8
Journal of the Korean Ceramic Society Vol. 49, No. 5, pp. 461~468, 2012. -461- http://dx.doi.org/10.4191/kcers.2012.49.5.461 The Photocatalytic Decompositions of 2-Chlorophenol on the Sn-impregnated Titania Nanoparticles and Nanotube Hyun Soo Kim, Gayoung Lee, Sun-Min Park*, and Misook Kang Department of Chemistry, Yeungnam University, Gyeongsan 712-749, Korea *Korean Institutes of Ceramic Engineering & Technology (KICET), Seoul 153-801, Korea (Received August 17, 2012; Revised September 11, 2012; Accepted September 12, 2012) Sn 함침- 티타니아 나노입자와 나노튜브에 놓인 2-Chlorophenol 분해 성능 김현수·이가영·박선민*·강미숙 영남대학교 화학과 * 한국세라믹기술원 에너지효율소재팀 (2012 8 17 접수 ; 2012 9 11 수정 ; 2012 9 12 채택) ABSTRACT This study focuses on the difference of photocatalytic activity depending on crystal structure type of nanoparticles (TiO 2 ) and nanotubes (TNT). The photodecomposition of 2-chlorophenol on the synthesized TiO 2 , Sn-impregnated TiO 2 , TNT, and Sn- impregnated TNT were evaluated. The characteristics of the synthesized photocatalyts, TNT, Sn/TNT, TiO 2 , and Sn/TiO 2 were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Visible spectroscopy (UV-Vis), and cyclic voltammeter (CV). The water-suspended 2-chlorophenol photodegradation over TiO 2 (anatase structure) catalyst was better than that over pure TNT. Particularly, the water-suspended 2-chlorophenol of 10 ppm was perfectly decomposed within 4 h over Sn/TiO 2 photocatalyst. Key words: Hydrothermal method, TiO 2 , Titania nanotube, Impregnation, 2-Chlorophenol photodegradation 1. 산업의 발전은 우리에게 많은 편익을 제공하지만 지나 산업화에 따라 유기물질의 사용량이 증가되면서 환경 문제는 갈수록 심각해지고 있다. 클로로페놀 류는 산업 활동, 음용수의 염소처리, 페놀 화합물의 분해작용 의해 염소와의 반응으로 페놀로부터 얻어지는 화합물 이다. 특히 클로로페놀 류의 일종인 2-chlorophenol , 농약, 제초제 등에 널리 이용되어 불쾌한 냄새를 생하고 강한 독성을 지니고 있어 극소량으로도 수생생물 유해한 영향을 준다. 또한 물질생물학적 분해가 않아 환경생태계에 유독성이 계속 축적되고 있다. 러한 화합물은 화학적으로 안정한 구조를 가져 기존의 학적 처리법으로는 한계가 있어 높은 처리비용을 감당해 하며, 독성 때문에 생물학적 처리법을 적용하는 데에 어려움이 있다. 분해성 유기물을 처리하기 위한 방법에는 생물학적 처리, 1,2) 열처리 공정, 활성탄 흡착 , 3,4) 등이 다양하게 시도되고 있다. 하지만 생물학적 산화공정은 고농도의 기오염물질에 효율이 떨어지며 처리 시간이 많이 소요된 . 열처리 공정은 빠른 오염물질 처리를 수는 있으나 연소과정에서 새로운 독성 부산물을 생성할 있다. 활성탄 흡착법은 간단한 방법이지만 2 차적인 부산물 생긴다는 단점이 있다. 이러한 기존 처리방법의 단점을 극복하는 방법으로 시된 것이 고급산화공정 (Advanced Oxidation Processes: AOP) 이다. AOP 법은 오존에 pH조절하거나 UV에너지 첨가하여 산화력을 증대시켜 생성한 중간물질로 유기 독성물질을 산화 처리하는 기술을 말한다. 최근 질관리기술로 널리 사용되고 있으며 기존의 화학적 처리 법과는 달리 2 오염이 없어 친환경적인 기술로 효과적 VOC 제거에 많은 가능성을 보이고 있다. 고급산화공 중의 하나로 알려진 펜톤 산화 공정은 자외선을 용하여 과산화수소와 미량의 염으로부터 OH 라디칼 생성해내는 방법으로 이미 많은 연구가 진행되었다. 5,8) Corresponding author : Misook Kang E-mail : [email protected] Tel : +82-53-810-2363 Fax : +82-53-810-4613

[12] 80번 12-086 김현수.fm

Embed Size (px)

Citation preview

  • Journal of the Korean Ceramic Society

    Vol. 49, No. 5, pp. 461~468, 2012.

