50
100-1000 GHz Bipolar ICs: Device and Circuit Design Principles Part II: Design / Testing of 300 GHz ICs in InP HBT Technology Munkyo Seo ([email protected]) Mixed-Signal Product Group, Teledyne Scientific Company (TSC), Thousand Oaks, CA

100-1000 GHz Bipolar ICs: Device and Circuit Design ... · — DARPA Hi-Five Program ... removes AC-ground impedance — Inverted Microstrip → Guaranteed ... OSC+Mixer / OSC+Divider

  • Upload
    lamthu

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

100-1000 GHz Bipolar ICs: Device and Circuit Design

Principles

Part II: Design / Testing of 300 GHz ICs

in InP HBT Technology

Munkyo Seo ([email protected])

Mixed-Signal Product Group,

Teledyne Scientific Company (TSC),

Thousand Oaks, CA

2

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Collaborators / Funding Source

Teledyne Scientific Company

— Technology/RF/MMIC Group: Miguel Urteaga, Jon Hacker, Adam Young, Zach Griffith, Richard Pierson, and Petra Rowell

— Mixed-Signal Product Group: M.J. Choe

— Cleanroom Staff

— Internal oversight and vision provided by Dr. Bobby Brar (President, Teledyne Scientific Company)

University of California, Santa Barbara (UCSB)

— Professor Mark Rodwell and his Device Team.

NASA Jet Propulsion Lab., CA

— Dr. Anders Skalare, Alejandro Peralta, Robert Lin

University of Virginia

— Professor Robert Weikle, Professor Scott Barker and their team

Program support from Dr. John Albrecht (DARPA) and Dr. Alfred Hung (ARL) is gratefully acknowledged.

— DARPA THz Electronics Program (Contract #: HR0011-09-C-0060)

— DARPA Hi-Five Program (Contract #: W911NF-08-C-0050)

*The views, opinions and/or findings contained in this presentation are those of the authors and should not be interpreted as representing the

official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, or the Department of Defense.

3

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Outline

Overview / General Considerations in > 300 GHz IC Design

Transceiver Building Blocks

— 350 GHz Differential LNA

— 300 GHz Differential Oscillator

— 300 GHz Dynamic Frequency Divider

350 GHz Single-Chip Receiver IC

300 GHz Single-Chip PLL IC

Conclusion

RFOUT

VBBVEE

VTUNE

300 GHz VCO

in waveguide

package

WR-3 VNA

extender

RFIN

DIVOUT

VEE

VEF

IF+ IF-

LO

VTUNE

VEE

VBB VEEM VEFM

MixerOscillator

(FFO / VCO)

VCO

300 GHz 2:1

Dynamic

Divider

2-stage LNA Mixer300 / 350 GHz

VCO

REF

CLK

PLL

OUTPhase

Detector

300 GHz VCO

2:1 Dynamic

Frequency

Divider

Active Loop

Filter

REF

CLK

PLL

OUTPhase

Detector

220 GHz

VCO

Active Loop Filter

2:1 Dynamic

Frequency

Divider

2-stage

Amplifier

4

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Challenges in > 300 GHz IC Design & Characterization

Low transistor gain / high passive loss

— Diff. topology removes AC-ground loss

Modeling (Device / EM) uncertainties

— Diff. topology removes AC-ground impedance

— Inverted Microstrip → Guaranteed solid ground plane

Normal microstrip → Many holes due to HBT conn.

