179
1 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society www.AIRS.it doctoral lecturer on systems science, Polytechnic University of Milan, Department “Building Environment Sciences and Technology”

11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society doctoral

Embed Size (px)

Citation preview

Page 1: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

11

Systemics and emergence for Architecture

In memory of Professor G. Ciribini

Gianfranco Minati

• Italian Systems Society www.AIRS.it • doctoral lecturer on systems science, Polytechnic University of Milan, Department “Building Environment Sciences and Technology”

Page 2: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

22

PART 1 p. 38

1. The concept of system

1.1 From sets to systems

1.2 Introductory history

2. Systemics or General System Theory: System as phenomenon of emergence

2.1 A formal introduction

2.2 The concept of emergence

Page 3: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

33

PART 2 p. 32

3. Systemics 3.1 Mono-, multi-, inter- and trans- disciplinarity 3.2 Inter- and trans- disciplinary research

4. Systemic openness 4.1 From thermodynamic to logical openness 4.2 Logical Openness 4.3 Systemic models based on thermodynamic and logical openness 4.4 An example of logical openness in education 4.5 General comments on systemic closeness and openness

Page 4: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

44

PART 3 p. 26

5. DYnamic uSAge of Models (DYSAM)

6. Logical inferences, language and process of thinking 6.1 Introduction to Deduction, Induction and Abduction 6.2 General Comments 6.2.1 Language and process of thinking 6.2.2 From computing to learning

Page 5: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

55

PART 4 p. 15

7. Applications 7.1 Reductionism 7.2 The systemic level of description 7.3 Systemics only for science? 7.4 Emergence and conservation: the example of buildings as systems 7.5 Assuming the wrong model, i.e. at the unsuitable level of description 7.6 Design and emergence 7.7 Emergence of Architecture from social systems

Page 6: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

66

PART 5 p. 29

8. Self-Architecture 8.1 Architecture as the design of suitable boundary conditions for emergence of social systems: meta- structures. 8.2 From acquired to structural properties: architecture as structural synthesis 8.3 From implicit, unexpressed properties to structural properties: architecture as design of new structures intended as representation, translations of social phenomena 8.4 The concept of Self-Architecture 8.5 Meta-elements and Meta-structures

Page 7: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

77

PART 6 p. 23

9. Conclusions 9.1 Growth, Development and Sustainability 9. 2 Theoretical role of the observer, constructivism, levels of description 9.3 Falsification of Systemics 9.4 Successes and failures of Systemics

Page 8: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

88

PART 1

1. The concept of system

1.1 From sets to systems

Interaction as necessary condition

Examples of sets, structured sets, systems, subsystems:

Page 9: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

99

What are Systems?In the scientific literature a System has been defined in various ways. For instance as “A set of objects together with relationships between the objects and between their attributes” or “. . . a set of units with relationships among them”. A system has been intended as an entity having properties different from those of what are considered elements by the designer (for artificial systems) or by the observer (for natural systems). A set is an entity having a rule of belonging.A necessary and sufficient condition for the establishment of systems is that elements, as designed (for artificial systems) or represented (for natural systems) by the observer, interact in a suitable way.

Page 10: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

1010

Elements characteristics and characteristics of generated systems.

Football playersWeight, age

TeamHarmony, game strategy

CellsFunction

Living beingBehaviour

StudentsNumbers

SchoolCollective ability to learn

Brain componentsConfiguration

Memory, IntelligenceProcessing capabilities

Single musicianInstrument played

OrchestraPolyphony

WordsCorrect Grammar

A poem, a book, a storyMeaning

Musical notesCorrectness in the score

MusicHarmony

CoupleSynchronization of interests

FamilyEmergence of roles

SoldiersSingle abilities

ArmyAbility to apply military strategies

WorkersQuantity

CorporationValue

AnimalsQuantity, single behaviour

Herds, swarms, flocks, packsCollective behaviour

Page 11: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

1111

Interaction

We may assume, in short, that two or more elements interact when one’s behaviour affects the other’s as observed by the observer. Examples of such interactions are processes of mutual exchange of energy (e.g., collisions and magnetic fields, where vector fields exert a magnetic force on magnetic dipoles or moving electric charges), matter (e.g., economic interchange) or information (e.g., prey-predator).

Page 12: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

1212

Design systems or model a phenomenon as a system

It is possible to distinguish between two conceptual cases:1. Systems are considered in an objectivist way when they

are artificially designed, i.e., we know the component parts and how they interact because they were designed that way.

2. Systems are considered in a constructivist way (as for natural systems which have not been artificially designed) when the observer decides to apply a level of description (i.e., partitioning and interactions) to those systems, as if they had been designed as such. In this case, the observer constructivistically models phenomena as systems, by assuming elements and interactions. When this level of description works for applications, it is often assumed to be the true one within the conceptual framework of a discovery, thus resuming an objectivist approach.

Page 13: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

1313

What are non-systems?

Depending on the level of description and on the model adopted by the observer, an entity is not a system when its properties are states, considered as not necessarily being supported by a continuous process of interaction amongst its components. Systems are thus entities assumed to be continuously acquiring systemic properties.

Non-systems are entities considered by the observer as possessing non-systemic properties. Only systems may acquire systemic properties, while systems and non-systems may possess non-systemic properties.

Page 14: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

1414

For instance, the property of a set of boids establishing a flock is continuously established and this continuity is considered as the coherence of the collective or coherent behaviour of boids. It should be stressed that systemic properties are not the result of interactions. Systems and their properties are established by the continuous interaction among elements (e.g., an electronic device acquiring a property when powered on, leading to interactions amongst the component elements) and not as a state.

Page 15: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

1515

States are non-systemic properties, i.e. properties of non-systems like a new colour obtained from mixing primary colours (e.g., Red-Green-Blue), and of entities possessing properties like weight, speed, the Avogadro number and age.

When elements of a system stop to interact than the system degenerates into a set.

Page 16: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

1616

Sets Structured Sets Systems

Subsystems

Build components

Buildings as structures in engineering

Building as processes

Floors of building

Students belonging to a specific school

Students in alphabetical order or grouped by age

School Classrooms

Cells available for experiments

Cells per dimension, age, type, etc.,

Living beings Organs

Casual words Words in alphabetical order

A story, Poem Chapters, Verses

Electronic components listed by the designer

Electronic components structured by the outline of an electronic circuit in an electronic device

An electronic device assumes properties different from ones of components when interacting, i.e. when the board is powered

Group of components classed by function such as power supply, regulators and decoders.

Animals available for study

Animals per age or illness

Swarms, Schools and flocks

Groups of puppies, animals in reproduction and parents

Page 17: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

1717

Examples of properties of composing interacting elements and acquired by generated systems:

Properties of composing interacting elements

Properties acquired by generated systems

Build ComponentsPhysical properties

BuildingsHabitability and energy consuming

CellsFunction

Living beingBehaviour

WordsGrammatical correctness

A poem, a storyMeaning

Electronic componentsAvailability, dissipation

ReceiverRevelation, stability

Football playersAge, weight

TeamGame strategy

AnimalsQuantity, single behaviour

Herds, swarms, flocks, packsCollective behaviour

Page 18: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

1818

1.2 Introductory history

System intended as device

Control Theory, Automata, Systems Theory and Cybernetics

The Watt’s centrifugal regulator:

Page 19: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

1919

The “single loop”

Page 20: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

2020

The “double loop”

Page 21: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

2121

System Dynamics (SD)Introduced by Jay W. Forrester (1918 -) in 1961, in the book Industrial Dynamics.

Networks of feedbacks

A

B

Page 22: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

2222

Feedback refers to the situation of X affecting Y and Y in turn affecting X perhaps through a chain of causes and effects.

One cannot study the link between X and Y and, independently, the link between Y and X and predict how the system will behave.

Only the study of the whole system as a feedback system will lead to correct results.

Page 23: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

2323

Examples of negative feedback to control a system are:

a) thermostat control (when the temperature in a room reaches a certain upper limit the heating is switched off making the temperature to fall down. When the temperature drops to a lower limit, the heating is switched on),

b) hormonal regulation, and c) temperature regulation in animals.