    461

    http://dx.doi.org/10.4191/kcers.2012.49.5.461

    The Photocatalytic Decompositions of 2-Chlorophenol on the Sn-impregnated Titania

    Nanoparticles and Nanotube

    Hyun Soo Kim, Gayoung Lee, Sun-Min Park*, and Misook Kang

    Department of Chemistry, Yeungnam University, Gyeongsan 712-749, Korea

    *Korean Institutes of Ceramic Engineering & Technology (KICET), Seoul 153-801, Korea

    (Received August 17, 2012; Revised September 11, 2012; Accepted September 12, 2012)

    Sn - 2-Chlorophenol

    *

    *

    (2012 8 17 ; 2012 9 11 ; 2012 9 12 )

    ABSTRACT

    This study focuses on the difference of photocatalytic activity depending on crystal structure type of nanoparticles (TiO2) andnanotubes (TNT). The photodecomposition of 2-chlorophenol on the synthesized TiO2, Sn-impregnated TiO2, TNT, and Sn-impregnated TNT were evaluated. The characteristics of the synthesized photocatalyts, TNT, Sn/TNT, TiO2, and Sn/TiO2 wereanalyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Visible spectroscopy (UV-Vis), and cyclicvoltammeter (CV). The water-suspended 2-chlorophenol photodegradation over TiO2 (anatase structure) catalyst was better than thatover pure TNT. Particularly, the water-suspended 2-chlorophenol of 10 ppm was perfectly decomposed within 4 h over Sn/TiO2photocatalyst.

    Key words: Hydrothermal method, TiO2, Titania nanotube, Impregnation, 2-Chlorophenol photodegradation

    1.

    .

    , ,

    . 2-chlorophenol

    , ,

    .

    .

    ,

    .

    ,1,2) , ,

    3,4)

    .

    .

    .

    2

    .

    (Advanced Oxidation Processes:

    AOP). AOP pH UV

    .

    2

    VOC .

    OH

    .5,8)

    Corresponding author : Misook Kang

    E-mail : [email protected]

    Tel : +82-53-810-2363 Fax : +82-53-810-4613

  • 462

    .

    ,

    OH

    .

    .

    AOP

    .

    CO2 H2O

    VOC .

    TiO2 Si-TiO2 Pt-TiO2 ,

    (

    , )

    .9-12)

    .

    (TiO2)

    (Titania Nano Tube; TNT)

    .

    SnO2 Sn/TiO2 Sn/TNT

    OH

    .

    X-ray (XRD),

    (TEM), - (UV-

    visible spectroscopy), BET (BET surface area),

    (Cyclic voltammetry)

    , 2-chlorophenol

    , 2-

    chlorophenol -

    .

    Fig. 1. Preparation of TiO2, TNT, Sn/TiO2, and Sn/TNT using a hydrothermal method.

  • Sn - 2-Chlorophenol 463

    49 5(2012)

    2.

    TiO2 TNT

    ,13)

    SnO2 Sn/TiO2 Sn/TNT

    .14,15)

    2.1. TiO2 TNT

    TiO2 Fig. 1 250 mL

    0.5 mol TTIP (titanium tetra iso-propoxide, Aldrich)

    . 1 pH 3.0

    .

    200oC

    5oC/min 8 .

    pH 7.0 ,

    80oC 24

    TiO2 .

    TNT 1 L 10 mol NaOH

    1 .

    TiO2

    .

    160oC 5

    oC/min

    10 .

    pH 7.0

    0.1 M HCl

    , 80oC 24

    TNT .

    2.2. Sn/TiO2 Sn/TNT

    100 mL TiO2 TNT

    1 . 1.0 wt-% SnCl4

    24 .

    .