CPW → Not suitable for complex / feedback ckts

Many CKT-EM cycles

Testing

— Everything is $$$ (money / delivery time) : VNA / mixer / source / probe…

— Exploit on-chip self-testing:

Integrated OSC+Mixer / OSC+Divider / LNA+Mixer

CPW

Normal microstrip

Inverted microstrip

5

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Differential Topology for mm-wave ICs

AC ground

(MIM cap, ¼λ line, radial stub)

Lossy, finite BW

Virtual ground

Lossless, ∞ BW

Differential topology eliminates

— (1) Gain reduction due to RAC-GND

— (2) BW reduction due to LAC-GND

— (3) Detuning due to MIM cap model errors → Robust design

— (4) Detuning due to bias ckt & via ( 3D) model errors → Robust design

Differential topology decouples RF from DC BIAS → Flexible design

…at the cost of PDC↑, Area↑, # device↑

Caution: Common-mode Stability

S11S12S13S14

S21S22S23S24

S31S32S33S34

S41S42S43S44

SDMSDM 0 0

SDMSDM 0 0

0 0 SCMSCM

0 0 SCMSCM

(+)

(-)

(-)

(+)

GNDACGNDAC LL

L

LL

L

2

2

1

1stageper reduction BW

L1 L2 LAC-GND

RAC-GND

222

2

111

1stageper dropGain

QQ

Q

QQ

Q

,effL

,effL

,effL

,effL

GNDACLeffL RRLQ 11,1

111111 ReIm yyQ

defined.similarly , 22,2 QQ effL

[yij]

inductance matchingut input/outp , 21 LL

resonanceat resistance ground-ac GNDACR

inductance series ground-ac GNDACL

parameter Transistor yyij

6

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Teledyne 0.25m InP HBT Process: Overview

ft ≈ 400 GHz

fmax ≈ 800 GHz

AE = 0.25x4 m2

JE = 12 mA/m2

Vce= 1.8 V

U

H21

Two process generations: THzIC1 (fmax~600G), THzIC2 (fmax~800G)

3-Metal (Au) back-end: M1, M2, M3 (all 1m thick)

Thin-film resistor (50Ω/sq), MIM cap (0.3fF/m2), B-C junction varactor

Optional wafer thinning & Thru-wafer vias

Packaging in a silicon micromachined waveguide block.

VCO, DIV VCO, DIV, PLL, LNA, Receiver

7

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

0.25m InP HBT RF Performance

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1 1.0

2

4

6

8

10

12

14

16

18

0

20

freq, THz

mag

_m

sg_

cm

ag

_m

sg_

bm

ag

_m

sg

U_d

BdB

(h2

1)

mag

_m

sg_

e

MSG/MAG

(Cascode)

MSG/MAG

(CB)

MSG/MAG

(CE) MSG/MAG

(EF)

H21

U

Ga

in (

dB

)

fmax = 830 GHz fT = 500 GHz

AE = 0.25x3 m2

JE = 12 mA/m2

Vce= 1.8 V

freq (10.00GHz to 1.500THz)

Sa(1

,1)

Sb(1

,1)

Se(1

,1)

CB

CE Cascode

@300 GHz

freq (10.00GHz to 1.500THz)

Sa(2

,2)

Sb(2

,2)

Se(2

,2)

S11 S22

Cascode CB

CE

At 300 GHz, MAGCE= 5 dB, MSGCB=10.8 dB, MSGcascode = 20 dB

In actual circuits, operating gain will be further limited by: (1) stabilization (if

unstable), (2) matching network losses, and (3) large-signal operation (e.g.

oscillators or power amplifiers)

8

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Passive Device Modeling

Thin-Film

Resistors (TFR)

10 20

(100Ω@dc)

10 50 (250Ω @dc)

S11

Z11

MIM

Capacitors

10 10 10 13 13 13

0

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1 1.2 1.4

VCB (V)

Va

rac

tor

ca

pa

cit

an

ce

(fF

)

0

10

20

30

40

50

60

Qu

ality

fa

cto

r @

50

GH

z

B-C junction varactor

0

1

2

3

4

5

6

7

8

9

10

500 550 600 650

Frequency (GHz)

Lin

e lo

ss

pe

r 1

mm

(d

B/m

m)

Meas

EM sim.

