46
27-FEB-2020 EIEN20 Design of Electrical Machines 10. Thermal design Thermal loads, heat paths/barriers Cooling integration

10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

27-FEB-2020EIEN20

Design of Electrical Machines

10.Thermal design Thermal loads, heat paths/barriers

Cooling integration

Page 2: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 2

L10: Thermal design•

Heat and

mass transfer

Conduction–

Convection and advection

Radiation –

Phase change

Temperature

distribution and limitations–

Insulation systems and realisations

Thermal design–

Coolant and cooling ducts

Conduction vs

convection

c

Page 3: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 3

Transfer, capability, integration

Page 4: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 4

Heat sourcesEnergy loss in electric

circuits qe

=ρJ2

Energy loss in magnetic

circuits

=Ch

B2f+Ce

(Bf)2

Energy loss in mechanic

circuits

=

Page 5: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 5

Heat dissipationConduction

coolingConvection

cooling

Radiative cooling

Page 6: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 6

Thermal design•

Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials

Topologies and concepts for thermal circuits

Physical processes related to heat transfer

Materials: thermal properties and limits

Calculation methods and models

Cooling integration

Page 7: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 7

Cooling

Concepts•

Structure / construction

Where the energy conversion, heat generation, transfer and temperature (Δ)

takes place

Heat sources–

Energy converted to heat

Heat sinks–

Heat dissipation

Cooling concepts –

arrangement of heat sources, paths and sinks

Indirect Cooling (high Δ)–

Direct cooling (low Δ)

Page 8: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 8

Equivalent circuits & relations

Relation Electrical circuit

Magnetic circuit

Thermal circuit

Cooling circuit

Potential U=E·l N·I=H·l =G·l P=·l

Flow I=J·A Φ=B·A Q=q·A Q=v·A

Conductive element G=γ·A/l G=μ·A/l G=λ·A/l G=·A/l

Ohm’s Law U=I·R N·I=Φ·R =Q·R P=Q·R

Page 9: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 9

Thermal conductivity

Conduction is heat transfer by diffusion in a stationary medium due to a temperature gradient. The medium can be a solid, a liquid or gas

Diffusion through the substance

x

1

2 λ Q

Al

21

21

lAQ

lAQ

Page 10: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 10

Thermal conductivityMaterial λ

[W/mK] Material λ

[W/mK]

Air 0.025-0.035 Cast iron 40-46

Nomex 0.11 Stainless- steel 25-30

Kapton 0.12 Laminated iron 20-40

Mica 0.4-0.6 Copper 360Bonding epoxy 0.64 Aluminum 200-220

Avg.ins.syst em 0.2 NdFeB 9

SmCo 10

Page 11: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 11

Convection

ambn hknq

Convection is heat transfer between either a hot surface and a cold moving fluid or a cold surface and a hot moving fluid. Convection occurs in liquids and gases

Movement of the substance

x

1

2

α1

Q

A

amb

hot

α2

l

ambhot

amb

lAQ

AQ

21

22

11

Page 12: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 12

Transport of heat

Q -

the required flow rate, m3/s, Ph

- required cooling power, W, ρ

-

the density

of the heat carrier, kg/m3, c -

the specific heat capacity, J/kg°C, Δ

-

the

temperature difference between incoming and outgoing temperature °C

Natural convection

Forced cooled plane surface by air speed v

Empirical

cooling

capability

cP

Q h

2255mK

W

78.06.0208.7 v

25.21mkW

AP

cool

loss

Page 13: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 13

High Performance Cooling

Electronics-cooling.com•

Spray and jet cooling, continuous and fluctuating

Single-phase and two-phase flows, phase changing materials

Micro and mini-cahnels, higher intensity cooling

Page 14: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 14

Conjugate heat transfer

dcool

dcond

L Lh

out in

win

cQPcool

cool

heat

hAP

Heat transfer

and pressure drop

in the cooling channel

is determined by flow•

Flow characterisation

Development: laminar, unstable or transitional or turbulent

entrance length, –

boundary layer

Dimensionless quantities•

Reynolds number characterizes the flow and Mach number illustrates the compressibility of the flow.