    400oC 2

    Sn/TiO2 Sn/TNT .

    2.3.

    TiO2, TNT, Sn/TiO2, Sn/TNT

    X-ray (X-ray diffraction,

    XRD, PANalytical , MPD) . Radiation

    source CuK (=1.5056) , X-ray

    generator 30 k, monochromator .

    2=1080o 10

    o/min

    . (trans-

    mission electron microscopy, TEM, HITACHI, S-

    4100) , 200 kV .

    pore size distribution BET-Japan

    Inc. BELSORP-mini II BET

    , pore size distribution

    Kelvin meniscus

    BJH (Barrett-Joyer-Hanlenda)

    . 300oC 3 h

    degassing . -

    (UV-vis spectroscopy, SNINCO, Neosys-

    2000) 2-chloro-

    phenol .

    2.4. 2-chlorophenol

    Fig. 2

    . 0.1 g

    2-chlorophenol 10 ppm

    . 365 nm UV-lamp (6 W/cm2, 3)

    , 1 2-

    chlorophenol UV-visible spectrometer

    . 2-chlorophenol

    2-chlorophenol .

    2-chlorophenol 2-chlorophenol

    (2 104

    M) 250 mL . 2-chlorophenol

    1, 3, 5, 7 9 mL

    5 250 mL 8.0 107

    ,

    2.4 106

    , 4.0 106

    , 5.6 106

    M 2-chlorophenol

    . 2-

    chlorophenol 250 nm

    .

    3.

    Fig. 3 TiO2, TNT, Sn/TiO2 Sn/TNT

    Fig. 2. Apparatus of a photoreactor designed for 2-chlorophenol

    degradation.

  • 464

    XRD . TNT

    H2Ti3O7

    11.3, 24.5, 29.78, 48.68 2 (d200), (d110),

    (d003), (d020) .16)

    Fig. 3(c) (d) TiO2 Sn/TiO2

    (anatase)

    25.3o, 37.79

    o, 48.04

    o, 55.1

    o,

    62.69o, 68.76

    o, 75.1

    o 2 (d101), (d004), (d200), (d105),

    (d211), (d204), (d116) .17)

    Fig. 3(b) Sn/TNT TiO2, TNT SnO2 (

    ; 29.86o, 33.29

    o, 44.34

    o, 57.38

    o, 67.69

    o18))

    Sn TNT

    TNT

    .

    Fig. 4 TiO2, TNT, Sn/TiO2 Sn/TNT

    TEM . TNT 200~250 nm,

    15~20 nm , Fig. 4(b)

    Sn/TNT SnO2 TNT

    . Fig. 4(c) TiO2

    10~20 nm

    . Sn Sn/TiO2

    TiO2 SnO2

    20~30 nm TiO2

    .

    Fig. 5 Table 1 /

    BET

    . N2 /

    N2 BJH

    . N2

    01.0 BET

    (SBET) .

    IUPAC IV

    TNT Sn Sn/TNT N2

    Sn TNT

    Fig. 3. XRD patterns of synthesized TiO2, Sn/TiO2, TNT, and

    Sn/TNT photocatalysts.

    Fig. 4. TEM images of synthesized (a) TNT, (b) Sn/TNT, (c) TiO2, and (d) Sn/TiO2 photocatalysts.

  • Sn - 2-Chlorophenol 465

    49 5(2012)

    N2 . TNT,

    Sn/TNT, TiO2 Sn/TiO2 73.26,

    66.27, 135.40, 38.22 m2/g, TNT

    TiO2 .

    TNT single wall multi wall

    . BJH

    TNT, Sn/TNT, TiO2 Sn/TiO2

    14.06, 16.85, 10.08 11.33 nm,

    0.476, 0.161, 0.1847 0.1877 cm3/g.

    Fig. 6 TNT, Sn/TNT, TiO2 Sn/TiO2

    UV-Visible

    . ,

    .

    .

    Fig. 5. The isotherm curves for N2 adsorption/desorption on synthesized TiO2, Sn/TiO2, TNT, and Sn/TNT photocatalysts.

