124
1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA 4.3 Mixed Models and Random Parameters

1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

Embed Size (px)

Citation preview

Page 1: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

1/110: Topic 4.3 – Mixed Models and Random Parameters

Microeconometric Modeling

William GreeneStern School of BusinessNew York UniversityNew York NY USA

4.3 Mixed Models and Random Parameters

Page 2: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

2/110: Topic 4.3 – Mixed Models and Random Parameters

Concepts

• Random Effects• Simulation• Random Parameters• Maximum Simulated Likelihood• Cholesky Decomposition• Heterogeneity• Hierarchical Model• Conditional Means• Population Distribution• Nested Logit• Willingness to Pay (WTP)• Random Parameters and WTP• WTP Space• Endogeneity• Market Share Data

Models

• Random Parameters• RP Logit• Error Components Logit• Generalized Mixed Logit• Berry-Levinsohn-Pakes Model• Hybrid Choice• MIMIC Model

Page 3: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

3/110: Topic 4.3 – Mixed Models and Random Parameters

A Recast Random Effects Model

i

1 2 ,1

+ + , ~ [0, ]

T = observations on individual i

For each period, 1[ 0] (given u )

Joint probability for T observations is

Prob( , ,... | ) ( )

Write

x

x

i

it i it i u

i i

i

it it

i

T

i i i it i itt

it u u N

u

y U

y y u F

U

y

u u

1 , u1

1

= , ~ [0,1],

log | ,... log ( ( ) )

It is not possible to maximize log | ,... because of

the unobserved random effects embedded in .

xi

i i i i i

N T

N it i iti i t

N

i

u v v N v

L v v F y v

L v v

Page 4: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

4/110: Topic 4.3 – Mixed Models and Random Parameters

A Computable Log Likelihood

1 1

u

[log | ] log ( , )

Maximize this function with respect to , , . ( )

How to compute the in

The unobserved heterogeneity is averaged out of

tegral?

(

l |

1

og

i

i

TN

it i it i ii t

i u i

E L F y f d

v

L

v

v

v x

) Analytically? No, no formula exists.

(2) Approximately, using Gauss-Hermite quadrature

(3) Approximately using Monte Carlo simulation

Page 5: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

5/110: Topic 4.3 – Mixed Models and Random Parameters

Simulation

iT

it i i i

2i

N

ii 1

N

ii 1

N

i 1

i

i

tt 1

i

logL log d

= log d

This ]

The expected value of the function

F(y , )

g(

of can be ap

equals

proxim

-1

at

log

ed

by

exp2

dr

a

)

g(

win

2

g

E[

ra

)

R

x

iTN R

S it u ir iti 1 r 1 t

i

ir u ir

1

r

1logL log F(y

ndom draws v from the population N[0,1] and

averaging the R functio

,( v ) )R

(We did this previously for

ns of

the r

v . We

andom e

ma

ff

ximi

ect

z

r

e

s p

x

obit model.)

Page 6: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

6/110: Topic 4.3 – Mixed Models and Random Parameters

Random Effects Model: Simulation----------------------------------------------------------------------Random Coefficients Probit ModelDependent variable DOCTOR (Quadrature Based)

Log likelihood function -16296.68110 (-16290.72192) Restricted log likelihood -17701.08500Chi squared [ 1 d.f.] 2808.80780Simulation based on 50 Halton draws--------+-------------------------------------------------Variable| Coefficient Standard Error b/St.Er. P[|Z|>z]--------+------------------------------------------------- |Nonrandom parameters AGE| .02226*** .00081 27.365 .0000 ( .02232) EDUC| -.03285*** .00391 -8.407 .0000 (-.03307) HHNINC| .00673 .05105 .132 .8952 ( .00660) |Means for random parametersConstant| -.11873** .05950 -1.995 .0460 (-.11819) |Scale parameters for dists. of random parametersConstant| .90453*** .01128 80.180 .0000--------+-------------------------------------------------------------Implied from these estimates is .904542/(1+.904532) = .449998.

Page 7: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

7/110: Topic 4.3 – Mixed Models and Random Parameters

The Entire Parameter Vector is Random

i i 1

1 2 ,1

1

+ ,

, ~ [ , ( ,..., )]

Joint probability for observations is

Prob( , ,... | ) ( )

For convenience, write = , ~ [0,1],

log | ,..

i

i it it

i K

i

T

i i i it i itt

i

ik k ik ik ik k ik

t

k

N diag

T

y y u F y

u v v N v

U

L v

x

u u 0

x

,1

1

. log ( )

It is not possible to maximize log | ,... because of

the unobserved random effects embedded in .

iTN

N it i iti i t

N

i

v F y

L

x

v v

Page 8: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

8/110: Topic 4.3 – Mixed Models and Random Parameters

Maximum Simulated Likelihood

+ i

i

i

i

i

T

i i i i i it=1

T

i i i i i it=1β

N

i i i i ii=1 β

L ( | data ) = f(data | )

L ( | data ) = f(data | )f( | )d

logL = log L ( | data )f( | )d

β β β β u

Ω β β Ω β

β β Ω β

True log likelihood

+

ˆ

ir N R

S i ir i iri=1 r=1

S

1logL = log L ( | data , )

R

= argmax(logL )

β Ω β β u

Ω

Simulated log likelihood

Page 9: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

9/110: Topic 4.3 – Mixed Models and Random Parameters

Page 10: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

10/110: Topic 4.3 – Mixed Models and Random Parameters

S

M

= ( )( ) where the diagonal

elements of equal 1, and is the diagonal

matrix with free positive elements. (Cholesky values)

i i

LL MS MS

M S

u MSv

Page 11: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

11/110: Topic 4.3 – Mixed Models and Random Parameters

MSSM

Page 12: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

12/110: Topic 4.3 – Mixed Models and Random Parameters

Modeling Parameter Heterogeneity

i,k

of the parameters

+

E[ | , ]

of the parameters

Var[u | da

i i i

i i i

β =β Δz u

u X z

Individual heterogeneity in the means

Heterogeneity in the variances

i kta] exp( )

Estimation by maximum simulated likelihoodi khδ

Page 13: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

13/110: Topic 4.3 – Mixed Models and Random Parameters

A Hierarchical Probit Model

Uit = 1i + 2iAgeit + 3iEducit + 4iIncomeit + it. 1i=1+11 Femalei + 12 Marriedi + u1i

2i=2+21 Femalei + 22 Marriedi + u2i

3i=3+31 Femalei + 32 Marriedi + u3i

4i=4+41 Femalei + 42 Marriedi + u4i

Yit = 1[Uit > 0]

All random variables normally distributed.

Page 14: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

14/110: Topic 4.3 – Mixed Models and Random Parameters

Page 15: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

15/110: Topic 4.3 – Mixed Models and Random Parameters

Estimating Individual Parameters

Model estimates = structural parameters, α, β, ρ, Δ, Σ, Γ Objective, a model of individual specific parameters, βi

Can individual specific parameters be estimated? Not quite – βi is a single realization of a random

process; one random draw. We estimate E[βi | all information about i] (This is also true of Bayesian treatments, despite

claims to the contrary.)

Page 16: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

16/110: Topic 4.3 – Mixed Models and Random Parameters

Estimating i

+

Is it possible to compute ? No. That requires the unobserved .