Flow rate Q [L/min]•

Flow speed v=Q/A [m/s]

Re=inertia force / viscous force

Page 15: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 15

Estimation of heat transfer•

The character of flow

is

described by Reinolds number,

the heat transfer

is expressed by Nusselt

number

and the coolant

is described by Prandtl

number

The hydraulic diameter is related to the

geometric layout of the cooling channel

hin

h DAQvD

1Re

bulkwall

hh k

qDDkhNu

kcpPr

perimeterareaDh

4

Page 16: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 16

Coolant

Ideal coolant = high thermal capacity & low viscosity–

Hydrogen is used in large turbo generators

Ability to store and carry heat = mass density times specific heat capacity reduces with temperature

Coolant steam

Air H2 C02 H2

0 Tr

Oil, degC 20 120 20 120 20 120 20 120 20 120c, kJ/kgK 1.00 1.01 14.2 14.5 0.85 0.94 4.19 4.25 1.71 2.11, kg/m3 1.20 0.89 0.08 0.06 1.83 1.36 999 946 879 816λ,mW/mK 26 33 178 227 16 24 594 686 111 102, uPas 18 23 8 11 14 19 1000 200

Page 17: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 17

Radiation

Radiation is heat transfer between cooling surface A at temperature 2 and ambience at temperature amb via electromagnetic waves

amb

ambrad

rad

ambrad

c

AcQ

2

442

2

442

100100

100100

x

1

2

α1

Q

A

amb

hot

α2

l

Page 18: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 18

Transient heat flow

Steady state temperature•

Heating time constant

Temperature rise during the transient heating

x

1

α1

A

amb

hot

α2

l

QP QS QD

2

2AdtdcVP

RdtdCP

QQQ

thth

DSP

t

ambmamb

ththth

thm

th

e

AcVRC

APRP

1

2

2

Page 19: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 19

Heat transfer problem objective

Heat sources and sinks

Temperature distribution and limits

Page 20: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 20

Thermal limits of materials

The most critical component in the electrical machine is insulation

and temperature dependent is magnet.

Insulation lifetime

is shortened radically if temperature exceeds the limit and that is due to accelerated oxidation process in the insulation material.

Δ=100K -> ½

lifetime

Page 21: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 21

Temperature dependence•

Materials’

temperature dependence

is taken

account with material thermal coefficients

coilcoilcoilcoilcoil 00 1

magnmagnBrmagnmagnRRmagn BB 00 1

magnmagnHcmagnmagnCCmagn HH 00 1

Page 22: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 22

Evaluation of thermal loading•

Heat transfer

Input: heat sources and cooling conditions

Outcome: temperature distribution

Computational tools–

Analytic, empiric, numeric

FEA, CFD, lumped circuits for heat transfer and fluid flow

Material characterization•

Sub-model validation

Page 23: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 23

Machine slots

Total conductor area

225.7 mm2

insulated slot area

508.4 mm2

Specific conductor losses

4 W/mm3 reduced for winding 1.77 W/mm3

Slot impregnation 0.21 W/mK

selected equivalent thermal conductivity

0.4 W/mK

Page 24: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 24

Complexity•

Electrical machine is

A complex 3D electromagnetic

structure–

A complex spatial fluid dynamic

structure with cooling

medium•

In order to determine the temperature distribution

A good estimate of losses

has to be known–

Properties of the cooling process

has to be known

The thermal characteristics

and properties has to be known

An optimized thermal design can help increase machine rated power substantially

Page 25: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 25

Heat transfer•

Steady state and transient

Heat transfer problem according to temperature (potential) and heat balance between source, sink and storage

heat transfer convection- diffusion equation

incompressible Navier- Stokes equations for fluid

dynamics

tcQ

zyx

Qzyx

pzyx

zyx

2

2

2

2

2

2

2

2

2

2

2

2

0

Qckt

c pp u

0

2

u

Fuuuu pt

Page 26: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 26

Thermal design A•

Good estimate of losses –

the spatial and

temporal distribution of heat sources

Waveform

of a loss origin–

Distribution

of heat

sources–

Duty cycle

operational

cycle

time often

much shorter

than

thermal

time

constant–

Short time operation

Intermittent

Thermal characteristics of materials

Temperature

dependence–

Temperature limits

Heat dissipation

thermal circuit and cooling system

Thermal efficiency–

Cooling conditions (normal, forced)