Page 24: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

2424

Examples of positive feedback to control a system are:

a) contractions in childbirth: when a contraction occurs, the hormone oxytocin is released into the body, stimulating further contractions. This results in contractions increasing in amplitude and frequency,

b) lactation involves positive feedback so that the more the baby suckles, the more milk is produced,

c) in stock exchange when the more stakeholders sell and the more they sell.

Page 25: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

2525

Modelling Systems behaviour

The theory of dynamical systems (to be not confused with System Dynamics) has been developed on the basis of researches implemented by J. H. Poincaré (1854-1912)

dx(t)/dt = f(x(t))

Page 26: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

2626

A dynamical system is based on two kinds of information:

1.One dealing with the representation of the system’s state and information about the system itself, i.e., dx(t)/dt;

2.The other specifies the dynamics of the system, through a rule describing its evolution over time, i.e., f(x(t)).

Examples of models of this kind are those used to model simple systems such as themotion of the pendulum or the moon movingalong its orbit, by using the equations ofmotion of classical mechanics.

Page 27: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

2727

In simple systems, like the pendulum, a state variable describes the microscopic behaviour of elementary components and may be sufficient to describe the behaviour of the entire system.

In more complex systems macroscopic variables are assumed as state variables suitable for describing the system as a dynamical system using those variables like volume, temperature, number of components (prays and predators) in ecosystems.

Page 28: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

2828

2. Systemics or General System TheoryIn general, systems may be established or

modelled as such by considering

a)structure between elements (structure is a specification of organisation. Organisation is a network of relationships), and as

b) phenomenon of self-organisation and emergence (not emergency!!)

Page 29: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

2929

Systems are established by:

a) A structured functional way, when organisation is intended as a network of pre-established functional relationships which control the manners of interacting. Rules of interaction are either a) determined by following a design or b) constructivistically intended as such by the observer. In both cases they are sufficient conditions for establishing systems. Structured rules completely define the way in which elements interact, i.e., they define all the degrees of freedom possessed by interactions between elements at the specified level of description.

Page 30: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

3030

Examples of case a) include mechanical devices, such as machines, and electronic devices, such as circuits.

Examples of non-designed systems, as in case b), are natural entities modelled as organised systems by the observer, such as organs performing given functions in living beings and eco-systems.

Page 31: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

3131

b) A process of self-organisation takes places when a structure or a change in structure is acquired or lost, as in phase transitions (e.g., ice-liquid-gas) due to environmental perturbations (e.g., change of temperature or pressure) and in collective phenomena.

Examples of systems modelled in this way

are flocks, swarms, industrial districts, lasers, ferromagnetic and superconducting systems.

Page 32: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

3232

Emergence deals with a generalisation of such processes by considering the process of hierarchically acquiring new properties as properties of systems of systems. Through processes of emergence systems acquire themselves or collectively (i.e., through systems of systems) new further systemic properties at different levels.

Examples are given by the establishment of properties such as cognitive abilities in natural and artificial systems, collective learning abilities in social systems such as flocks, swarms, markets, firms, and functionalities in networks of computers (e.g., on the Internet).

Page 33: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

33

Maria Bertalanffy (his wife) and Ervin Laszlo wrote the following considerations about the term General Systems Theory:"The original concept that is usually assumed to be expressed in the English term General System Theory was Allgemeine Systemtheorie (or Lehre). Now “Theorie” or Lehre, just as Wissenschaft, has a much broader meaning in German than the closest English words theory and science." The word Wissenschaft refers to any organized body of knowledge. The German word Theorie applies to any systematically presented set of concepts. They may be philosophical, empirical, axiomatic, etc. Bertalanffy’s reference to Allgemeine Systemtheorie should be interpreted by understanding a new perspective, a new way of doing science more than a proposal of a General System Theory in the dominion of science, i.e. a Theory of General Systems.

Page 34: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

3434

2.1 A formal introductionWithin the second conceptual framework Ludwig

von Bertalanffy (1901 – 1972), considered to be the father of General System Theory, described a system S, characterized by suitable macroscopic state variables Q1 , Q2 , . . . , Qn , whose instantaneous values specify the state of the system.

dQ1 / dt = f1 (Q1, Q2, …, Qn)

dQ2 / dt = f2 (Q1, Q2, …, Qn)

………………………….dQn / dt = fn (Q1, Q2, …, Qn)

where Q suitable state variable.

Page 35: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

3535

State variables

Macro, micro and meso state variables to model the system

Microscopic state variables relate to a level of description focusing on components (designed or modelled as such) of a system. Examples are variables used by equations of motion of classical mechanics when modelling simple systems such as the motion of the pendulum or the moon moving along its orbit, and the Brownian motion.

Page 36: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

3636

Macroscopic state variables relate to a level of description focusing on the average effects of large number of microscopic variables such as when considering the movement of a billiard ball and ignoring its molecular description; density, volume or surface when considering thermodynamic phenomena and ignoring molecular description.

Page 37: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

3737

Mesoscopic state variables relate to a level of description focusing on variables intermediate between the two previous cases.

At this level we consider variables reduced, i.e., considering more details, with reference to the macroscopic level, but without completely neglect all the degrees of freedom considered at the microscopic level.

Page 38: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

3838

For instance, when considering agents establishing collective behaviour like a flock, we focus on variables such as:

• Mx, number of elements having maximum distance at a given point in time;• Mn, number of elements having the minimum distance at a given point in time;• Nk number of elements having same value of variables such as: N1 = number of elements having same distance from the nearest neighbour, N2 = number of elements having same speed and N3  = number of elements having same direction over time.

Page 39: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

3939

2.2 The concept of emergence

Phase transition

Self-Organisation

Emergence (Cruchtfield, Baas): computational and phenomenological

Page 40: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

4040

1.Phase transitions relating to changes in structure, e.g., water-ice-vapour transition and ferromagnetism.

A note on phase and state of matter

Phases are sometimes confused with states of matter, more precisely thermodynamic states.

For instance, two gases at different pressures are in different thermodynamic states, but at the same phase of matter.

Two states are in the same phase if they can be transformed into one another with sample variations of thermodynamic properties.

Page 41: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

41

Phases of matter

In physics a phase is a region of space (a thermodynamic system), where physical properties of a material are essentially uniform, like having same density.

A phase of a physical system may be defined as a region in the parameter space of the system's thermodynamic variables where the free energy is analytic.

Page 42: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

42

Free energy

In thermodynamics the term free energy relates to a physical variable such that:

• Its changes measure the minimum work the system can do;• Its minimum values correspond to stable equilibrium states of the system.

The free energy is, for instance, the total amount of energy, used or released during a chemical reaction. The term relates to the part of the total energy available for useful work and not dissipated in useless work, like random thermal motion. When a system undergoes changes, its free energy decreases.

Page 43: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

43

Analytic

In the region in the parameter space of the system's thermodynamic variables the free energy can be transformed in analytic way, i.e., transforming function is infinitely differentiable and can be described by a Taylor series.

In correspondence, we may say that two states of a system are in the same phase when they can be transformed into each other with continuity, i.e., without discontinuity among thermodynamic properties.

During a phase transition the free energy is non-analytic.

Page 44: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

4444

2.Processes of self organisations considered as phase transitions when a new acquired structure is dynamic and stable, i.e., repeated in a regular way. Examples are non- perturbed swarms, i.e., synchronised oscillators, established by suitable initial conditions, reaching stationary states in a non-perturbed way such as populations of synchronized fireflies and oscillating chemical reaction (Belousov-regular chromatic changes, Benard- convection cells roll in the same direction).

Page 45: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

4545

3.Processes of emergence may be understood as phase transitions when newly acquired dynamic structures coherently change over time. The process of emergence relates to changes in dynamic structures over time. This way of understanding processes of emergence is suitable for modelling collective behaviours of entities provided with cognitive systems allowing the collective system to process internal and external perturbations. The active role of the observer is fundamental detecting, representing and modelling emergent properties. Coherence is a property primarily generated by the cognitive system of the observer.

Page 46: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

4646

Examples of emergent properties are given by cognitive abilities in natural and artificial systems (behaviour), collective learning abilities in social systems such as flocks, swarms, markets, firms and functionalities in networks of computers (e.g., in Internet), adopting variable non-regular behaviour as in the presence of any suitable environmental condition, but displaying the same property to the observer.