The would be

E[ ] = .

It is possible to do better than this. We observe (

i i i

i i

i i

unconditional esti

β =β Δz u

β u

β β Δz

mator

y

i i

i i i i

i

i i

, ). What is

E[ |( , )] = E[ + | ( , )]

(For convenience, embed and any other exogenous data in the

subscript i.) We use Bayes Theorem

f( | ) = Likelihood | f

i i i

i i

X

β y X β Δz u y X

X

y β β

i

i

T

itt 1

T

i i itt 1

i ii

i

(y | )

p( ) = Normal( , ) (or some other known distribution)

f( ) = f( | )p( ) f(y | ) p( )

f( ) f( ) f( ) =

f( ) f(

i

i i

i i i i i

i ii

β

β β Δz

y ,β y β β β β

y ,β y ,ββ | y

y

i

i

i

i

T

itt 1

Ti itt 1

T

itt 1

i i T

itt 1

f(y | ) p( )

)d f(y | ) p( )d

f(y | ) p( )d E[ ] f( )d

f(y | ) p( )d

i i

i

i

i

i i

i i i i iβ β

i i i iβi i i iβ

i i iβ

β β

y ,β β β β β

β β β ββ | y β β | y β

β β β

Page 17: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

17/110: Topic 4.3 – Mixed Models and Random Parameters

i

i

T

itt 1

i i T

itt 1

i i i

R R

r 1 r 1

f(y | ) p( )dE[ ] f( | )d

f(y | ) p( )d

How to estimate this using simulation.

ˆ ˆ ˆ ˆ(1)

1 1ˆ ˆ(2) To estimate h( )d use h( ) h(R R

i

i

i

i

i i i iβi i i iβ

i i iβ

i i irβ

β β β ββ | y β β y β

β β β

β β Δz u

β β β β

ir i ir ir

)

ˆ ˆ ˆ ˆ ˆˆ ˆ . = draw from N[ , ].

ir

β β Δz C v CC v 0 I

Conditional Estimate of i

Page 18: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

18/110: Topic 4.3 – Mixed Models and Random Parameters

i

i

i

i

T

itt 1

i i T

itt 1

TR

i ir it i irr 1 t 1

iTR

itr 1 t 1

f(y | ) p( )dE[ ] f( | )d

f(y | ) p( )d

How to estimate this using simulation.

1 ˆ ˆˆ ˆˆ ˆf(y | )RE[ ]

1f(y |

R

i

i

i

i i i iβi i i iβ

i i iβ

i

β β β ββ | y β β y β

β β β

β Δz C v β Δz C vβ | y

i ir

R

i ir ir 1

R

ir 1

R Riir ir ir irRr 1 r 1

ir 1

ˆ ˆˆ )

1 ˆ ˆˆˆ Likelihood( | )R =

1 ˆLikelihood( | )R

ˆLikelihood( | )ˆˆ = w where w , w 1ˆLikelihood( | )

ir

ir

ir

ir

β Δz C v

β Δz C v y β

y β

y β β

y β

Conditional Estimate of i

Page 19: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

19/110: Topic 4.3 – Mixed Models and Random Parameters

Page 20: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

20/110: Topic 4.3 – Mixed Models and Random Parameters

Page 21: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

21/110: Topic 4.3 – Mixed Models and Random Parameters

Page 22: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

22/110: Topic 4.3 – Mixed Models and Random Parameters

“Individual Coefficients”

Page 23: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

23/110: Topic 4.3 – Mixed Models and Random Parameters

The Random Parameters Logit Model

t

j i itj j,i iti J (i)

j i itj j.i itj=1

exp(α + + )Prob[choice j | i, t, ] =

exp(α + + )

β x γ zβ

β x γ z

t

i i

T(i) j i itj j,i it

J (i)t=1j i itj j,i itj=1

Prob[choice j | i, t =1,...,T, ] =

exp(α + + )

exp(α + + )

β

β x γ z

β x γ z

Multiple choice situations: Independent conditioned on the individual specific parameters

Page 24: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

24/110: Topic 4.3 – Mixed Models and Random Parameters

Continuous Random Variation in Preference Weights

i

ijt j i itj j it ijt

i i i

i,k k k i i,k

i

eterogeneity arises from continuous variation

in across individuals. (Note Classical and Bayesian)

U = α + + +ε

= + +

β = β + + w

Most treatments set = = +

β x γ z

β β Δh w

δ h

Δ 0, β β w

t

i

j i itj j iti J (i)

j i itj j itj=1

exp(α + + ) Prob[choice j | i, t, ] =

exp(α + + )

β x γ zβ

β x γ z

Page 25: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

25/110: Topic 4.3 – Mixed Models and Random Parameters

Random Parameters Model Allow model parameters as well as constants to be random Allow multiple observations with persistent effects Allow a hierarchical structure for parameters – not completely

random

Uitj = 1’xi1tj + 2i’xi2tj + i’zit + ijt

Random parameters in multinomial logit model 1 = nonrandom (fixed) parameters 2i = random parameters that may vary across

individuals and across time Maintain I.I.D. assumption for ijt (given )

Page 26: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

26/110: Topic 4.3 – Mixed Models and Random Parameters

Modeling Variations Parameter specification

“Nonrandom” – variance = 0 Correlation across parameters – random parts correlated Fixed mean – not to be estimated. Free variance Fixed range – mean estimated, triangular from 0 to 2 Hierarchical structure - ik = k + k’zi

Stochastic specification Normal, uniform, triangular (tent) distributions Strictly positive – lognormal parameters (e.g., on income) Autoregressive: v(i,t,k) = u(i,t,k) + r(k)v(i,t-1,k) [this picks up

time effects in multiple choice situations, e.g., fatigue.]

Page 27: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

27/110: Topic 4.3 – Mixed Models and Random Parameters

Model Extensions

AR(1): wi,k,t = ρkwi,k,t-1 + vi,k,t

Dynamic effects in the model Restricting sign – lognormal distribution:

Restricting Range and Sign: Using triangular distribution and range = 0 to 2.

Heteroscedasticity and heterogeneity

i,k k k i k iβ = exp(μ + + )δ z γ w

i i i= + +β β Δz Γw

k,i k iσ = σ exp( )θ h

Page 28: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

28/110: Topic 4.3 – Mixed Models and Random Parameters

Estimating the Model

j,i i itj j,i it

J(i)

j,i i itj j,i itj=1

i i i i i

exp(α + + )P[choice j | i,t] =

exp(α + + )

α , , = functions of underlying [α, , , , , , ]

β x γ z

β x γ z

β γ β Δ Γ ρ z v

Denote by 1 all “fixed” parameters in the model

Denote by 2i,t all random and hierarchical parameters in the model

Page 29: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

29/110: Topic 4.3 – Mixed Models and Random Parameters

Customers’ Choice of Energy Supplier

California, Stated Preference Survey 361 customers presented with 8-12 choice

situations each Supplier attributes:

Fixed price: cents per kWh Length of contract Local utility Well-known company Time-of-day rates (11¢ in day, 5¢ at night) Seasonal rates (10¢ in summer, 8¢ in winter, 6¢ in

spring/fall)

(TrainCalUtilitySurvey.lpj)

Page 30: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

30/110: Topic 4.3 – Mixed Models and Random Parameters

Population Distributions

Normal for: Contract length Local utility Well-known company

Log-normal for: Time-of-day rates Seasonal rates

Price coefficient held fixed

Page 31: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

31/110: Topic 4.3 – Mixed Models and Random Parameters

Estimated Model Estimate Std errorPrice -.883 0.050Contract mean -.213 0.026 std dev .386 0.028Local mean 2.23 0.127 std dev 1.75 0.137Known mean 1.59 0.100 std dev .962 0.098TOD mean* 2.13 0.054 std dev* .411 0.040Seasonal mean* 2.16 0.051 std dev* .281 0.022*Parameters of underlying normal.