Maximum

allowed loading according to the thermal

limits at cooling capability

Page 27: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 27

Thermal design B•

Cooling surfaces and cooling conditions

Speed and magnetization -> specific core losses pfe

=Ch

Bhf+Ce

B2f2+Ca

B1.5f1.5

Load requirement -> specific conductor losses pcu

=ρJ2()•

Geometric layout and material choice for more internal thermal transport

Page 28: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 28

Thermal circuit at steady state•

Node points i, Qi

[W],

i

[K]5. Coil loss and temperature4. Tooth loss and temperature6. Yoke loss and temperature7. 8. Ambience temperature

Thermal conductivity elements Gij

[W/K]–

From coil to tooth G54

From coil to yoke G56

From tooth to yoke G46

From yoke to ambience G67

cooling

heating

Page 29: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 29

Equivalent circuit

Page 30: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 30

Thermal circuit –

thermal contacts•

A bad electric

conductor

is usually also a bad thermal

conductor

No air-gaps

in electrical circuit, many air-gaps in thermal circuit

Thermal contact between stator core and housing

0.1 mm +5K–

0.2 mm +10K

Page 31: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 31

Thermal

modelling

example

I

Determine

heat sources

in regions•

Specify

cooling

conditions

over cooling

surfaces

Find

heat balance

i.e. temperature

distribution

Page 32: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 32

Thermal circuit –

heat carrier•

Experience from A3

A good

electric

conductor is usually also a good thermal

conductor•

Interested in hotspots: 100% conductor in the middle of winding

Heat is taken from end- windings: conduction,

convection or both

Page 33: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 33

Reduced

thermal

model•

Geometry

of a PMSM

Material & thermal

loading–

Winding

Permanent magnets•

Surface & cooling

Natural

convection•

Temperature

nodes

Nodes

of interest•

Thermal

circuits

Heat transfer rather

than

flow network

Thermal

resistances–

Focus on thermal

”air-gaps”

pm

win

surf

amb

pm

win

surf

amb

mwmwms

mwmwsws

mswswsasa

sasa

kkkkkkkkkk

kk

00

00

pm

win

QQ

00

Page 34: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 34

Model

development•

Sorces

and loads

Conductor

losses–

Convection

cooling

2D heat transfer–

Approximate

rating

Extraction

of elements•

3D heat transfer

Extrucion

from 2D–

Focus on end

turns

Heat exchange

through end-turns

Thermal

conduction

Page 35: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 35

Thermal

modelling

example

II

Calculating flux (and current) density waveform •

Estimating losses densities in the symmetric part of machine

Calculating temperature distribution according to heat sources and sinks

Page 36: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 36

Multi-physics → FEM•

Different problems

in physics

‘share’

the same geometry•

Calculate for a single

element

The variation of loss origin–

RMS power loss

MEAN temperature

A field equation is solved for the finite size

of volume

boundaries

suppose to specify a potential (essential), flow naturally given.

N 1 (x 1 ,y 1 )

N 2 (x 2 ,y 2 )

N 3 (x 3 ,y 3 )

u 1

u 3

u 5

u 2

u 4

u 6

1

3

2

x

y

fe

cu

ptzyxBptzyxJ

,,,,,,

Page 37: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 37

Thermal

modelling

example

III

Directly cooled laminated windings

Page 38: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 38

Forced cooling•

Cooling channel

236 mm long 1 mm wide–

1.5 mm parallel plates

Convection –

140-160 W/m2K

Empiric vs

FEM •

Flow rate

Previous 1-8 m3/min

Temperature–

2D FEM conjugate heat transfer

P/Q=constant for out

=100oC

Page 39: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 39

Cooling integration

0 100 200 300 400 500 600 700 800 900 10000

50

100

150

200

250

100100

100 100

300

300

300300

500

500

500

700

700

700

900900

900

1100

1100

1300

1300

1500

flow rate, Q [L/min]

wal

l tem

pera

ture

, ou

t [ C

]

Cooling power, p=cpQ(out-in) [W]

