariance in y along “central rapidity plateau”(I.e., flat rapidity distribution)

Then

since boost-invariance of matter where ~ 1 fm/c

dy

dE

RdyR

dE

dzR

dE

V

E T

TT

T

T

T

222

1~~

Page 31: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

31

                       

For the most central events:

PHENIX

EMCAL

R2

Determining Energy Determining Energy DensityDensity

Bjorken~ 4.6 GeV/fm3

~30 times normal nuclear density ~1.5 to 2 times higher than any previous experiments

Bjorken formula for thermalized energy density

time to thermalize the system (0 ~ 1 fm/c)~6.5 fm

What is the energy density achieved?

How does it compare to the expected phase transition value ?

dy

dE

RT

Bj0

2

11

dydz 0

Page 32: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

32

                       

Topic 3Topic 3

High Transverse Momenta Particle Production What is the rate for producing high pT particles? How does it vary with centrality?

Answered in

"Suppression of Hadrons with Large Transverse Momentum in Central Au+Au Collisions at sqrt(s) = 130 GeV",   K. Adcox et al., Phys. Rev. Lett. 88, 022301 (2001),   preprint nucl-ex/0109003,   or directly from Phenix

Page 33: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

33

                       

Energy Loss of Fast PartonsEnergy Loss of Fast Partons Many approaches

1983: Bjorken

1991: Thoma and Gyulassy (1991)

1993: Brodsky and Hoyer (1993)

1997: BDMPS- depends on path length(!)

1998: BDMS

Numerical values range from ~ 0.1 GeV / fm (Bjorken, elastic scattering of

partons) ~several GeV / fm (BDMPS, non-linear interactions of

gluons)

222

2

2 4ln~

4ln

4

303

M

ETT

M

ET

dx

dESS

D

SF

ETC

dx

dE

ln3

4 22

2

2Tk

dx

dE

gg

DRS

LL

C

dx

dE

ln

8

2

24

2TC

s

kN

dx

dE

Page 34: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

34

                       

Jet Physics at RHICJet Physics at RHIC Tremendous interest in hard scattering

(and subsequent energy loss in QGP) at RHIC Predictions that dE/dx ~ (amount of matter to be traversed) Directly due to non-Abelian nature of medium

But: “Traditional” jet methodology fails at RHIC Dominated by the soft background:

For a typical jet cone R = 0.33(R2 = 2 + 2) have

<nSOFT> ~ 64

<ET> ~ 25 GeV Fluctuations in this soft background

swamp any jet signal for pT < ~ 40 GeV:

Investigate by (systematics of) high-pT single particles

Jet Cross Section in R=0.33 for Au+Au at 200 A*GeV

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

20 30 40 50 60

pT (GeV/c)

d/d

pT (

mb

/Ge

V)

Soft particle background (assuming Poisson fluctuations)

Jet Cross-section

RJet

Axis

Page 35: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

35

                       

Shrinking the ConeShrinking the Cone Why not let R 0 ?

Good: Reduces fluctuations of “underlying event”

“Bad” : Doesn’t contain all the energy of the jet

TTT

m

TTT

TT

nTT

dp

jetd

dp

jetd

dp

particledzzzD

zPpzDdP

jetddP

dp

particled

p

A

dp

jetd

)(

100

1)()constant(

)(/)1(~)(

)()()()(

,~)(

Hadron Interactions, Collins and Martin

R < 1.0

R < 0.7

PYTHIA study by M. Chiu

R < 0.5

But: For “quenching”, maximal effect

expected on the “leading particle”(that is, “lost” energy probably stays in the cone, which confuses picture )

High pT single particles have a simple relation to parent parton dynamics

Page 36: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

36

                       

As you like it:

More usefully:

Magnetic Magnetic MeasurementsMeasurements

Fu

c

e

d

dp

meterTesla

cGeV

c

eRB

c

ep

/3.0,||

s

STAR

]GeV/c[%)1(~%)1(~ pp

p

~stuff in aperture ~spatial accuracy

Bvc

e

dt

pd

|| p

B

ds

rd

c

e

ds

rd

ds

d

1 meter of 1 Tesla field deflects 1 GeV/c by ~17O

Real world:

Page 37: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

37

                       

Drift ChamberDrift Chamber Jet -chamber anode/cathode structure

modified for HI high multiplicity Joint Russia/US design & construction All Titanium frame x = 120 m , two-track sep = 2mm

Tracks in DC from Central Au-Au collision

DC wires with kapton wire dividers

Identified particle spectra using tracking system and TOF

Page 38: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

38

                       