Page 47: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

4747

PART 2

3. SYSTEMICS

Difference between possessing from acquiring (systemic) properties

The concepts of property, level of description and the role of the observer

Page 48: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

4848

SystemicsThis term is used to denote a corpus of systemic concepts, extension of systemic principles by using, for instance, analogies and metaphors.

Systemic ApproachThis expression is used to denote the general methodological aspects of Systemics, considering, for instance, identification of components, interactions and relationships (structure), levels of description, processes of emergence and role of the observer.

General System TheoryThis expression has been introduced in the literature to refer to the theoretical usage of systemic properties considered within different disciplinary contexts (inter-disciplinarity) and per se in general (trans-disciplinarity). Current research identifies it with the Theory of Emergence, i.e. acquisitions of properties.

Systems TheoryThis expression, often inappropriately used as shorthand for General Systems Theory, relates to First-order cybernetics and Systems Engineering for applications such as Control systems and Automata.

Page 49: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

4949

3.1 Mono-, multi-, inter-, and trans- disciplinarity

Mono-disciplinarity

The basilar idea is that a single discipline may deal with any kind of problems. Or any problem may be formulated as problem of a single discipline. It is a typical reductionistic approach, e.g., social problems are economical, psychological problems are neurological, etc.

Page 50: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

5050

Multi-disciplinarity

Multi-disciplinarity relates to the use of different disciplines to deal with the same problem like psychology or economy or laws or organisation to deal with a managerial problem occurring in corporations and to evaluate post-occupancy problems.

Page 51: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

5151

Inter-disciplinarityInter-disciplinarity takes place when problems and approaches of one discipline are used by another (for instance, when models of physics are used in economics and economic problems are represented as physical models, e.g., collective behaviour to represent markets). Contrary to Multi-disciplinarity, Inter-disciplinarity is not a usage of different disciplines, but a theoretical issue consisting of formulating a disciplinary problem by using the models of another discipline. Inter-disciplinarity also occurs in education when teaching one discipline by using another (for instance, teaching history while dealing with geography, mathematics with physics, and medicine with chemistry).

Page 52: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

5252

Inter-disciplinarity deals with the study of the same systemic properties in different disciplines (e.g., openness, adaptability and chaos in physics, economics, biology and psychology). Inter-disciplinarity is about dealing with concepts, approaches, theoretical issues, and models suitable for usage within different disciplinary contexts. A usual approach is based on transposing variables when applying the same model to different disciplinary cases.

Page 53: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

5353

An example

The Lotka-Volterra model describes interactions between two species by using those two state variables. If we consider the two state variables x, the density of prey individuals, and y, the density of predators, the explicit form of the model is:

dx/dt = ax - cxy dy/dt = - bx + cxy

Where: a is the intrinsic rate of prey population increase; b the predator mortality rate;c denotes both predation rate coefficient and the reproduction rate of predators per prey eaten.

Page 54: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

5454

The Lotka Volterra system may be used to model systems where processes of competition occur, like in finance, by changing meaning of variables and parameters.

Page 55: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

5555

Examples of issues in interdisciplinary research are:

1. 'How models used in physics may be used in the social sciences',

2. 'How models describing processes of biological aggregation may be used to model socio-economic processes',

3. 'When Game Theory is sufficient to model decision-making processes and when the cognitivist view must be adopted'.

Generic rather than general usage of inter-disciplinarity occurs when using, for instance,metaphors and analogies instead of models. Inthis case conclusions reached have limitedvalues of robustness and reliability.

Page 56: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

5656

Analogy is reasoning or explaining from parallel cases.

"Analogies prove nothing that is true" wrote Sigmund Freud, "but they can make one feel more at home.“

An example of analogy is “horses are to past societies as cars are to modern societies”.

Metaphors claim for a limited level of total identification.

An example of metaphor is the flux of time.

Page 57: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

5757

Trans-disciplinarity

The term Trans-disciplinarity is widely used, but with no clear, unequivocal or generally accepted definition. Jean Piaget probably first used the term on the occasion of the workshop "L'interdisciplinarité - Problèmes d'enseignement et de recherche dans les universités", Nice (France), September 7-12, 1970.

There are different international institutions devoted to research on this subject mostly focusing upon humanistic interpretations.

Page 58: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

5858

For our purposes we will use this term in a very precise way.

We consider Trans-disciplinarity to arise when systemic properties are studied per se, i.e., considered in general as properties of models and representations without any reference to specific disciplinary cases.

Trans-disciplinarity also studies the relations between systemic properties, e.g., models of dissipation, equilibrium, openness, adaptability and chaos, and their relationships (Fig. 1).

Page 59: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

5959

Examples of issues in trans-disciplinary research are:

1. ‘Is it possible to formulate a theory about the relationship between systemic properties?'

2. ‘How can processes of emergence in systems be induced?’

3. 'How, in general, can systemic properties be induced or regulated?'

4. 'Is it possible to identify a general way to measure systemic properties?'

5. 'Using mathematics for modelling is a way to represent systemic properties. Are there other equivalent ways of representing the same systemic properties?'.

Page 60: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

6060

Trans-disciplinarityWhen systemic properties are considered per se, in general, i.e. without considering specific disciplinary fields, and in relation between them.

Inter-disciplinarityChaoticity is a systemic property, i.e. valid in different disciplinary fields, with the same modeling and simulation.

Inter-disciplinarityOpenness is a systemic property, i.e. valid in different disciplinary fields, having the same modeling and simulation.

3.2 Inter- and trans- disciplinary research

Phy---C---sics Bio---H---logy Che--A---mistry Eco--O---nomics Psy---T---chology Soc---I----iology Met--C---ereology

Phy---O ---sics Cog---P ---itive sciencesGeo---E ---logyEle--- N ---ctronics Lin--- N ---guisticsMus---E ---ics Ant--- S ---ropology Env--- S ---ironmental sciences

Page 61: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

6161

Generic,

Metaphorical,

Analogue and

General

Page 62: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

6262

4. Systemic openness

4.1 From thermodynamic to logical openness

Closed systems

Systems are considered closed when isolated from the environment. Systems may be closed to matter/energy flows (autarkic), closed to information flows (independent), closed to organization.

Page 63: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

6363

Thermodynamic open systems

Thermodynamic openness relates to the ability of systems to have permeable boundaries.

Examples of thermodynamically open systems are: internal combustion engine, dissipative structures, e.g., water whirlpool and living systems, ecosystems and electronic devices.

A conceptual way to close a system is to incorporate its environment.

Logical Openness relates to the variety of simultaneous ways to model a system.

Page 64: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

6464

4.2 Logical Openness

The concept of logical openness relates to theconstructivist role of the observer generating n-levels ofmodelling by assuming n different levels of description,representing one level through another, modelling astrategy to move amongst them, and consideringsimultaneously more than one level.

Page 65: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

6565

The concept of level of description in making representations,

in short, relates to:

1) the disciplinary knowledge of the observer when dealing with a phenomenon. For instance, the crying of a human being may be represented as physical, chemical, biological and psychological process;2) the cognitive model adopted by the observer; 3) the nature and quantity of variables, relations and interactions and the scaling used in general by the observer to represent the phenomena observed.

Page 66: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

6666

The classic reductionistic approach is based on considering a unique level of description, able to represent and deal with any kind of problem. This often corresponds to the usage of a standardized approaches, tools, and remedies.

The systemic approach is based on considering different, interacting levels of descriptions, by multi-modelling problems (e.g. environmental problems, for instance, are simultaneously physical, chemical, biological, economical and social; industrial projects are simultaneously related to some specific disciplinary field –such as electronic, mechanic, chemical, etc-, economical, legal, and social).

Page 67: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

6767

4.3 Systemic models based on thermodynamic and logical openness

Only thermodynamic open systems are able to be logically open because openness is a systemicproperty to be sustained by using energy.

Logically Closed Model or Logical Closeness

A model may be defined as logically closed when:a) a formal description of the relationships between all the state variables is available in the model’s

equations; b) an explicit and complete description of the

interactions system-environment is available;c) all possible asymptotic states and structural

features are derivable in a unique way from the knowledge contained in a) and b).

Page 68: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

6868

Logically closed modelling relates to rigid and foreseeable input processing modalities.

In contrast, logically open modelling relates to such a description of the system that it’s impossible to know, in principle, how the input-output will be processed. In this case it’s impossible to know the asymptotic states (if any) of the system.

An example is given by a computer program playing a game with a player.