Peak heat sources–

Jm

=22.3…28.8 A/mm2

p=10.0…16.6 W/cm3

P=2.9 kW

Thermal management–

Limit winding, wall and outlet temperature

100 L/min = 1.25 m/s

per div

FEM heat transfer–

Contribution from conduction and natural convection

Page 40: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 40

Ideal coil geometry and cooling conditions•

non cooled spots

overheated –

terminal leads & small cross-

section layers close to the air-gap•

cooling intensity

--

flow rate --

control over hot-spot temperatures

Heat transfer analysis

Page 41: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 41

Mapping operation points•

Driving parameters for cooling P=f(out

,Q) at in

Flow (Re) and coolant (Pr) characterization

Heat transfer –

correlations (Nu) and

coefficient h•

Wall and winding temperature

Pressure across cooling channel

Power for supply•

Expected cooling power P=f(w

,Q) at in

0 100 200 300 400 500 600 700 800 900 100020

40

60

80

100

120

140

160

180

200

220

100100

100100 100

300

300

300300

500

500

500

500

700

700

700

700

900

900

900

1100

1100

1100

1300

1300

1300

1500

1500

flow rate, Q [L/min]

outle

t tem

pera

ture

, ou

t [ C

]

Cooling power, p=cpQ(out-in) [W]

0 100 200 300 400 500 600 700 800 900 100020

40

60

80

100

120

140

160

180

200

220

200

200

200

400

400

400

600

600

600

800

800

800

1000

1000

1000

1200

1200

1200

1400

1400

1600

flow rate, Q [L/min]

outle

t tem

pera

ture

, ou

t [ C

]

Reynolds number, Re=2dhQ/(A) [-]

0 100 200 300 400 500 600 700 800 900 100020

40

60

80

100

120

140

160

180

200

220

6.6

6.6

6.6

6.8

6.8

6.8

7

7

77.

2

7.2

7.2

7.4

7.4

7.4

7.6

7.6

7.6

7.8

7.8

7.8

8

8

8

8.2

8.2

8.4

8.6

flow rate, Q [L/min]

outle

t tem

pera

ture

, ou

t [ C

]

Nusselts number, Nu=f(Re,Pr) [-]

0 100 200 300 400 500 600 700 800 900 100020

40

60

80

100

120

140

160

180

200

220

340

360

360

360

380

380

380

380

400

400

400

400

420

420

420

440

flow rate, Q [L/min]

outle

t tem

pera

ture

, ou

t [ C

]

Heat transfer coefficient, h=Nu k/Dh [W/(m2K)]

0 100 200 300 400 500 600 700 800 900 100020

40

60

80

100

120

140

160

180

200

220

20

20

2020

40

40

40

40

60

60

60

80

80

80

100

100

120

120

140

160

flow rate, Q [L/min]

outle

t tem

pera

ture

, ou

t [ C

]

Temperature across boundary, Pcool/(hAcool) [C]

0 100 200 300 400 500 600 700 800 900 100020

40

60

80

100

120

140

160

180

200

220

20002000

40004000

60006000

8000

8000

800010000

10000

12000

1200014000

flow rate, Q [L/min]

outle

t tem

pera

ture

, ou

t [ C

]

Pressure drop, dP [Pa]

0 100 200 300 400 500 600 700 800 900 100020

40

60

80

100

120

140

160

180

200

220

5050

50

100100

100

150150

150

200200

flow rate, Q [L/min]

outle

t tem

pera

ture

, ou

t [ C

]

Ideal cooling supply power, dPQ [-]

0 100 200 300 400 500 600 700 800 900 10000

50

100

150

200

250

100

100100 100

300

300

300300

500

500

500

700

700

700

900

900

900

1100

1100

1300

1300

1500

flow rate, Q [L/min]

wal

l tem

pera

ture

, ou

t [ C

]

Cooling power, p=cpQ(out-in) [W]

Page 42: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 42

7kW@120oC&4m3/min

0 1000 2000 3000 4000 5000 6000 7000 800020

40

60

80

100

120

140

160

outle

t tem

pera

ture

, ou

t [ C

]

10001000

1000

1000 1000

2000

2000

2000

2000

3000

3000

3000

3000

4000

4000

4000

4000

5000

5000

5000

5000

6000

6000

6000

7000

7000

7000

8000

8000

8000

flow rate, Q [L/min]

cooling power, p=cpQ(out-in) [W]