Page 32: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

32/110: Topic 4.3 – Mixed Models and Random Parameters

Distribution of Brand Value

Brand value of local utility

Standard deviation10% dislike local utility

0 2.5¢

=2.0¢

Page 33: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

33/110: Topic 4.3 – Mixed Models and Random Parameters

Random Parameter Distributions

Page 34: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

34/110: Topic 4.3 – Mixed Models and Random Parameters

Time of Day Rates (Customers do not like – lognormal coefficient. Multiply variable by -1.)

Page 35: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

35/110: Topic 4.3 – Mixed Models and Random Parameters

Posterior Estimation of i ˆ

i

i

i i i i i

T

i i i i i i t=1

T

i i i i i t=1

=E | , , , , ,z

P(choice j | X , )g( | , , ,etc., ) d

=

P(choice j | X , )g(β | , , ,etc., ) d

β

β

β β β Δ Γ y X

β β β β Δ Γ z β

β β Δ Γ z β

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

TR

ir i i i ir=1 t=1

i TR

i i i ir=1 t=1

ir i ir

1β P(choice j | X , )g( | , , ,etc.,z )

R= ,

1 P(choice j | X , )g( | , , ,etc.,z )R

= + z + w

β β β Δ Γ

β

β β β Δ Γ

β β Δ Γ

Estimate by simulation

Page 36: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

36/110: Topic 4.3 – Mixed Models and Random Parameters

Expected Preferences of Each Customer

Customer likes long-term contract, local utility, and non-fixed rates.

Local utility can retain and make profit from this customer by offering a long-term contract with time-of-day or seasonal rates.

Page 37: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

37/110: Topic 4.3 – Mixed Models and Random Parameters

Application: Shoe Brand Choice

Simulated Data: Stated Choice, 400 respondents, 8 choice situations, 3,200 observations

3 choice/attributes + NONE Fashion = High / Low Quality = High / Low Price = 25/50/75,100 coded 1,2,3,4

Heterogeneity: Sex (Male=1), Age (<25, 25-39, 40+)

Underlying data generated by a 3 class latent class process (100, 200, 100 in classes)

Page 38: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

38/110: Topic 4.3 – Mixed Models and Random Parameters

Stated Choice Experiment: Unlabeled Alternatives, One Observation

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

Page 39: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

39/110: Topic 4.3 – Mixed Models and Random Parameters

Random Parameters Logit Model

,

,

,

n s

n s

n s

1,n 1,n,s 2 1,n,s 3 1,n,s Brand1,n,s

1,n 2,n,s 2 2,n,s 3 2,n,s Brand2,n,s

1,n 3,n,s 2 3,n,s 3 3,n,s Bra

U(brand1) = β Fashion +β Quality +β Price +ε

U(brand2) = β Fashion +β Quality +β Price +ε

U(brand3) = β Fashion +β Quality +β Price +ε

,n s

nd3,n,s

4 No Brand,n,s

1,n 1 11 12 13 1 n1

U(None) = β + ε

β β +δ Sex +δ Age2539+δ Age40+η z

Page 40: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

40/110: Topic 4.3 – Mixed Models and Random Parameters

Page 41: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

41/110: Topic 4.3 – Mixed Models and Random Parameters

Page 42: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

42/110: Topic 4.3 – Mixed Models and Random Parameters

Error Components Logit Modeling

Alternative approach to building cross choice correlation Common ‘effects.’ Wi is a ‘random individual effect.’

i 1 1,i 2 1,i 3 1,i Brand1,i i

i 1 2,i 2 2,i 3 2,i Brand2,i i

i 1 3,i 2 3,i 3 3,i Brand3,i i

U(brand1) = β Fashion +β Quality +β Price +ε + σ W

U(brand2) = β Fashion +β Quality +β Price +ε + σ W

U(brand3) = β Fashion +β Quality +β Price +ε + σ W

U(None) 4 No Brand,i= β + ε

Page 43: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

43/110: Topic 4.3 – Mixed Models and Random Parameters

Implied Covariance MatrixNested Logit Formulation

2

2 2 2Brand1

2 2 2Brand2

2 2 2Brand3

NONE

2 2

Var[ε] = π / 6 =1.6449

Var[W] =1

ε +σW 1.6449+σ σ σ 0

ε +σW σ 1.6449+σ σ 0= Var =

ε +σW σ σ 1.6449+σ 0

ε 0 0 0 1.6449

Cross Brand Correlation = σ / [1.6449+σ ]

Page 44: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

44/110: Topic 4.3 – Mixed Models and Random Parameters

Error Components Logit Model

Correlation = {0.09592 / [1.6449 + 0.09592]}1/2 = 0.0954

-----------------------------------------------------------Error Components (Random Effects) modelDependent variable CHOICELog likelihood function -4158.45044Estimation based on N = 3200, K = 5Response data are given as ind. choicesReplications for simulated probs. = 50Halton sequences used for simulationsECM model with panel has 400 groupsFixed number of obsrvs./group= 8Number of obs.= 3200, skipped 0 obs--------+--------------------------------------------------Variable| Coefficient Standard Error b/St.Er. P[|Z|>z]--------+-------------------------------------------------- |Nonrandom parameters in utility functions FASH| 1.47913*** .06971 21.218 .0000 QUAL| 1.01385*** .06580 15.409 .0000 PRICE| -11.8052*** .86019 -13.724 .0000 ASC4| .03363 .07441 .452 .6513SigmaE01| .09585*** .02529 3.791 .0002--------+--------------------------------------------------

Random Effects Logit ModelAppearance of Latent Random Effects in Utilities Alternative E01+-------------+---+| BRAND1 | * |+-------------+---+| BRAND2 | * |+-------------+---+| BRAND3 | * |+-------------+---+| NONE | |+-------------+---+

Page 45: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

45/110: Topic 4.3 – Mixed Models and Random Parameters

Extended MNL Modeli,1,t F,i i,1,t Q i,1,t P,i i,1,t Brand i,Brand i,1,t

i,2,t F,i i,2,t Q i,2,t P,i i,2,t Brand i,Brand i,2,t

i,3,t F,i i,3,t Q i,3,t

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality + P,i i,3,t Brand i,Brand i,3,t

i,NONE,t NONE NONE i,NONE i,NONE,t

F,i F F i F F1 i F2 i F,i F,i

P,i P P

β Price +λ W +ε

U =α +λ W +ε

β =β +δ Sex +[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

β =β +δ S i P P1 i P2 i P,i P,i

Brand,i

NONE,i

ex +[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

W ~N[0,1]