Logical open modelling or logical openness may be introduced on the basis of violation of one of the three criteria a), b), c), previously introduced to describe logical closed modelling.

Page 69: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

6969

The more interesting from a theoretical point of view is the violation of the second criterion, with reference to the availability of a model carried out by the observer on the basis of his/her knowledge and goals and characterized by its ability to explain and foresee the evolution of the system.

In this context, the logical openness corresponds to the fact that system-environment interactions cannot be explicitly, completely and uniquely described.

This is the case mentioned above when the observer has n-different levels of descriptions corresponding to n-different models.

Page 70: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

7070

4.4 An example of logical openness in education

It is possible to consider hierarchies of logically open models based on suitable openness levels.

An examples of a hierarchy of this kind, within the context of social systems and with reference, for instance, to education and to cognitive processing of information, may be the following.

Page 71: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

7171

Level of openness 1.

It corresponds to the classic thermodynamic level where matter and energy are able to cross system’s border. At this level to close a system is sufficient to consider a larger system containing the original system and the other interacting systems (like the environment).By making reference to systems able to send and receive information, this may be the case where systems are able to send and receive signals, but not to attribute or process meaning.

An example is given when two or more people may physically exchange words with no common understanding because they speak different languages.

In the same ways computers may physically exchange messages between each other but having not the software able to process them.

Page 72: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

7272

Level of Openness 2.

At this level the meaning of messages is assumed to be identical and constant between sender and receiver. The process of interacting is assumed to be context-independent.

This is the classical approach based on objectivism.

Examples are rules, instructions, and formal language for programming.

Page 73: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

7373

Level of Openness 3.

At this level the process of interacting is assumed to be context-sensitive with reference to the sending/receiving systems. Each system generates a model of the other having learning capabilities and the communication process is activated between models.

Examples are the interactions between teacher and student, seller and buyer, physician and patient, user and information systems able to process users profiles. It is also what usually goes on between corresponding agents via electronic mail in the Internet whom never met in person.

Page 74: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

7474

Level of Openness 4.

At this level during the communication process the systems exchange not only messages, but also information about their context: the process of interacting is assumed to be context-sensitive with reference to the sending/receiving agents and to their environment. Messages are semantically processed with continuous reciprocal modelling of systems and of their context.

A typical example occurs when two agents are negotiating in different times, having the possibility of influencing their contexts.

Page 75: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

7575

Level of Openness 5.

At this level the system may decide which of the previous level of openness to adopt depending on a strategy and on contextual evaluation.

The possibility to dynamically decide which level of openness to adopt may be realized as the highest level of openness.

Each level of openness includes the possibility to assume the previous one.

We underline that at this level a system may decide to stop, to degenerate into a set, i.e., suicide, but not to start.

Page 76: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

7676

Other examples are also given when interaction among people takes place by using different kinds of technologies, by allowing

1. One way interaction with no model of the receiver or real time feedback; for instance a book writer;

2. One way interaction with no model of the receiver but with real time feedback; for instance a theater actor;

3. Two ways interaction with no model of the receiver; for instance selling by telephone/TV or Internet;

4. Two ways interaction with a model of the receiver; for instance private direct selling;

5. Two ways interaction with a model of the receiver and of its context; for instance business marketing through sales managers; etc.

Page 77: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

7777

Levels of openness Related levels of closeness1. Thermodynamic level:

crossing of matter-energy trough

borders of the system

No crossing of matter/energy trough borders of the system

2. Meaning assumed identical between sender and receiver

Crossing of matter/energy trough borders of the system, but no common meaning between sender and receiver

3. Interacting systems produce mutual context-sensitive models: systems have learning capabilities

Meaning assumed identical between sender and receiver, but the systems do not produce mutual context-sensitive models and have not learning capabilities

4. Interactive systems produce dynamic mutual context- sensitive models: systems have learning capabilities

Interacting systems produce mutual, but not dynamic context-sensitive models: systems have learning capabilities

5. The system may continuously decide which level to use in interacting

Interactive systems produce dynamic mutual context-sensitive models, systems have learning capabilities, but they cannot decide which level to use in interacting

Page 78: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

7878

4.5 General comments on systemic closeness and openness

In Logical Openness the problem of finding the ultimate reality and the best representation becomes a non effective strategy.

The strategy looking for effectiveness is based on considering how it is more convenient to think that something is rather than trying to find out how something really is.

The second case is just a particular vase of thefirst one.

Page 79: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

7979

CLOSED SYSTEMS LOGICAL OPEN SYTEMS

Passive Active

Context insensitive Context sensitive

Non learning Learning

Object oriented Process oriented

Non flexible Flexible

Fixed rules, variable parameters Changing rules

Contradiction avoiders Using contradictions at higher level of description

Mono or non-dynamic strategies Multi- dynamic strategies (DYSAM, chapter 5)

Deductive Inductive and abductive (constructivism)

Objectivistic Non objectivistic

Observer as generator of relativism

Observer as part of the system andgenerator of cognitive existence

Page 80: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

8080

PART 35. DYnamic uSAge of Models (DYSAM)

The concept of DYSAM relates to situations in which the dynamical adoption of properties by the system is such that any single model is, in principle, unsuitable to model such dynamics, because single models are assumed to model a specific system.

Page 81: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

8181

The DYSAM approach was introduced to deal with the dynamical emergent properties of complex systems, i.e., when

1. the system to be studied is so complex (processes of emergence occur within it) that we cannot, in principle, describe it using a single or a sequence of models, refinement of the preceding one, and

2. the process of emergence gives rise to the dynamic establishment of different systems, Multiple-systems (MSs) and Collective Beings (CBs) introduced later.

Dynamic models model dynamical properties of a specificphenomenon, while DYSAM models change over time, i.e.,the dynamic acquisition of different, emergent propertiesand properties of MSs and CBs as well.

Page 82: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

8282

DYSAM is based on approaches already considered in the literature having the common strategy of not looking for a unique, optimum solution like, for instance, the a) Bayesian method, e.g., what is the probability of a hypothesis given the occurrence of an event? b) Pierce’s abduction, hypothesis inventing process, i.e., because B is true probably A is also true, since if A were true the truth of B would be obvious; c) Machine Learning, e.g. in Neural Networks; d) Ensemble Learning, combining an uncorrelated collection of learning systems all trained in the same task, and e) Evolutionary Game Theory, emerging of cooperative/competitive strategies.

Page 83: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

8383

Approaches DYSAM-like are used, for instance, a) in generic medicine when testing multiple

pharmacological treatments to cope with an illness not exactly diagnosed or dealing with unexpected side effects and simultaneously considering the psychological, biological and chemical level of description;

b) when modelling biological systems, like the brain, as quantistic or not;

c) for the use of surviving resources in damaged systems (i.e., in case of disabilities managing balancing and compensation); and

d) for learning the use of the five sensory modalities in the evolutionary age for children not having the purpose to choose the best one, but to use all of them together.

Page 84: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

8484

Multiple Systems

A MS is a set of systems established by the same elements interacting in different ways, i.e., having multiple simultaneous or dynamical roles. The role of single systems in a MS must be not confused with that of subsystems related to different functions within the same system. Within the conceptual framework of MS concurrent/cooperative effects of different interactions affecting the same elements perturb the effects of single interactions. Moreover, the action of concurrent interactions may be neither simultaneous nor regular. The same interacting components may establish different systems through organization or emergence and at different times (i.e., simultaneously or dynamically).

Page 85: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

8585

Examples of MSs in systems engineering include networked interacting computer systems performing cooperative tasks, as well as the Internet, and electricity networks (an unfortunate emergent property is the black-out) where different systems play different roles in continuously new, emerging usages (e.g., market of telephone traffic).

Page 86: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

8686

Collective Beings

CBs are particular MSs established by agents possessing a (natural or artificial) cognitive system. In CBs the multiple belonging is active, i.e., decided by the component autonomous agents. In the process of emergence of CBs agents interact by simultaneously or dynamically using, in the model constructivistically designed by the observer, different cognitive models.

Page 87: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

8787

Examples are Human Social Systems where (a) agents may simultaneously belong to different systems (e.g., behave as components of families, workplaces, traffic systems, as buyers, of a mobile telephone network). Simultaneously is not only related to time, but also to agent behaviour, considering their simultaneous belonging, and their roles in other systems; and (b) agents may dynamically give rise to different systems, such as temporary communities (e.g., audience, queues, passengers on a bus), at different times and without considering multiple belonging.