Rare processes at RHICRare processes at RHIC

Both PHENIX and STAR have measured charged particle spectra out to “small” cross sections

Page 39: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

39

                       

ExpectationsExpectations

Particle production via rare processes should scale with Ncoll, the number of underlying binary nucleon-nucleon collisions

FunctionThickness

),()( dzzddTA dz

d

FunctionOverlap

)2

()2

()( sdb

sTb

sTbT BAAB

b

INTINT

)(2AB

AB

INT

small""for

1

then is section cross TOTAL the

section cross withinteract which

tsconstituen B has B"" Nucleus and

tsconstituen Ahas A"" Nucleus If

BA

ebd bTABINT

Assuming no “collective” effects

Test this on production at high transverse momentum

Page 40: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

40

                       

A*B scaling at RHIC?A*B scaling at RHIC? NO! Both STAR and PHENIX data see deficit of

particles at high transverse momenta,relative to expected A*B scaling:

Deficit opposite sign of enhancements previously seen in nuclear collisions (Cronin effect)

Page 41: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

41

                       

PHENIX

0 reconstruction

pT > 2 GeV/c

Asymmetry < 0.8

A good example of a “combinatoric” background Reconstruction is not done particle-by-particle Recall: 0 and there are ~2000 s per unit rapidity

So: 0 1

0 2

0 3

0 N

Unfortunately, nature doesn’t use subscripts on photons

N correct combinations: ( ), ( ), … ( ),

N(N-1)/2 – N incorrect combinations ( ), ( ), … Incorrect combinations ~ N2 (!)

Solution: Restrict N by pT cuts use high granularity, high resolution detector

00 Reconstruction Reconstruction

p-p at 200 GeV

Page 42: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

42

                       

Additional EvidenceAdditional Evidence PHENIX sees a larger effect in the 0

spectrum:

Consistent with crude estimatesof additional energy loss in adeconfined medium

Page 43: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

43

                       

Discovery of “Jet Quenching”?Discovery of “Jet Quenching”? Some would

(have) claimed just that

To be done before this can be experimentally established: Improve pT

range (Run-2) Measure p-p

spectrum (Run-2)

Study in “cold nuclear matter” with p-A collisions (Run-2?)

Vary system size (Run-2??)

Page 44: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

44

                       

Topic 4Topic 4

Particle Composition What are the relative yields of pions, kaons and

protons? How do their yields depend on transverse

momentum? How do their yields depend on centrality?

Answered in

"Centrality dependence of pi+-, K+-, p and pbar production from sqrt(s)=130 GeV Au + Au collisions at RHIC",   K. Adcox et al., Submitted to PRL,   preprint nucl-ex/0112006,  

Page 45: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

45

                       

Particle Identification by TOFParticle Identification by TOF

The most direct way Measure by distance/time Typically done via scintillators

read-out with photomultiplier tubes Time resolutions ~ 100 ps

224

22

s

s

t

t

p

p

m

m

Performance: t ~ 100 ps on 5 m flight path P/K separation to ~ 2 GeV/c K/p separation to at least 4 GeV/c

K

p

e

Exercise: Show

Page 46: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

46

                       

Putting it all togetherPutting it all together Charged pions match

nicely with 0’s Supports conclusion of

preferential suppression of pions

“High” pT dominated by protons and kaons??

Summed hadrons consistent with our first result on multiplicity

Page 47: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

47

                       

Agreement between Agreement between ExperimentsExperiments

Overlaps in detector capabilities a feature of RHIC program

Excellent agreement in common observables provides confidence

Page 48: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

48

                       

For the first timein heavy ion collisions, more baryons are pair-produced than brought in from initial state

Approaching the Early Approaching the Early UniverseUniverse

Early Universe: Anti-proton/proton = 0.999999999

We’ve created “pure” matterapproaching this value

Page 49: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

49

                       

Topics not coveredTopics not covered This is a sample of the many physics

topics addressed by PHENIX in Run-1.

Additional results available on Flow

Fluctuations in <pT> Charge

Centrality dependence of particle yields

HBT

Charm (next lecture)

Page 50: 12-Jan-02W.A. Zajc1 PHENIX for Beginners W.A. Zajc Columbia University

12-Jan-02 W.A. Zajc

50

                       

Summary of ResultsSummary of Results How many particles are produced?

More than ever produced previously Have we made contact with the

early universe?Closer than all previous heavy ion experiments

Have we made sufficiently high energy densities for the phase transition?Yes

Is there evidence that the dense matter behaves collectively?Yes

Are there results consistent with the formation of a new state of matter?Perhaps ??????!?

(1 = 1 experiment )