W ~N[0,1]

Utility Functions

Page 46: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

46/110: Topic 4.3 – Mixed Models and Random Parameters

Extending the Basic MNL Model

i,1,t F,i i,1,t Q i,1,t P,i i,1,t Brand i,Brand i,1,t

i,2,t F,i i,2,t Q i,2,t P,i i,2,t Brand i,Brand i,2,t

i,3,t F,i i,3,t Q i,3,t

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality + P,i i,3,t Brand i,Brand i,3,t

i,NONE,t NONE NONE i,NONE i,NONE,t

F,i F F i F F1 i F2 i F,i F,i

P,i P P

β Price +λ W +ε

U =α +λ W +ε

β =β +δ Sex +[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

β =β +δ S i P P1 i P2 i P,i P,i

Brand,i

NONE,i

ex +[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

W ~N[0,1]

W ~N[0,1]

Random Utility

Page 47: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

47/110: Topic 4.3 – Mixed Models and Random Parameters

Error Components Logit Model

i,1,t F,i i,1,t Q i,1,t P,i i,1,t Brand i,Brand i,1,t

i,2,t F,i i,2,t Q i,2,t P,i i,2,t Brand i,Brand i,2,t

i,3,t F,i i,3,t Q i,3,t P

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality +β ,i i,3,t Brand i,Brand i,3,t

i,NONE,t NONE NONE i,NONE i,NONE,t

F,i F F i F F1 i F2 i F,i F,i

P,i P P i

Price +λ W +ε

U =α +λ W +ε

β =β +δ Sex +[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

β =β +δ Sex P P1 i P2 i P,i P,i

Brand,i

NONE,i

+[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

W ~N[0,1]

W ~N[0,1]

Error Components

Page 48: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

48/110: Topic 4.3 – Mixed Models and Random Parameters

Random Parameters Model

i,1,t F,i i,1,t Q i,1,t P,i i,1,t Brand i,Brand i,1,t

i,2,t F,i i,2,t Q i,2,t P,i i,2,t Brand i,Brand i,2,t

i,3,t F,i i,3,t Q i,3,t P

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality +β ,i i,3,t Brand i,Brand i,3,t

i,NONE,t NONE NONE i,NONE i,NONE,t

F,i F F i F F1 i F2 i F,i F,i

P,i P P

Price +λ W +ε

U =α +λ W +ε

β =β +δ Sex +[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

β =β +δ Sexi P P1 i P2 i P,i P,i

Brand,i

NONE,i

+[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

W ~N[0,1]

W ~N[0,1]Random Parameters

Page 49: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

49/110: Topic 4.3 – Mixed Models and Random Parameters

Heterogeneous (in the Means) Random Parameters Model

i,1,t F,i i,1,t Q i,1,t P,i i,1,t Brand i,Brand i,1,t

i,2,t F,i i,2,t Q i,2,t P,i i,2,t Brand i,Brand i,2,t

i,3,t F,i i,3,t Q i,3,t P

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality +β ,i i,3,t Brand i,Brand i,3,t

i,NONE,t NONE NONE i,NONE i,NONE,t

F,i F F i F F1 i F2 i F,i F,i

P,i P P

Price +λ W +ε

U =α +λ W +ε

β =β +δ Sex +[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

β =β +δ Sexi P P1 i P2 i P,i P,i

Brand,i

NONE,i

+[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

W ~N[0,1]

W ~N[0,1]

Heterogeneity in Means

Page 50: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

50/110: Topic 4.3 – Mixed Models and Random Parameters

Heterogeneity in Both Means and Variances

i,1,t F,i i,1,t Q i,1,t P,i i,1,t Brand i,Brand i,1,t

i,2,t F,i i,2,t Q i,2,t P,i i,2,t Brand i,Brand i,2,t

i,3,t F,i i,3,t Q i,3,t P

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality +β ,i i,3,t Brand i,Brand i,3,t

i,NONE,t NONE NONE i,NONE i,NONE,t

F,i F F i F F1 i F2 i F,i F,i

P,i P P

Price +λ W +ε

U =α +λ W +ε

β =β +δ Sex +[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

β =β +δ Sexi P P1 i P2 i P,i P,i

Brand,i

NONE,i

+[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

W ~N[0,1]

W ~N[0,1]

Heteroscedasticity

Page 51: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

51/110: Topic 4.3 – Mixed Models and Random Parameters

---------------------------------------------------------------Random Parms/Error Comps. Logit ModelDependent variable CHOICELog likelihood function -4019.23544 (-4158.50286 for MNL)Restricted log likelihood -4436.14196 (Chi squared = 278.5)Chi squared [ 12 d.f.] 833.81303Significance level .00000McFadden Pseudo R-squared .0939795Estimation based on N = 3200, K = 12Information Criteria: Normalization=1/N Normalized UnnormalizedAIC 2.51952 8062.47089R2=1-LogL/LogL* Log-L fncn R-sqrd R2AdjNo coefficients -4436.1420 .0940 .0928Constants only -4391.1804 .0847 .0836At start values -4158.5029 .0335 .0323Response data are given as ind. choicesReplications for simulated probs. = 50Halton sequences used for simulationsRPL model with panel has 400 groupsFixed number of obsrvs./group= 8Number of obs.= 3200, skipped 0 obs---------------------------------------------------------------

Page 52: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

52/110: Topic 4.3 – Mixed Models and Random Parameters

--------+--------------------------------------------------Variable| Coefficient Standard Error b/St.Er. P[|Z|>z]--------+-------------------------------------------------- |Random parameters in utility functions FASH| .62768*** .13498 4.650 .0000 PRICE| -7.60651*** 1.08418 -7.016 .0000 |Nonrandom parameters in utility functions QUAL| 1.07127*** .06732 15.913 .0000 ASC4| .03874 .09017 .430 .6675 |Heterogeneity in mean, Parameter:VariableFASH:AGE| 1.73176*** .15372 11.266 .0000FAS0:AGE| .71872*** .18592 3.866 .0001PRIC:AGE| -9.38055*** 1.07578 -8.720 .0000PRI0:AGE| -4.33586*** 1.20681 -3.593 .0003 |Distns. of RPs. Std.Devs or limits of triangular NsFASH| .88760*** .07976 11.128 .0000 NsPRICE| 1.23440 1.95780 .631 .5284 |Heterogeneity in standard deviations |(cF1, cF2, cP1, cP2 omitted...) |Standard deviations of latent random effectsSigmaE01| .23165 .40495 .572 .5673SigmaE02| .51260** .23002 2.228 .0258--------+--------------------------------------------------Note: ***, **, * = Significance at 1%, 5%, 10% level.-----------------------------------------------------------

Random Effects Logit Model Appearance of Latent Random Effects in Utilities Alternative E01 E02+-------------+---+---+| BRAND1 | * | |+-------------+---+---+| BRAND2 | * | |+-------------+---+---+| BRAND3 | * | |+-------------+---+---+| NONE | | * |+-------------+---+---+

Heterogeneity in Means.Delta: 2 rows, 2 cols. AGE25 AGE39FASH 1.73176 .71872PRICE -9.38055 -4.33586