0 1000 2000 3000 4000 5000 6000 7000 80000.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

chan

nel h

eigh

t, d

[mm

]

500500

500

1000

1000

1000

1500

15001500

2000

20002000

25002500

2500

30003000

3000

flow rate, Q [L/min]

Reynolds number, Re=2dhQ/(A) [-]

0 1000 2000 3000 4000 5000 6000 7000 80000.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

chan

nel h

eigh

t, d

[mm

]

77

78

8

8

88

9

9

9

9

10

10

10

11

11

11

12

12

13

flow rate, Q [L/min]

Nusselts number, Nu=f(Re,Pr) [-]

0 1000 2000 3000 4000 5000 6000 7000 80000.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

chan

nel h

eigh

t, d

[mm

]

80

80

100

100

100

100

120

120

120

120

140

140

140

140

160

160160

160

200200

200200

250 250250 250

300 300 300 300

500 500 500

flow rate, Q [L/min]

heat transfer coefficient, h=Nu k/Dh [W/(m2K)]

0 1000 2000 3000 4000 5000 6000 7000 80000.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

chan

nel h

eigh

t, d

[mm

]

10

10

10

10

20

20

20

20

30

30

30

30

40

40

40

50

50

60

60

70

flow rate, Q [L/min]

temperature drop across boundary layer, Pcool/(hAcool) [K)]

0 1000 2000 3000 4000 5000 6000 7000 80000.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

chan

nel h

eigh

t, d

[mm

]

4040

40

100

100

100

200

200

200

200

400

400

400

400

1000

1000

1000

1000

2000

2000

20002000

4000

40004000

4000

1000010000

10000 10000

flow rate, Q [L/min]

pressure drop, dP [Pa]

0 1000 2000 3000 4000 5000 6000 7000 80000.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

chan

nel h

eigh

t, d

[mm

]

40

40

40

40

100

100

100

100

200

200

200

200

400

400

400

400

10001000

1000

2000

20002000

40004000 4000

1000010000

flow rate, Q [L/min]

ideal cooling supply power, dPQ [-]

Defining designing cooling channels•

Driving parameters for cooling P=f(out

,Q) at in

Flow (Re) and coolant (Pr) characterization

Heat transfer –

correlations (Nu) and

coefficient h•

Wall and winding temperature

Pressure across cooling channel

Power for supply•

Expected cooling power P=f(w

,Q) at in0 1000 2000 3000 4000 5000 6000 7000 8000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

chan

nel h

eigh

t, d

[mm

]

130

130

130

130

140

140

140

140

150

150

150

150

160

160

160

170

170

180

190

flow rate, Q [L/min]

winding temperature, Tw =Tout+Pcool/(hAcool) [C]

Page 43: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 43

Parallel plates, laminar flow, …•

Narrow

cooling channels

allow higher surface speed, thus

higher

cooling capability

for the same flow rate •

Narrow channels results higher pressure

drop and is

difficult to secure in production •

Lack of cooling

(flow leakage) results high risk for

overheating–

Slide sow: L from 25 mm to 200 mm @ 12 m/s

L=25 mmc=0.2 mm

L=50 mmc=0.4 mm

L=100 mmc=0.6 mm

L=200 mmc=0.8 mm

Page 44: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 44

Thermal circuit –

cooling circuits•

Natural and Forced

Integrated

cooling as a result of machine integrated construction

Slotted stator operates as a cooling circuit

Directly cooled heat sources

Cooling ducts, cooling jackets, cooling channels

Cooling capability–

Maximize the cooling

surface

area–

Improve cooling medium

parameters

and velocity•

Smallest temperature rise

is the goal when

designing a thermal circuit

Page 45: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 45

Summary•

Thermal constrains and dependences

Thermal circuits, heat sources and cooling options

Heat transfer model and modelling

Learning skills from the assignments

Page 46: 10.Thermal design - IEA · 2020-02-27 · Thermal design purpose is to bear out power rating and safety margin in respect to thermal limits of construction and used materials •

Lund University / LTH / IEA / Avo Reinap / EIEN20 / 2020-02-27 46

Outlook