Page 88: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

8888

Modelling social systems has been based on considering families, corporations, cities, hospitals, schools, and so on, as subsystems.

We postulate the effectiveness of also considering them as CBs.

The management of the multiple systems of a CB by considering them as subsystems is a source of serious managerial problems.

Moreover, subsystems are functional, i.e., specialised components in an organised system.

Managerial problems occur when failing to consider that in the case of MSs and CBs which are considered as subsystems are dynamically established by the same elements.

Page 89: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

8989

Management of properties acquired by MSs and CBs should focus on multiple roles and related processes of acquisition.

The various multiple roles taken on by a subsystem within a system must be not confused with the multiple roles assumed by autonomous agents when making emergent a new system.

Page 90: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

9090

In sum what is DYSAM? In order to model acquisition of subsequent emergent properties, MSs and CBs we needdifferent partial representations related to each component system.

Systemic properties, interdisciplinarity, transdisciplinarity, and different levels of description are resources for multiple representing and modelling.

DYSAM is a methodology, an approach.

Page 91: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

9191

In short, the main components of DYSAM are:

1. a repertoire of different possible models of the same system;

2. a strategy for selecting, on the basis of general and momentary goals, the available knowledge and the context, the models to be used (and eventually integrated) to model the system considered from simultaneous different approaches. Such a strategy is not only variable, based, for instance, on learning (and not optimisation only), but on modelling interactions between the adopted models. Moreover, not only is the strategy variable, but evolutionary as it varies with the evolution of the interactions between the observer and the system.

Page 92: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

9292

LR

MSDB GDM

IC (t)

SIM (t)

DYSAM may be implemented in different ways, such as

whereDB data base of models connected by a trained Neural Network;IC contextual information;GDM dynamic manager of models;LR Levels of representations;MS model to be used for the simulation or for taking decisions;SIM simulation or decision.

Page 93: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

9393

6. Logical inferences, language and process of thinking

6.1 Introduction to Deduction, Induction and Abduction

• Deduction• Induction• Abduction

Page 94: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

9494

Deduction

Deduction is a kind of inference (the process of making inferences may be understood as generating conclusions from premises), starting from the necessary premises: the latter contain everything necessary to reach the conclusion. Therefore, in a valid deduction, the conclusion cannot be false if all premises are true.

In the case of deduction the most widely used rule is the so-called Modus Ponens.

Page 95: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

9595

In it one starts from the application of a general rule (R): x--->y, which is expected to be true if premises are true. When a particular case (C) holds, the resulting conclusion (Res) is obtained because the rule (R) and (C)---->Res is applied.

Here is an example:

• All the pieces in this box are black, - rule (R).• Those pieces come from this box, - case (C).• Therefore those pieces are black, - result (Res).

Page 96: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

9696

Induction

Induction is an inference, which from a finite number of particular cases leads to another case or to a general conclusion.

For instance, if from a bird watch the passage of only black ravens has been observed, then it is possible to induce that the next raven detected will be black or that all ravens are black.

Page 97: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

9797

In the case of the induction of a rule or of a result (Res) from a set of configurations (Cn) of elements, we start from the observations: C--->Res, C’--->Res, C’’--->Res, …, and then we assume valid the general rule C any--->Res.

An example is:

• Those pieces come from this box, - case (C).• Those pieces are red, - (Res).• All the pieces in this box are red, - (R).

Page 98: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

9898

Abduction

In the case of abduction a reasoning of this kind is adopted:

• The starting point is a collection of data D;• The hypothesis H, if true, could explain D;• No other hypothesis can explain D better than H;• Then H is probably true.

There is a hypothesis inventing process that may be even viewed as a selection among the most suitable ones for explaining D.

Page 99: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

9999

With abduction a process of clustering is carried out, grouping together variables that are most probably related (or, more precisely, that it is suitable to think they are): "Because B is true probably A is also true, since if A were true the truth of B would be obvious”.

Charles S. Peirce defines his concept of abduction in the following way: "Abduction is the process of forming an explanatory hypothesis. It is the only logical operation which introduces any new idea” (Peirce, 1998).

Page 100: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

100100

Paraphrasing Foerster, there is no information, or anomalies in the environment. If a given phenomenon looks strange, this means that the theoretical framework used to interpret this phenomenon is inappropriate. This cognitive process of reformulation of the model is labelled abduction, and its aim is to “normalize” anomalies.

Page 101: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

101101

6.2 General Comments6.2.1 Language and process of thinking

• Edward Sapir (1884-1936)

• Sapir-Whorf hypothesis

Page 102: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

102102

The point relates the question: how learning involves language and how language influences learning?

As introduced by Vigotsky: “The relationship between thought and word is not a thing but a process, a continual movement back and forth from thought to word and from word to thought: .... thought is not merely expressed in words; it comes into existence through them."

This view was successively elaborated and formulated as the celebrated Sapir-Whorf hypothesis – now accepted in the weaker sense. In this context we give only a general idea of the approach.

Page 103: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

103103

The general, ‘strong’ (the so-called ‘weaker’ versions are mentioned below), idea introduced by this approach is thatwhat we can think is enabled by the language that we usefor representing, hypothesizing, designing, rejecting, andso on. If we do not have the language to say it, it doesn’texist for us.

There are many approaches for dealing with the ideas introduced by the Sapir-Whorf hypothesis. The versions ofthese approaches are briefly summarized below:

1. Strong hypothesis—language determines thinking; 2. Weak hypothesis—language influences perception and

thinking; 3. Weakest hypothesis—language only influences

memory.

Page 104: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

104104

6.2.2 From computing to learning

We only mention a distinction between

• symbolic

and

• sub-symbolic computation.

Symbolic processing is performed by using explicit, hierarchically arranged, rules to serially process symbols.

Page 105: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

105105

A connessionist system performs sub-symbolic computation having a model, a description, provided with not explicit rules and symbols but with connections among elements.

The effect of an input value is computed through weights assigned to connections and to functions synthesizing signals coming from various connections to output elements.

Reference is to the well-established technology of Neural Networks inspired by network of connection among brain neurons.

Page 106: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

106106

Connectionist systems perform parallel information processing of sub-symbols, by using statistical properties and not logical, explicit rules.

While symbolic computation is assumed to be able to present a result y from an input x to a function f

y = f(x)

connectionistic models are able to learn from an input x and an output how to compute it in sub-symbolic way.

Page 107: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

107107

PART 47. Applications

Applications of Systemics are based on

• Designing a system or• Modelling a phenomenon as such, when the observer notes effectiveness of this approach.

In both cases the designer/observer must identify 1) the components, partitioning the system, and the interactions among them, and 2) the systemic properties differing from those of the components.

Page 108: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

108108

Then a suitable model of the system must be formulated at an effective level of description, i.e.,by considering

1) the nature and the quantity of variables, microscopic, macroscopic or meso-scopic as introduced later,

2) the relations and interactions, and

3) the scaling used to represent the phenomena observed, i.e., choose the order of magnitude.

Page 109: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

109109

The model must explain a) in a symbolic or b) sub-symbolic way) the establishment of systemic properties and allow the designer/observer to act on them, e.g., to regulate, start, stop, combine, etc. them.

a) - the system is artificial, e.g., electronic system; - the system is natural but modelled by assuming to know the suitable symbolic level of description, e.g., solar system.

b) The system is not suitably represented by using a symbolic level of description. Other approaches are available like sub-symbolic representation like in Neural Networks:

Page 110: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

110

Page 111: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

111

The Russian computer scientist Mikhail Moiseevich Bongard proposed a method of creating an adequate language to model a system, the language in which the creation of the system could be described (Bongard M., 1970, Pattern Recognition. Spartan Books, New York.)

Page 112: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

112112

7.1 Reductionism

The reductionistic approach is based on assuming that actions on components will produce the same effects on systemic properties, i.e., on assuming linear relationships between the properties of components and the systemic properties.

The reductionistic approach also assumes that the same level of description assumed for components works properly also for acquired systemic properties, and that a unique level of description should work for all acquired systemic properties acquired in time, be this level of description based on details (microscopic) or general (macroscopic).

Reductionism relates to a wrong level of description.