Estimated RP/ECL Model

Page 53: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

53/110: Topic 4.3 – Mixed Models and Random Parameters

Estimated Elasticities

+---------------------------------------------------+| Elasticity averaged over observations.|| Attribute is PRICE in choice BRAND1 || Effects on probabilities of all choices in model: || * = Direct Elasticity effect of the attribute. || Mean St.Dev || * Choice=BRAND1 -.9210 .4661 || Choice=BRAND2 .2773 .3053 || Choice=BRAND3 .2971 .3370 || Choice=NONE .2781 .2804 |+---------------------------------------------------+| Attribute is PRICE in choice BRAND2 || Choice=BRAND1 .3055 .1911 || * Choice=BRAND2 -1.2692 .6179 || Choice=BRAND3 .3195 .2127 || Choice=NONE .2934 .1711 |+---------------------------------------------------+| Attribute is PRICE in choice BRAND3 || Choice=BRAND1 .3737 .2939 || Choice=BRAND2 .3881 .3047 || * Choice=BRAND3 -.7549 .4015 || Choice=NONE .3488 .2670 |+---------------------------------------------------+

+--------------------------+| Effects on probabilities || * = Direct effect te. || Mean St.Dev || PRICE in choice BRAND1 || * BRAND1 -.8895 .3647 || BRAND2 .2907 .2631 || BRAND3 .2907 .2631 || NONE .2907 .2631 |+--------------------------+| PRICE in choice BRAND2 || BRAND1 .3127 .1371 || * BRAND2 -1.2216 .3135 || BRAND3 .3127 .1371 || NONE .3127 .1371 |+--------------------------+| PRICE in choice BRAND3 || BRAND1 .3664 .2233 || BRAND2 .3664 .2233 || * BRAND3 -.7548 .3363 || NONE .3664 .2233 |+--------------------------+

Multinomial Logit

Page 54: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

54/110: Topic 4.3 – Mixed Models and Random Parameters

Estimating Individual Distributions Form posterior estimates of E[i|datai]

Use the same methodology to estimate E[i2|

datai] and Var[i|datai] Plot individual “confidence intervals”

(assuming near normality) Sample from the distribution and plot kernel

density estimates

Page 55: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

55/110: Topic 4.3 – Mixed Models and Random Parameters

What is the ‘Individual Estimate?’

Point estimate of mean, variance and range of random variable i | datai.

Value is NOT an estimate of i ; it is an estimate of E[i | datai]

This would be the best estimate of the actual realization i|datai

An interval estimate would account for the sampling ‘variation’ in the estimator of Ω.

Bayesian counterpart to the preceding: Posterior mean and variance. Same kind of plot could be done.

Page 56: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

56/110: Topic 4.3 – Mixed Models and Random Parameters

Individual E[i|datai] Estimates*

The random parameters model is uncovering the latent class feature of the data.

*The intervals could be made wider to account for the sampling variability of the underlying (classical) parameter estimators.

Page 57: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

57/110: Topic 4.3 – Mixed Models and Random Parameters

WTP Application (Value of Time Saved)

Estimating Willingness to Pay for Increments to an Attribute in a Discrete Choice Model

WTP = MU(attribute) / MU(Income)

attribute,i

cost

βWTP = -

β

Random

Page 58: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

58/110: Topic 4.3 – Mixed Models and Random Parameters

Extending the RP Model to WTPUse the model to estimate conditional

distributions for any function of parameters

Willingness to pay = -i,time / i,cost

Use simulation methodˆ ˆ

ˆˆ ˆ

ˆ

R Tr=1 ir t=1 ijt ir it

i i R Tr=1 t=1 ijt ir it

R

i,r irr=1

(1/ R)Σ WTP Π P (β |Ω,data )E[WTP | data ] =

(1/ R)Σ Π P (β |Ω,data )

1 = w WTP

R

Page 59: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

59/110: Topic 4.3 – Mixed Models and Random Parameters

Simulation of WTP from i

ˆ

i

i

i,Attributei i i i

i,Cost

Ti,Attribute

i i i i i i i βt=1i,Cost

T

i i i i i i i βt=1

i,

i

-βWTP =E | , , , , ,

β

-βP(choice j | , )g( | , , , , , ) d

β =

P(choice j | , )g( | , , , , , ) d

-β1R

WTP =

β Δ Γ y X z

X β β β Δ Γ y X z β

X β β β Δ Γ y X z β

ˆˆ

ˆ ˆ ˆ ˆ

ˆ

TRAttribute

i irr=1 t=1i,Cost

ir i irTR

i irr=1 t=1

P(choice j | , )β

, = + +1

P(choice j | X , )R

X β

β β Δz Γw

β

Page 60: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

60/110: Topic 4.3 – Mixed Models and Random Parameters

Page 61: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

61/110: Topic 4.3 – Mixed Models and Random Parameters

WTP

Page 62: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

62/110: Topic 4.3 – Mixed Models and Random Parameters

A Generalized Mixed Logit Model

i i,t,j i,t,j

i i i i i i

i i

U(i,t, j) = Common effects + ε

Random Parameters

= σ [ + ]+[γ +σ (1- γ)]

=

is a lower triangular matrix

with 1s on the diagonal (Cholesky matrix)

β x

β β Δz Γ v

Γ ΛΣ

Λ

Σ

i k k i

2 2i i i i i

i i

is a diagonal matrix with φ exp( )

Overall preference scaling

σ = σexp(-τ / 2+τ w + ]

τ = exp( )

0 < γ < 1

ψ h

θ h

λ r

Page 63: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

63/110: Topic 4.3 – Mixed Models and Random Parameters

Generalized Multinomial Choice Model

i,1,t F,i i,1,t Q i,1,t P,i i,1,t Brand i,Brand i,1,t

i,2,t F,i i,2,t Q i,2,t P,i i,2,t Brand i,Brand i,2,t

i,3,t F,i i,3,t Q i,3,t P

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality +β Price +λ W +ε

U =β Fashion +β Quality +β ,i i,3,t Brand i,Brand i,3,t

i,NONE,t NONE NONE i,NONE i,NONE,t

F,i F F i F F1 i F2 i F,i F,i

P,i P P

Price +λ W +ε

U =α +λ W +ε

β =β +δ Sex +[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

β =β +δ Sexi P P1 i P2 i P,i P,i

Brand,i

NONE,i

+[σ exp(γ AgeL25 +γ Age2539)] w ; w ~N[0,1]

W ~N[0,1]

W ~N[0,1]

Page 64: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

64/110: Topic 4.3 – Mixed Models and Random Parameters

Estimation in Willingness to Pay Space

θ θ

θ θ

θ θ

i,1,t P,i F,i i,1,t Q i,1,t i,1,t Brand i,Brand i,1,t

i,2,t P,i F,i i,2,t Q i,2,t i,2,t Brand i,Brand i,2,t

i,3,t P,i F,i i,3,t Q i,3

U =β Fashion + Quality +Price +λ W +ε

U =β Fashion + Quality +Price +λ W +ε

U =β Fashion + Quality ,t i,3,t Brand i,Brand i,3,t

i,NONE,t NONE NONE i,NONE i,NONE,t

Brand,i NONE,i

+Price +λ W +ε

U =α +λ W +ε

W ~N[0,1] W ~N[0,1

0[ (1 )] F

i iPF P

θ θF,i F,i F,iF F i

P,i P,i P,iP P i

]

w w ~N[0,1]+δ Sex

β w w ~N[0,1]β +δ Sex

Both parameters in the WTP calculation are random.