    Table 1. BET Surface Area, Pore Volume, and Pore Diameter for Synthesized TiO2, Sn/TiO2, TNT, and Sn/TNT Photocatalysts

    TNT Sn(1.0 wt-%)/TNT TiO2 Sn(1.0 wt-%)/TiO2

    BET Mulipoint Surface area (m2g1

    ) 73.261 66.268 135.4 38.127

    Total pore volume (cm3g1

    ) 0.476 0.161 0.1847 0.1877

    Average pore diameter (nm) 14.061 16.854 10.084 11.327

    Fig. 6. UV-Visible spectra for synthesized TiO2, Sn/TiO2,

    TNT, and Sn/TNT photocatalysts.

  • 466

    ,

    ,

    . TNT

    Sn

    . TiO2 TNT

    , Sn ( )

    . Tauc TNT, Sn/

    TNT, TiO2 Sn/TiO2

    2.97, 3.01, 3.10 3.13eV.

    Fig. 7 Ag/AgCl TNT, Sn/TNT,

    TiO2 Sn/TiO2 .

    . Sn Sn/TNT Sn/TiO2

    .

    redox

    . Fig. 7 Sn

    . TNT,

    Sn/TNT, TiO2 Sn/TiO2

    , (eV)/(eV) =

    7.15/4.18, 6.94/3.93, 7.12/4.02 6.89/3.76

    . TiO2 TNT Sn

    ,

    ( )

    .

    Fig. 8 TNT, Sn/TNT, TiO2 Sn/TiO2

    (0.1 g) (Fig. 2) 10 ppm 2-

    chlorophenol

    . Fig. 8(a)-(c) 1

    2-chloro-

    phenol 1

    2

    . , TNT 14, Sn/TNT 9

    Fig. 7. Cyclic voltammeter for synthesized (a) TNT, (b) Sn/TNT, (c) TiO2, and (d) Sn/TiO2 photocatalysts.

    Fig. 8. Photodecomposition of 2-Chlorophenol using (a) TNT,

    (b) Sn/TNT, (c) TiO2, and (d) Sn/TiO2.

  • Sn - 2-Chlorophenol 467

    49 5(2012)

    , TiO2 5, Sn/TiO2, 4 10 ppm 2-

    chlorophenol . TNT

    TiO2

    , TNT TiO2 Sn 1.0 wt-%

    2-chlorophenol . Sn

    redox( (

    ) ,

    . Sn/

    TiO2 Sn/TNT

    5 .

    TNT TiO2 2-chlorophenol

    TiO2

    . TiO2 2-chlorophenol

    TNT

    2-chlorophenol ,

    TNT

    .

    4.

    4 , TNT, Sn/TNT,

    TiO2 Sn/TiO2

    . XRD Sn/TNT

    Sn TNT anatase

    TiO2

    TEM TNT TiO2

    . UV-Visible

    TNT < Sn/TNT < TiO2 < Sn/TiO2 Sn

    . 2-chloro-

    phenol , TNT 14, Sn/TNT 9

    , TiO2 5, Sn/TiO2 4

    . TNT TiO2 Sn

    TNT Sn/TNT

    TiO2 Sn/TiO2 2-chloro-

    phenol .

    Acknowledgment

    (2011 )

    .

    REFERENCES

    1. B. Guieysse, C. Hort, V. Platel, R. Munoz, M. Ondarts, and

    S. Revah, Biological Treatment of Indoor Air for VOC

    Removal: Potential and Challenges, Biotechnol. Adv., 26

    398-410 (2008).

    2. S. Santos, K. Jones, R. Abdul, J. Boswell, and J. Pacac,

    Treatment of Wet Process Hardboard Plant VOC Emis-

    sions by a Pilot Scale Biological System, Biochem. Eng. J.,

    37 261-70 (2007).

    3. S. H. Kwona and D. Cho, A Comparative, Kinetic Study on

    Cork and Activated Carbon Biofilters for VOC Degrada-

    tion, J. Ind. Eng. Chem., 15 129-35 (2009).

    4. Y. C. Chiang, P. C. Chiang, and C. P. Huang, Effects of

    Pore Structure and Temperature on VOC Adsorption on

    Activated Carbon, Carbon, 39 523-34 (2001).