Page 113: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

113113

7.2 The systemic level of description

The systemic approach is based on considering different, interacting levels of descriptions, by multi-modelling problems (e.g. environmental problems, for instance, are simultaneously physical, chemical, biological, economical and social; industrial projects are simultaneously related to some specific disciplinary field –such as electronic, mechanic, chemical, etc-, economical, legal, and social).

Page 114: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

114114

• Macroscopic (no reference to magnitude)

• Microscopic (no reference to magnitude)

• Mesoscopic (no reference to magnitude)

• Systemic models

Page 115: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

115115

Microscopic state variables relate to a level of description focusing on components (designed or modelled as such) of a system.

Examples are built components having well defined and stable properties, to be replaced in case of malfunction or degradation with time without affecting the systemic properties of interest for the observer/designer, like functionalities, e.g., windowing, doors, and entrance-exit and engineering properties like stability.

Page 116: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

116116

Macroscopic state variables relate to a level of description focusing on the average effects of large numbers of microscopic variables such as when considering habitability, energy management, urban and landscape role.

Buildings are intended as systems having acquired properties not reducible to those of components.

This is similar to the effect we experience with music and painting. Single notes and painting details are necessary conditions for the emergence of the acquired properties realised at macroscopic level.

Page 117: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

117117

Mesoscopic state variables relate to a level of description focusing on variables intermediate between the two previous cases. At this level we consider variables reduced, i.e., considering more details, with reference to the macroscopic level, but without completely neglecting all degrees of freedom considered at the microscopic level.

I think that a typical case relates to Architectural Beauty and Cultural Heritage. In both cases microscopic variables are considered as important details to be considered harmonic at macroscopic level.

The observer continuously changes levels of descriptions moving from details and functionalities to global, harmonic aspects enjoying the non-linear rebuilding from details.

Page 118: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

118118

Systemic models are necessary to deal with complex systems and with their acquired properties. They are necessary to manage acquired properties.

This is for a vary large number of cases, such as in education, economics, sociology, medicine, biology, physics, …, and architecture.

Systemic models are necessary to design actions at macroscopic levels, i.e., affecting acquired emergent properties, like maintenance, dealing with changed environmental conditions, due to Post-Occupancy Evaluations and Building Performance Evaluation.

Page 119: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

119119

7.3 Systemics only for science?

In science and engineering we introduced quantitative models, but in a trans-disciplinary way the same approach may be used by multi-modelling when different levels of descriptions relate to different disciplinary approaches like in medicine we deal with chemical, biological, pharmaceutical and psychological levels and in architecture we deal with engineering, chemical properties of materials, energy, light, psychology, etc.

Page 120: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

120120

7.4 Emergence and conservation: the example of buildings as systems processing input and not only reacting i.e., when processes of emergence occur

Buildings as systems processing inputs and internal changes of configurations (non linear substitutability of components) affecting emergent acquired properties.

Models of the processing may be both symbolic (engineering), related to emergent properties (sub-symbolic) and qualitative related to qualitative emergent properties (beauty) as introduced later.

Page 121: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

121121

The system to be considered in conservation is an open system modelling the environment and interactions.

CONSERVAZIONE PROGRAMMATA, è di necessità rivolta prima che verso singoli beni, verso l'ambiente che li contiene e dal quale provengono tutte le possibili cause del loro deterioramento. Il suo obiettivo è pertanto il controllo di tali cause, per rallentare quanto più possibile la velocità dei processi di deterioramento, intervenendo, in pari tempo e se necessario, con trattamenti manutentivi appropriati ai vari tipi di materiali.

Giovanni Urbani, "Piano Pilota per la conservazione dei beni culturali in Umbria", 1976.

Page 122: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

122

The case of the Basilica di San Gaudenzio, Novara (1577- 1690). Cracks in the vaults were restored by using structural approaches, i.e., by assuming they were built up by using structural engineering. Result was that cracks widened. As Bongard said, in order to restore a system, i.e., a process acquiring emergent properties, we have to know how it has been established and try to reproduce it. In this case we can’t fix emergent properties acquired though antique building by just applying new techniques. Piantanida e V. Borasi, Conseguenze del tipo di committenza sulla qualità della manutenzione come guida e controllo per la conservazione di monumenti: il caso del complesso di San Gaudenzio a Novara, in Ripensare alla manutenzione. Ricerche, progettazione, materiali, tecniche per la cura del costruito, atti del convegno di Bressanone, Venezia 1999, 165-175

Page 123: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

123123

7.5 Assuming the wrong model, i.e. at the unsuitable level of description

For instance, in antiquity columns were built by segments to be more easily transported and superimposed. In case of external inputs, e.g., mechanical (earthquakes) or thermal, components had the degree of freedom to move in order to adjust by micro-changes with no or limited effects on the global system.

Substitution of a column build in this way with one built as a whole, compact piece induces imbalances in the building reducing its ability to properly process perturbations.We have other examples, like making structural maintenance by assuming current models to ancient domes. The more maintenance is performed in this way and worst the situation becomes.

Page 124: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

124124

7.6 Design and emergence

In a systemic conceptual framework designing should focus not only on functionalities and properties, but also on processes induced by usages invented by social systems and related acquisition of new emergent properties irreducible to functionalities and originating properties.

New properties cannot be foreseen, but detected and modelled by a continuous Dynamic Usage of Models, context-sensitive and focused on the observer.

The designer should also design how to dynamically observe and manage his/her creation.

This asks for a new systemic awareness and ethical concerns from architecture having a key role in designing and inducing emergent processes in social systems.

Page 125: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

125125

7.7 Emergence of Architecture from social systems

A new line of research is studying architecture as the design of suitable boundary conditions influencing emergence of behaviour in human social systems.This vision may help to clarify the role of architecture in materializing structures leading to emergent social properties.

Page 126: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

126126

PART 5

8. Self-Architecture

In the conceptual framework of the theory of emergence and second-order cybernetics focusing on the theoretical role of the observer generator of cognitive existence, architecture may be intended as the self-design by a social system of boundary conditions suitable to keep or to make emergent what are considered important aspects by the social system itself.

Page 127: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

127

Self-design relates to the transformation of emergent social properties, e.g., life styles and customs, into structural constrains, aiming to acquire the same properties as structural and no longer as emergent ones as in the previous examples.

Page 128: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

128

What is Architecture?

The etymology of the word comes from the Greek arkitecton and the Latin architectura, identifying an activity that “nascitur ex fabrica et ratiocinatione” - it comes from practice and ratiocination- Vitruvius, De Architectura, I, 1 – 25 BC

Definitions of Architecture from Di Battista (2006).

Di Battista, V. (2006), Towards a Systemic Approach to Architecture, In: In: Systemics of Emergence: Applications and Development (G. Minati, E. Pessa and M. Abram, eds.), Springer, New York, pp. 391-398).

Page 129: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

129

Functional definition, proposed by Francesco Milizia (1725-1798)“architecture may be called twin-sister to agriculture, since to hunger, for which man gave himself to agriculture, must be also connected the need for a shelter, whence architecture came.”(1781, Principii di Architecttura Civile, Milano)

Building definition, proposed by Eugène-Emmanuel Viollet-le-Duc (1814-1879) “Construire, pour l’architecte, c’est employer les matériaux en raison de leu qualités et de leur nature propre, avec l’idée préconçue de satisfaire à un besoin par les moyens les plus simplex et les plus solides.” (1863-1872, Entretiens, Paris)

Page 130: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

130

Poetic definition, proposed by Le Corbusier (1887-1965)“l’architecture est le jeu savant, correcte et magnifique des volumes assembles sous le soleil.” (1929, Oeuvre Complete, Zurich)

Technologic definition, proposed by Le Corbusier (1887-1965)“the Parthenon is a product of selection applied to a standard. Architecture acts on standards. Standards are a matter of logic, of analysis, of painstaking study; they are established upon well set problem. Research definitively settles the standard.” (1929, Oeuvre Complete, Zurich)

Page 131: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

131

Meta-systemic definition, proposed by William Morris (1834-1896)“all the signs that mankind leaves on the Earth except pure desert.” (1881, The prospect of architecture in civilization, London)

Multiple definitions, proposed by Bruno Zevi (1918-2000)•“the art of space to be distinguished among cultural, psychological and symbolic definitions”•“functional and technical definitions” and •“linguistic definitions.”•(1958, entry “Architettura” in the Enciclopedia Universale dell’Arte, Firenze)

Page 132: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

132132

8.1 Architecture as the design of suitable boundary conditions for emergence of social systems

Human settlements are the product of human societies, they are mostly built and developed by a huge number of unconsciously interacting acts over a long time, rather than by purposely designed single acts.