Page 65: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

65/110: Topic 4.3 – Mixed Models and Random Parameters

--------+--------------------------------------------------Variable| Coefficient Standard Error b/St.Er. P[|Z|>z]--------+-------------------------------------------------- |Random parameters in utility functions QUAL| -.32668*** .04302 -7.593 .0000 1.01373 renormalized PRICE| 1.00000 ......(Fixed Parameter)...... -11.80230 renormalized |Nonrandom parameters in utility functions FASH| 1.14527*** .05788 19.787 .0000 1.4789 not rescaled ASC4| .84364*** .05554 15.189 .0000 .0368 not rescaled |Heterogeneity in mean, Parameter:VariableQUAL:AGE| .05843 .04836 1.208 .2270 interaction termsQUA0:AGE| -.11620 .13911 -.835 .4035PRIC:AGE| .23958 .25730 .931 .3518PRI0:AGE| 1.13921 .76279 1.493 .1353 |Diagonal values in Cholesky matrix, L. NsQUAL| .13234*** .04125 3.208 .0013 correlated parameters CsPRICE| .000 ......(Fixed Parameter)...... but coefficient is fixed |Below diagonal values in L matrix. V = L*LtPRIC:QUA| .000 ......(Fixed Parameter)...... |Heteroscedasticity in GMX scale factor sdMALE| .23110 .14685 1.574 .1156 heteroscedasticity |Variance parameter tau in GMX scale parameterTauScale| 1.71455*** .19047 9.002 .0000 overall scaling, tau |Weighting parameter gamma in GMX modelGammaMXL| .000 ......(Fixed Parameter)...... |Coefficient on PRICE in WTP space formBeta0WTP| -3.71641*** .55428 -6.705 .0000 new price coefficientS_b0_WTP| .03926 .40549 .097 .9229 standard deviation | Sample Mean Sample Std.Dev.Sigma(i)| .70246 1.11141 .632 .5274 overall scaling |Standard deviations of parameter distributions sdQUAL| .13234*** .04125 3.208 .0013 sdPRICE| .000 ......(Fixed Parameter)......--------+--------------------------------------------------

Estimated Model for WTP

Page 66: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

66/110: Topic 4.3 – Mixed Models and Random Parameters

Page 67: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

67/110: Topic 4.3 – Mixed Models and Random Parameters

Page 68: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

68/110: Topic 4.3 – Mixed Models and Random Parameters

Page 69: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

69/110: Topic 4.3 – Mixed Models and Random Parameters

Page 70: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

70/110: Topic 4.3 – Mixed Models and Random Parameters

Page 71: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

71/110: Topic 4.3 – Mixed Models and Random Parameters

Page 72: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

72/110: Topic 4.3 – Mixed Models and Random Parameters

Page 73: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

73/110: Topic 4.3 – Mixed Models and Random Parameters

Page 74: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

74/110: Topic 4.3 – Mixed Models and Random Parameters

Page 75: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

75/110: Topic 4.3 – Mixed Models and Random Parameters

Aggregate Data and Multinomial Choice:

The Model of Berry, Levinsohn and Pakes

Page 76: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

76/110: Topic 4.3 – Mixed Models and Random Parameters

Resources

Automobile Prices in Market Equilibrium, S. Berry, J. Levinsohn, A. Pakes, Econometrica, 63, 4, 1995, 841-890. (BLP)

http://people.stern.nyu.edu/wgreene/Econometrics/BLP.pdf

A Practitioner’s Guide to Estimation of Random-Coefficients Logit Models of Demand, A. Nevo, Journal of Economics and Management Strategy, 9, 4, 2000, 513-548

http://people.stern.nyu.edu/wgreene/Econometrics/Nevo-BLP.pdf

A New Computational Algorithm for Random Coefficients Model with Aggregate-level Data, Jinyoung Lee, UCLA Economics, Dissertation, 2011

http://people.stern.nyu.edu/wgreene/Econometrics/Lee-BLP.pdf

Elasticities of Market Shares and Social Health Insurance Choice in Germany: A Dynamic Panel Data Approach, M. Tamm et al., Health Economics, 16, 2007, 243-256. http://people.stern.nyu.edu/wgreene/Econometrics/Tamm.pdf

Page 77: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

77/110: Topic 4.3 – Mixed Models and Random Parameters

Theoretical Foundation

Consumer market for J differentiated brands of a good j =1,…, Jt brands or types i = 1,…, N consumers t = i,…,T “markets” (like panel data)

Consumer i’s utility for brand j (in market t) depends on p = price x = observable attributes f = unobserved attributes w = unobserved heterogeneity across consumers ε = idiosyncratic aspects of consumer preferences

Observed data consist of aggregate choices, prices and features of the brands.

Page 78: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

78/110: Topic 4.3 – Mixed Models and Random Parameters

BLP Automobile Market

t

Jt

Page 79: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

79/110: Topic 4.3 – Mixed Models and Random Parameters

Random Utility Model

Utility: Uijt=U(wi,pjt,xjt,fjt|), i = 1,…,(large)N, j=1,…,J wi = individual heterogeneity; time (market) invariant. w has a

continuous distribution across the population. pjt, xjt, fjt, = price, observed attributes, unobserved features of

brand j; all may vary through time (across markets) Revealed Preference: Choice j provides maximum

utility Across the population, given market t, set of prices pt

and features (Xt,ft), there is a set of values of wi that induces choice j, for each j=1,…,Jt; then, sj(pt,Xt,ft|) is the market share of brand j in market t.

There is an outside good that attracts a nonnegligible market share, j=0. Therefore,

< j t t t tJ

j=1s ( , , | ) 1p X f θ

Page 80: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

80/110: Topic 4.3 – Mixed Models and Random Parameters

Functional Form

(Assume one market for now so drop “’t.”)Uij=U(wi,pj,xj,fj|)= xj'β – αpj + fj + εij = δj + εij

Econsumers i[εij] = 0, δj is E[Utility].

Will assume logit form to make integration unnecessary. The expectation has a closed form.

j j qq j

Market Share E Prob( )

Page 81: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

81/110: Topic 4.3 – Mixed Models and Random Parameters

Heterogeneity

Assumptions so far imply IIA. Cross price elasticities depend only on market shares.

Individual heterogeneity: Random parameters

Uij=U(wi,pj,xj,fj|i)= xj'βi – αpj + fj + εij

βik = βk + σkvik. The mixed model only imposes IIA for a

particular consumer, but not for the market as a whole.

Page 82: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

82/110: Topic 4.3 – Mixed Models and Random Parameters

Endogenous Prices: Demand side

Uij=U(wi,pj,xj,fj|)= xj'βi – αpj + fj + εij

fj is unobserved Utility responds to the unobserved fj Price pj is partly determined by features fj. In a choice model based on observables,

price is correlated with the unobservables that determine the observed choices.