    5. Y. H. Huang, Y. J. Huang, H. C. Tsai, and H. T. Chen, Deg-

    radation of Phenol using Low Concentration of Ferric Ions

    by the Photo-fenton Process, J. Taiwan. Inst. Chem. E., 41

    699-704 (2010).

    6. G. B. Ortiz de la Plata, O. M. Alfano, and A. E. Cassano,

    Decomposition of 2-chlorophenol Employing Goethite as

    Fenton Catalyst II: Reaction Kinetics of the Heterogeneous

    Fenton and Photo-fenton Mechanisms, Appl. Catal. B-

    Environ., 95 14-25 (2010).

    7. J. M. Monteagudo, A. Duran, and C. Lopez-Almodovar,

    Homogeneus Ferrioxalate-assisted Solar Photo-fenton

    Degradation of Orange II Aqueous Solutions, Appl. Catal.

    B-Environ., 83 46-55 (2008).

    8. M. P. Moya, M. Graells, L. J. del Valle, E. Centelles, and H.

    D. Mansilla, Fenton and Photo-fenton Degradation of 2-

    Chlorophenol: Multivariate Analysis and Toxicity Moni-

    toring, Catal. Today, 124 163-71 (2007).

    9. Ch. Boughelouma and A. Messalhib, Photocatalytic Deg-

    radation of Benzene Derivatives on TiO2 Catalyst, Physics.

    Procedia., 2 1055-58 (2009).

    10. Y. H. Chena, L. L. Chen, and N. C. Shang, Photocatalytic

    Degradation of Dimethyl Phthalate in an Aqueous Solution

    with Pt-doped TiO2-coated Magnetic PMMA Microspheres,

    J. Hazard. Mater., 172 20-29 (2009).

    11. M. A. Barakat, H. Schaeffera, G. Hayesa, and S. Ismat-Shah,

    Photocatalytic Degradation of 2-Chlorophenol by Co-

    doped TiO2 Nanoparticles, Appl. Catal. B-Environ., 57 23-

    30 (2005).

    12. D. N. Bui, S. Z. Kang, X. Li, and Jin Mu, Effect of Si Dop-

    ing on the Photocatalytic Activity and Photoelectrochemical

    Property of TiO2 Nanoparticles, Catal. Commun., 13 14-7

    (2011).

    13. I. C. Flores, J. N. de Freitas, C. Longo, M. A. de Paoli, H.

    Winnischofer, and A. F. Nogueira, Dye-sensitized Solar

    Cells Based on TiO2 Nanotubes and a Solid-state Elec-

    trolyte, J. Photoch. Photobio. A., 189 153-60 (2007).

    14. R. Vinu and G. Madras, Photocatalytic Activity of Ag-sub-

    stituted and Impregnated Nano-TiO2, Appl. Catal. A - Gen.,

    366 130-40 (2009).

    15. R. Enderson, I. P. Diego, H.Z. dos S. Joo, B.C. P. Sibele,

  • 468

    and G. P. Fbio, Bentonites Impregnated with TiO2 for Pho-

    todegradation of Methylene Blue, Appl. Clay. Sci., 48 602-

    06 (2010).

    16. K. P. Yu, W. Y. Yu, M. C. Kuo, Y. C. Liou, and S. H. Chien,

    Pt/titania-nanotube: A Potential Catalyst for CO2 Adsorp-

    tion and Hydrogenation, Appl. Catal. B-Environ., 84 112-

    18 (2008).

    17. B. S. Kwak, H. Choi, J. Woo, J. Lee, J. An, S. G. Ryu, and

    Misook Kang, Photo-electrochemical Hydrogen Produc-

    tion Over P- and B- Incorporated TiO2 Nanometer Sized

    Photo-Catalysts, Clean Tech., 17 [1] 78-82 (2011).

    18. S. Ken, O. Yuya, U. Hiroaki, H. Eiji, Z. Haoshen, and I.

    Hiroaki, Aqueous Solution Synthesis of SnO Nanostrac-

    tures with Tuned Optical Absorption and Photoelectro-

    chemical Properties through Morphological Evolution, J.

    Roy. Soc. Chem., 2 2424-30 (2010).