Such a vision generates the idea of implicit (or sub-symbolic) project that relies upon the systemic approach (Di Battista, 1988; De Matteis, 1995).

Page 133: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

133

This project is implicit because it is self-generated by the random summation of many different and distinct needs and intentions, continuously carried out by undefined and changing subjects. It gets carried through in a totally unpredictable way – as it comes to goals, time, conditions and outcomes.It is this project anyway, by chaotic summations which are nevertheless continuous over time, that transforms and/or preserves all built environments.

G. De Matteis, Progetto implicito (Franco Angeli, Milano, 1995)V. Di Battista, Recuperare, 36, (Peg, Milano, 1988)

Page 134: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

134

The concept of boundary conditions is used in mathematics. Dealing with differential equations, the boundary value problem is given by a differential equation and a set of additional restraints, called the boundary conditions.

We will generalize the concept of boundary condition to the degrees of freedom or constraints given by structures, e.g., geometrical and topological properties of living space as shaped by architectural design, to interacting agents establishing collective behaviour.

Page 135: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

135135

Examples of boundary conditions affecting collective behaviours and inducing emergence of social

behaviouralproperties are:

1. Number of entries and exits for flats;2. Central role assumed by some functional areas in

flats, like the kitchen coming from the age where it was the warmest place;

3. Available living surface inducing residence for singles or families;

4. Shapes of roads inducing properties of traffic;

Page 136: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

136

5. Number of baths per inhabitants;6. Form walls and topology usually fit with roles;7. Availability of sidewalks inducing or preventing

pedestrian traffic;8. Lighting making living styles possible;9. Stairs, e.g., stairs with one handrail and with

two handrails; width allowing usages;10. Internal facilities (private, inducing consuming, e.g. shopping centres) rather than external (public)

Page 137: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

137

The structural aspects of architecture, specifically materials used to build, stability, shapes, dimensions, illumination, acoustic properties and energy consumption have functional effects on those who behave in the structured space.

Autonomous systems also cognitively represent the space in which they live, and because of that, they become inhabitants. As a result, they not only respect the boundary conditions from a functional point of view, but also cognitively process and use the representations they have of the space structured by the boundary conditions to adapt their behavior.

Page 138: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

138

This is why there are different architectures for different ages and social systems.

Architects have the power and responsibility to set the boundary conditions, because they make the plans and models that organize the space for the inhabitants.

Page 139: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

139

Self-Architecture as specification of the concept of implicit project

“Architecture organizes and represents the settlement system; it interprets, materializes, interacts with and confirms the references of cognitive systems, and projects (foresees) and builds coherent occurrences (steadiness, confirmation) and incoherent occurrences (emergence) in the settlement itself. “ [1].

[1] Di Battista, Valerio, (1988), “La concezione sistemica e prestazionale nel progetto di recupero”, Recuperare, n. 35, pp. 404-405

Page 140: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

140

“Architecture operates in the interactions between mankind and natural environment with coherent actions (communication; consistent changes; confirmation of symbols and meaning) and incoherent actions (casual changes, inconsistent changes, new symbols and meanings).

Coherent actions are usually controlled by rules and laws that guarantee stability to the system (conditions of identity and acknowledged values); incoherent actions generally derive from a break in the cognitive references (breaking the paradigm) or from the action of implicit projects”[1]

[1] Di Battista, Valerio, (1988), “La concezione sistemica e prestazionale nel progetto di recupero”, Recuperare, n. 35, pp. 404-405

Page 141: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

141

“These are the result of multiple actions by different subjects who operate all together without any or with very weak connections and have different – sometimes conflicting – interests, knowledge, codes, objectives. Implicit projects always act in the crack and gaps of a rule system; they often succeed, according to the freedom allowed by the settlement system....

Page 142: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

142

Perhaps, the possible virtuous connections of this project, in its probable ways of organization and representation, could identify, today, the boundaries of architecture that, with or without architects, encompass “the whole of artifacts and signs that establish and define the human settlement”.

Di Battista, V. (2006), Towards a Systemic Approach to Architecture, In: In: Systemics of Emergence: Applications and Development (G. Minati, E. Pessa and M. Abram, eds.), Springer, New York, p. 398.

Page 143: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

143

“In the open system of the built environment and in the continuous flow of human settlements that inhabit places, there are many reasons, emotions, needs, all of which are constantly operating everywhere in order to transform, preserve, infill, promote or remove things.

These intentional actions, every day, change and/or confirm the different levels of our landscape and built environment. This flow records the continuous variation of the complex connexions between people and places. ...

Page 144: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

144

“This flow records the continuous variation of the complex connexions between people and places.

This flow represents and produces the implicit project that all built environments carry out to update uses, values, conditions and meaning of their places.

No single project, either modern or contemporary, has ever been and will ever be so powerful as to direct the physical effects and the meanings brought about by the implicit project.”

Di Battista, 2008, Environment and Architecture – A paradigm shift, In: Processes of emergence of systems and systemic properties. Towards a general theory of emergence (Minati G., Pessa E. and Abram M., eds.), World Scientific, Singapore, pp. 45-46).

Page 145: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

145145

8.2 From acquired to structural properties: architecture as structural synthesis

Some examples are architectures of dwellings intended first as materialization of ways of housing and then inducing them; architectures of hospitals intended first as materialization of therapeutic and medical approaches and then inducing them; and architectures of schools intended first as materialization of ways of considering knowledge, i.e., disciplinary fragmentation, and then inducing it.

Other examples are the shape of roads influencing traffic and the number of entrances-exits or surface of a flat influencing inhabitants’ social behaviour.

Page 146: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

146146

8.3 From implicit, unexpressed properties to structural properties: architecture as design of new structures intended as representation, translations of social phenomena

Moreover architecture does not only materialise and transform acquired emergent properties of social systems into structural constraints, but it is also inducing new emergent properties when introducing innovative ways of structuring space.

Examples are vertical constructions, e.g., skyscrapers, underground constructions and cities.

Page 147: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

147147

8.4 The concept of Self-Architecture

Self-architecture relates to the transformation of emergent acquired social properties into structures able to play the role of constraints suitable to make properties to be functionally established.

Self-architecture relates to the transformation of implicit, still unexpressed cultural properties of social systems into meta-structures able to confirm and induce emergence of coherent behavioural properties.

The process of self-architecture related to the global interdisciplinary coherence between different simultaneous aspects of social systems like one related to language, music, literature, religion and science.

Page 148: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

148148

Self-architecture also represents evolutionary processes when temporary incoherence allow social systems to restructure and reach new equilibrium.

In the hands of the architecture design there is temporary syntheses representing coherences and incoherence of the social system.

In a trans-disciplinary view this happens in any discipline.

Architecture designs concrete constraints.

Other disciplines and cognitive constraints.

Page 149: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

149

8.5 Meta-elements and Meta-structures

Meta-elements are introduced as sets of time-ordered values in a discrete temporal representation adopted by suitable mesoscopic state variables describing global, collective aspects of the system under study.

The properties of meta-elements are expected to represent aspects of a more general and, consequently, more suitable level of description for collective behavioural phenomena.

Page 150: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

150

Examples of mesoscopic variables in collective behaviours like flocks and swarms are:

•Mx, number of elements having the maximum distance at a given point in time;•Mn, number of elements having the minimum distance at a given point in time;•N1(t) number of elements having the same distance from

their nearest neighbour •at a given point in time; •N2(t) number of elements having the same speed at a given

point in time;•N3(t) number of elements having the same direction at a

given point in time.

Page 151: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

151

Examples of mesoscopic variables in architectural systems are:

•Mx, number of inhabitant agents having the maximum distance at a given point in time;•Mn, number of inhabitant agents having the minimum distance at a given point in time;•N1(t) number of inhabitant agents having the same

distance from their nearest neighbour at a given point in time; •N2(t) number of inhabitant agents opening a door at

a given point in time;•N3(t) number of inhabitant agents using stairs at a

given point in time;

Page 152: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

152

• N4(t) number of inhabitant agents opening a

window at a given point in time;• N5(t) number of inhabitant agents in the same

room at a given point in time;• N6(t) number of inhabitant agents using the

elevator (s) at a given point in time.