Page 83: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

83/110: Topic 4.3 – Mixed Models and Random Parameters

Endogenous Price: Supply Side

There are a small number of competitors in this market Price is determined by firms that maximize profits given the

features of its products and its competitors. mcj = g(observed cost characteristics c,

unobserved cost characteristics h) At equilibrium, for a profit maximizing firm that produces

one product, sj + (pj-mcj)sj/pj = 0

Market share depends on unobserved cost characteristics as well as unobserved demand characteristics, and price is correlated with both.

Page 84: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

84/110: Topic 4.3 – Mixed Models and Random Parameters

Instrumental Variables(ξ and ω are our h and f.)

Page 85: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

85/110: Topic 4.3 – Mixed Models and Random Parameters

Econometrics: Essential Components

ijt jt i jt ijt

i0t i0t

i i 1

ijt

jt i jtj t t i J

mt i mtm 1

U f

U (Outside good)

v , diagonal( ,...)

~ Type I extreme value, IID across all choices

exp( f )Market shares: s ( , : ) , j 1,...,

1 exp( f )

x

xX f

xtJ

Page 86: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

86/110: Topic 4.3 – Mixed Models and Random Parameters

Econometrics

i

jt i jtj t t i tJ

mt i mtm 1

jt i jtj t t iJ

mt i mtm 1

exp( f )Market Shares: s ( , : ) , j 1,..., J

1 exp( f )

exp( f )Expected Share: E[s ( , : )] dF( )

1 exp( f )

Expected Shares are estimated using simulati

xX f

x

xX f

x

R jt ir jtj t t Jr 1

mt ir mtm 1

on:

exp[ v ) f ]1s ( , : )

R 1 exp[ v ) f ]

xX f

x

Page 87: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

87/110: Topic 4.3 – Mixed Models and Random Parameters

GMM Estimation Strategy - 1

R jt ir jtjt t t Jr 1

mt ir mtm 1

jt

jt jt

jt

exp[ v ) f ]1s ( , : )

R 1 exp[ v ) f ]

We have instruments such that

E[f ( ) ] 0

f is obtained from an inverse mapping by equating the

ˆfitted market shares,

xX f

x

z

z

s

t

1t t t t t

, to the observed market shares, .

ˆˆ ˆ( , : ) so ( , : ).t

S

s X f S f s X S

t

t t

Page 88: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

88/110: Topic 4.3 – Mixed Models and Random Parameters

GMM Estimation Strategy - 2

t

jt

jt jt

1t t t t t

J

t jt jtj 1t

t t t

We have instruments such that

E[f ( ) ] 0

ˆˆ ˆ( , : ) so ( , : ).

1 ˆˆDefine = fJ

ˆ ˆ ˆGMM Criterion would be Q ( )

where = the weighting matrix for mi

t

z

z

s X f S f s X S

g z

g Wg

W

t t

tT J

jt jtt 1 j 1t

nimum distance estimation.

For the entire sample, the GMM estimator is built on

1 1 ˆˆ ˆ ˆ = f and Q( )=T J

g z gWg

Page 89: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

89/110: Topic 4.3 – Mixed Models and Random Parameters

BLP Iteration

(0)t t

(M 1) (M 1) (M 1) (M 1)t t t

ˆBegin with starting values for and starting values for

structural parameters and .

ˆ ˆ ˆˆCompute predicted shares ( , : , ).

Find a fixedINNER (Contraction Mapping)

ff

s X f

(M) (M 1) (M 1) (M 1) (M 1) (M 1) (M) (M 1) (M 1) (M 1)t t t t t t t t

(M) (M) (M)t

point for

ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆˆlog( ) log[ ( , : , )] ( , , )

ˆ ˆ ˆ With in hand, use GMM to (re)estimate , .

Return to

OUTER (GMM Step)

ff S s

IN

X ff

f

NER

f

(M) (M 1)t t

ˆ ˆstep or exit if - is sufficiently small.

step is straightforward - concave function (quadratic form) of a

concave function (logit probability).

Solving the step is time consuming INNER

f

GMM

f

(M)t

and very complicated.

Recent research has produced several alternative algorithms.

ˆOverall complication: The estimates can diverge.f

Page 90: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

90/110: Topic 4.3 – Mixed Models and Random Parameters

ABLP Iteration

ξt is our ft. is our(β,)

No superscript is our (M); superscript 0 is our (M-1).

Page 91: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

91/110: Topic 4.3 – Mixed Models and Random Parameters

Side Results

Page 92: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

92/110: Topic 4.3 – Mixed Models and Random Parameters

ABLP Iterative Estimator

Page 93: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

93/110: Topic 4.3 – Mixed Models and Random Parameters

BLP Design Data

Page 94: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

94/110: Topic 4.3 – Mixed Models and Random Parameters

Exogenous price and nonrandom parameters

Page 95: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

95/110: Topic 4.3 – Mixed Models and Random Parameters

IV Estimation

Page 96: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

96/110: Topic 4.3 – Mixed Models and Random Parameters

Full Model

Page 97: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

97/110: Topic 4.3 – Mixed Models and Random Parameters

Some Elasticities

Page 98: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

98/110: Topic 4.3 – Mixed Models and Random Parameters

Page 99: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

99/110: Topic 4.3 – Mixed Models and Random Parameters

Page 100: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

100/110: Topic 4.3 – Mixed Models and Random Parameters

Page 101: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

101/110: Topic 4.3 – Mixed Models and Random Parameters

Page 102: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

102/110: Topic 4.3 – Mixed Models and Random Parameters

Page 103: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

103/110: Topic 4.3 – Mixed Models and Random Parameters

Page 104: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

104/110: Topic 4.3 – Mixed Models and Random Parameters

Page 105: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

105/110: Topic 4.3 – Mixed Models and Random Parameters

Page 106: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

106/110: Topic 4.3 – Mixed Models and Random Parameters

Page 107: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

107/110: Topic 4.3 – Mixed Models and Random Parameters

Latent Class Mixed Logit

Page 108: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

108/110: Topic 4.3 – Mixed Models and Random Parameters

Page 109: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

109/110: Topic 4.3 – Mixed Models and Random Parameters

Page 110: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

110/110: Topic 4.3 – Mixed Models and Random Parameters

Page 111: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

111/110: Topic 4.3 – Mixed Models and Random Parameters

Appendix: Maximum Simulated Likelihood

TN

iti=1 t 1

K 1 K

logL( )=

log f(y | , )h( | , )d

,..., , ,..., ,

i

it i i i iβ

1

θ,Ω

x ,β θ β z Ω β

Ω=β,Δ, δ δ Γ

Page 112: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

112/110: Topic 4.3 – Mixed Models and Random Parameters

Monte Carlo Integration

range of v

(1) Integral is of the form

K = g(v|data, ) f(v| ) dv

where f(v) is the density of random variable v

possibly conditioned on a set of parameters

and g(v|data, ) is a function of data and

β Ω

Ω

β

r

parameters.

(2) By construction, K( ) = E[g(v|data, )]

(3) Strategy:

a. Sample R values from the population

of v using a random number generator.

b. Compute average K = (1/R) g(v |dat

Ω β

R

r=1a, )

By the law of large numbers, plim K = K.

β

Page 113: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

113/110: Topic 4.3 – Mixed Models and Random Parameters

Monte Carlo Integration

ii

RP

ir i i i u iur=1

1f(u ) f(u )g(u )du =E [f(u )]

R

(Certain smoothness conditions must be met.)

ir

ir ir ir

-1 2ir ir

Drawing u by 'random sampling'

u = t(v ), v ~ U[0,1]

E.g., u = σΦ (v )+μ for N[μ,σ ]

Requires many draws, typically hundreds or thousands

Page 114: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

114/110: Topic 4.3 – Mixed Models and Random Parameters

Example: Monte Carlo Integral

2

1 2 3

1 2 3

exp( v / 2)(x .9v) (x .9v) (x .9v) dv

2where is the standard normal CDF and

x = .5, x = -.2, x = .3.

The weighting function for v is the standard normal.

Strategy: Draw R (say 1000) standard

r

1 r 2 r 3 r

normal random

draws, v . Compute the 1000 functions

(x .9v ) (x .9v ) (x .9v ) and average them.

(Based on 100, 1000, 10000, I get .28746, .28437, .27242)

Page 115: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

115/110: Topic 4.3 – Mixed Models and Random Parameters

Simulated Log Likelihood for a Mixed Probit Model

i

i

it it

TN

iti=1 t 1

TN RSiti=1 r 1 t 1

Random parameters probit model

f(y | ) [(2y 1) ]

~N[ , ]

LogL( )= log [(2y 1) ] N[ , ]d

1LogL log [(2y 1) ( )]

RWe now m

i

it i it i

i i

2i

2it i iβ

it ir

x ,β x β

β β+u

u 0 ΓΛ Γ'

β,Γ,Λ x β β ΓΛ Γ' β

x β+ΓΛv

aximize this function with respect to ( ).β,Γ,Λ

Page 116: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

116/110: Topic 4.3 – Mixed Models and Random Parameters

Generating Random DrawsMost common approach is the "inverse probability transform"

Let u = a random draw from the standard uniform (0,1).

Let x = the desired population to draw from

Assume the CDF of x is F(x).

The random -1 draw is then x = F (u).

Example: exponential, . f(x)= exp(- x), F(x)=1-exp(- x)

Equate u to F(x), x = -(1/ )log(1-u).

Example: Normal( , ). Inverse function does not exist in

closed form. There are good polynomial approxi-

mations to produce a draw from N[0,1] from a U(0,1).

Then x = + v.

This leaves the question of how to draw the U(0,1).

Page 117: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

117/110: Topic 4.3 – Mixed Models and Random Parameters

Drawing Uniform Random Numbers

Computer generated random numbers are not random; they

are Markov chains that look random.

The Original IBM SSP Random Number Generator for 32 bit computers.

SEED originates at some large odd number

d3 = 2147483647.0

d2 = 2147483655.0

d1=16807.0

SEED=Mod(d1*SEED,d3) ! MOD(a,p) = a - INT(a/p) * p

X=SEED/d2 is a pseudo-random value between 0 and 1.

Problems:

(1) Short period. Base 31d on 32 bits, so recycles after 2 1 values

(2) Evidently not very close to random. (Recent tests have

discredited this RNG)

Page 118: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

118/110: Topic 4.3 – Mixed Models and Random Parameters

Quasi-Monte Carlo Integration Based on Halton Sequences

0

Coverage of the unit interval is the objective,

not randomness of the set of draws.

Halton sequences --- Markov chain

p = a prime number,

r= the sequence of integers, decomposed as

H(r|p)

I iii

b p

b 1

0, ,...1 r = r (e.g., 10,11,12,...)

I iiip

For example, using base p=5, the integer r=37 has b0 =

2, b1 = 2, and b2 = 1; (37=1x52 + 2x51 + 2x50). Then

H(37|5) = 25-1 + 25-2 + 15-3 = 0.448.

Page 119: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

119/110: Topic 4.3 – Mixed Models and Random Parameters

Halton Sequences vs. Random Draws

Requires far fewer draws – for one dimension, about 1/10. Accelerates estimation by a factor of 5 to 10.

Page 120: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

120/110: Topic 4.3 – Mixed Models and Random Parameters

Estimating the RPL Model

Estimation: 1

2it = 2 + Δzi + Γvi,t

Uncorrelated: Γ is diagonal

Autocorrelated: vi,t = Rvi,t-1 + ui,t

(1) Estimate “structural parameters”

(2) Estimate individual specific utility parameters

(3) Estimate elasticities, etc.

Page 121: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

121/110: Topic 4.3 – Mixed Models and Random Parameters

Classical Estimation Platform: The Likelihood

ˆ

ˆ

i

i

i

i i iβ

i

Marginal : f( | data, )

Population Mean =E[ | data, ]

= f( | )d

= = a subvector of

= Argmax L( ,i =1,...,N| data, )

Estimator =

β Ω

β Ω

β β Ω β

β Ω

Ω β Ω

β

Expected value over all possible realizations of i. I.e., over all possible samples.

Page 122: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

122/110: Topic 4.3 – Mixed Models and Random Parameters

When Var[ ] is not a diagonal matrix. How to estimate a positive

definite matrix, .

~ N[ , ]

= where is upper triangular

with ~ N[ , ]

Convenient Refinement:

i

i

i i i

Cholesky Decomposi

u

u 0

LL L

u Lv v

i

0

o :

I

t n

= ( )( ) where the diagonal

elements of equal 1, and is the diagonal

matrix with free positive eleme

LL MS MS

M S

nts. (Cholesky values)

returns the original uncorrelated case.

We used the Cholesky decomposition in developing the Krinsky and Robb

method for standard errors for partial effects, in Part 3.

i iu MSv

M I

Page 123: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

123/110: Topic 4.3 – Mixed Models and Random Parameters

Simulation Based Estimation

Probability = P[data |(1,2,Δ,Γ,R,vi,t)] Need to integrate out the unobserved random term E{P[data | (1,2,Δ,Γ,R,vi,t)]}

= P[…|vi,t]f(vi,t)dvi,t

Integration is done by simulation Draw values of v and compute then probabilities Average many draws Maximize the sum of the logs of the averages (See Train[Cambridge, 2003] on simulation methods.)

v

Page 124: 1/110: Topic 4.3 – Mixed Models and Random Parameters Microeconometric Modeling William Greene Stern School of Business New York University New York NY

124/110: Topic 4.3 – Mixed Models and Random Parameters

WinBUGS: MCMC User specifies the model – constructs the Gibbs Sampler/Metropolis Hastings

MLWin: Linear and some nonlinear – logit, Poisson, etc. Uses MCMC for MLE (noninformative priors)

SAS: Proc Mixed. Classical Uses primarily a kind of GLS/GMM (method of moments algorithm for loglinear models)

Stata: Classical Several loglinear models – GLAMM. Mixing done by quadrature. Maximum simulated likelihood for multinomial choice (Arne Hole, user provided)

LIMDEP/NLOGIT Classical Mixing done by Monte Carlo integration – maximum simulated likelihood Numerous linear, nonlinear, loglinear models

Ken Train’s Gauss Code, miscellaneous freelance R and Matlab code Monte Carlo integration Mixed Logit (mixed multinomial logit) model only (but free!)

Biogeme Multinomial choice models Many experimental models (developer’s hobby)

Programs differ on the models fitted, the algorithms, the paradigm, and the extensions provided to the simplest RPM, i = +wi.