Page 153: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

153

Values assumed by mesoscopic variables and parameters used to define them, such as speed, distance and direction, establish Meta-Elements.

Meta-Structures are given by mathematical properties of Meta-Elements, sets of values.

They may relate, for instance, to regular changing of values, their distribution and repeatability.

Page 154: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

154

Meta-structures are assumed to represent the properties of meta-elements and their possible relationships.

Meta-structures may be intended as degrees of freedom of elements at a more general level of description, i.e., those of meta-elements, able to indirectly influence the behaviour of agents described at a lower level of description and producing collective phenomena by non-linearly completing a partial structure.

Minati, G., (2008), New Approaches for Modelling Emergence of Collective Phenomena - The Meta-structures project, Polimetrica, Milan. Open Access Publication http://www.polimetrica.com/?p=productsMore&iProduct=81&sName=new-approaches-for-modelling-emergence-of-collective-phenomena-(gianfranco-minati)

Page 155: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

155

Agent-based models (ABM) available in the literature may simulate pre-occupancy issues by considering constraints, i.e., boundary conditions, and interacting agents with specific characteristics -microscopic-.

Meta-Structural analysis in Architecture is a possible alternative approach using values assumed by mesoscopic variables to deal with pre-occupancy evaluation and use simulations non only to certify functionalities, but to detect possible processes of emergence of acquired properties within the inhabitant social system -mesoscopic-.

Page 156: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

156156

PART 6

9. Conclusions

Page 157: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

157157

9.1 Growth, Development and Sustainability

Growth

Quantitative process of increasing like:

• linear, e.g., y = ax + b • factorial, e.g., y = x!• exponential, e.g., y = ex

and

• logistic, from Minati, G. 2009, The Dynamic Usage of Models (DYSAM) as a theoretically-based phenomenological tool

for managing complexity and as a research framework, In: Cybernetics and Systems Theory in Management: Tools, Views, and Advancements, (Steven E. Wallis. Ed.),IGI Global, PA, US, pp. 176-190.

Page 158: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

158158

logistic curveIntroduced by the Belgian mathematician P. Verhulst (1804-1849) for the study of population growth

It represents changing from an increasing growing to a decreasing growing

Page 159: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

159

We may consider a logistic curve as the place where the following kinds of events occur with sequential continuity:a – pre-existing services and products are offered by using new solutions; When the goal is to produce more efficiently using moreadvanced organizational approaches and/or

technologies which are already available;

Page 160: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

160

b – new services and products are offered by using new solutions; When the goal is to produce new products or offer new services using new organizational approaches and/or new technologies;

Page 161: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

161

c – new services and products are offered by using available solutions;

When established production systems and/or organizational approaches are used to produce new products and/or offer new services i.e., innovation using what is already available;

Page 162: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

162

d – new production systems and organizational approaches are used in old ways; When new products and new services are used without taking full advantage of their potential: traditional activities but using new technologies;

Page 163: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

163

e – pre-existing services and products are offered produced by using pre-existing solutions; Massive use of well-established technologies, looking only for high levels of production and mass markets.We may consider the case when point e is reached. One non-systemic solution is to try to move the asymptote up the more as possible. This is the case for mass markets when trying to artificially improve consumption. This is a very expensive strategy subtracting resources to the establishment of new markets.

Page 164: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

164164

Developmenta) Development as harmonic processes of growth

b) Development as subsequent processes of growth

c) Development as acquired emergent property of a system of coherent processes of growths.

Page 165: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

165165

• From Sustainability of growths to sustainability of developments

Sustainability of what?

The concept of sustainability is a particularly fitting one for describing processes occurring over time with reference to available resources and their reproduction rate.

This was the conceptual content of the message from the Club of Rome in 1972, when the book "Limits to Growth" was published as the first report of the Club of Rome.

Focus was placed upon the process of growth with reference to population, use of resources and pollution as a consequence.

Page 166: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

166166

Sustainability relates to maintain and support processes considered necessary, irreplaceable.

Moreover this conceptual framework excludes appearance of processes of innovation typical of development.

The concept of sustainability should be suitably reformulated with reference to development.

Page 167: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

167

How can one sustain emergence of a property acquired by a complex system, such as profitability, competitiveness, ability to innovate and regenerate?

How to sustain health intended as emergent property continuously acquired rather than possessed ?

How to sustain life intended as property of matter continuously acquired ?

Page 168: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

168

Sustainability in Architecture

It usually relates to environmentally-conscious design techniques.

It relates, for instance, to energy consuming and management, usage of sustainable building materials, i.e., having limited or no ecological impact allowing recycle, suitable water usage and waste production.

That’s what is intended for green architecture.

Page 169: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

169

This approach is often considered for single systems like hospitals, schools and residential buildings in the non systemic idea that a system of green buildings should only be green itself.

However, systems of different buildings may induce emergence of social acquired properties having not such green characteristics.

Examples are given by induced traffic, global waste management, centralization of services, i.e., shopping and market centers.

Page 170: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

170

Besides, green aspects relate to engineering and processes of growing with no reference to induced social properties acquired by inhabitant systems.

We experience a difference similar to

•growth and development

vs.

•green buildings and processes of acquired social properties.

Page 171: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

171171

Sustainability and openness

Is sustainability only for non-complex systems, i.e. system where no processes of emergence occur?

Sustainability only for closed system?

Sustainability of processes of emergence

In urbanism, town-planning, the problem is how to sustain, keep coherence of development, i.e., identity of an urban area in the Cybernetic Self-Design considered by Self-Architecture.

Page 172: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

172172

9.2 Theoretical role of the observer, constructivism, and levels of description

Architecture reduced to structures, with no usage?

That is mono-disciplinary architecture.

“Architecture as “the set of human artefacts and signs that establish and denote mankind’s settlement system” (Di Battista, 2006)…architecture always represents the settlement that generates it, under all circumstances and regardless of any artistic intention.”

Page 173: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

173

Therefore, our artefacts shape and markplaces for a long time; moreover, they come from the past continuously reflecting changes occurring in the settlement and in the built environment.

All this means that architecture often outlives its generating system, becoming aheritage to the following ones, thus acting as memory – an identity condition linking people and places to their past systems.

Page 174: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

174174

9.3 Falsification of Systemics

The falsification principle was introduced, in opposition to the verification principle, by the “Vienna circle”.

According to K. R. Popper (1902-1994), the main exponent of an approach based upon falsifying, any scientific system cannot be selected once and for all but it must be possible to confute it through experience.

The success of a critical confuting experiment is sufficient to refute, to invalidate, the hypothesis forming the basis of a scientific theory.

Page 175: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

175175

A scientist introducing a scientific theory should also introduce a falsifying experiment that, if occurring, falsifies the theory itself one and forever.

The Falsification of Systemics can be considered equivalent to the possibility of finding systemic properties as properties of non-systems.

Page 176: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

176176

9.4 Successes and failures of Systemics

After the pioneering works of Bertalanffy the concept of system reached scientific status in an interdisciplinary context.

Moreover, the concept of system and systemic problems had been studied disciplinarily.

Inter-disciplinary research focused on transpositions of models from one discipline to another by changing meaning of variables.

Page 177: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

177177

The study of systemic properties per se, like emergence, self-organisation, collective behaviours, and openness by using approaches like Synergetics and meta-structures, has been very limited.

The reason is that such problems are more easily approachable in single disciplines and then generisable, rather than studied in abstract as in trans-disciplinary framework.

Page 178: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

178178

On the other side the systemic view has been misunderstood as focusing on

1. popularization, 2. making no attention to details, 3. allowing to ignore disciplinary knowledge, 4. using analogies,5. metaphors.

The main success of Systemic is to keep the trans-disciplinary level in an age of focus on reduced interdisciplinary, i.e., usage of models in different disciplines.

Page 179: 11 Systemics and emergence for Architecture In memory of Professor G. Ciribini Gianfranco Minati Italian Systems Society  doctoral

179179

In Architecture, intended as language of space, we have the fantastic opportunity to transform a discipline into a trans-disciplinary approach having the power to induce processes of emergence in social systems.