Inverted Microstrip Line

Loss of 50Ω line (W=10): 3-4 dB/mm @300-500 GHz

Aspect ratio optimized for high-Q

Capacitance ratio= 1.6 @VCB=0-1V

100Ω TFR

100Ω TFR 250Ω TFR

250Ω TFR

dc-block bypass bypass+damping

9

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Design Flow

(1) Build passive device library

Transmission lines: (Z0, β) – compact model from EM sim

MIM caps, Thin-film resistors: 2-port S-param from EM sim

(2) Initial schematic design using the library

(3) Core circuit layout (i.e. w/o common-mode bias)

(4) EM-sim. → Multi-port S-param

(5) Re-simulation w/ S-param blocks (core + bias)

(6) Complete top-level layout w/ bias, interconnects, RF / DC pads, etc.

(7) Final Design Verification

DRC (Design-Rule Check)

LVS (Layout-versus-Schematic)

CKT-EM cycle

~300 GHz: 1~2 cycles

>500 GHz: > 5 cycles

10

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Waveguide Packaging of InP Chips InP chips after backside singulation Amplifier ICs

after backside release Silicon micromachined waveguide

1,024 m

520 m

Through-wafer vias, wafer thinning → backside metallization → dry etch chip singulation → mount in silicon micromachined waveguide block

WR3 THRU test chip: < 4 dB measured insertion loss @300 GHz, < 1 dB per transition

THRU-line test chip in a silicon WG block 300 GHz oscillator in W/G block under test

Free-standing

waveguide

probe

Design of 300 GHz Building Blocks

- 350 GHz Differential LNA

- 300 GHz Differential Oscillator

- 300 GHz Dynamic Frequency Divider

12

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

VEE

RFOUT+

Q3 Q4

RE

RFOUT-

RFIN+ RFIN-

Q1 Q2¼ ¼

¼

350 GHz Differential Cascode Amplifier

Topology: Differential Cascode

RF operation in diff. mode (blue line), DC biasing in common mode (black line)

Make sure no common-mode oscillation (dc-fmax)

Stability

control

Output

matching

(1) Suppress common-mode gain

(2) Bypass thermal noise from RE

Size: 60180 m2

M1

M2

M3 Total 21 ports

(16 device, 4 RF, 1 bias)

21-port S-parameter

Layout / EM model

Inverted-Microstrip

(Continuous M3

ground plane)

13

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

350 GHz Differential Cascode Amplifier

P1 P2

P3 P1 P2 P1 P2

„Differential‟ (DIFF) Mode „Common‟ (COMM) Mode „Single-Ended‟ (SE) Mode

320 340 360 380 400 420 440 460 480300 500

-40

-20

0

20

-60

40

freq, GHz

dB

(S_S

E(2

,1))

dB

(S_D

IFF

(2,1

))dB

(S_C

OM

M(2

,1))

S21, DIFF mode

S21, SE mode

S21, COMM mode

325 350 375300 400

12

14

16

18

20

10

22

freq, GHz

nf(

2)

350.0G13.82

m64NF

min

m64freq=nf(2)=13.820

350.0GHz

3-stage Amplifier Gain 3-stage Amplifier Noise Figure (SE mode)

Three modes of operation of interest: DIFF, COMM, SE modes

If DIFF gain is sufficiently higher than COMM-mode gain, SE-mode performance approaches DIFF-mode

— i.e. input common-mode will diminish, yielding |S21,SE|dB ≈ |S31,SE|dB ≈ | S21,DIFF|dB -3dB, NFSE≈NFDIFF.

— SE mode operation (1) facilitates testing, and (2) obviates lossy input balun, thus most useful in the receiver front-end.

S21,diff = 10 dB/stage, noise figure = 13.8 dB @ PDC=50 mW/stage

Amplifier must be stable in all three modes.

Initial

schematic

model

EM

model

Beyond 350-400 GHz,

accuracy of sch. model

quickly degrades

SCH. Vs EM model

14

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

SE Mode Operation: What About Output Balance?

P1 P2

P3

„Single-Ended‟ (SE) Mode

Question: In SE mode, are the amplifier outputs (P2,P3) well balanced?

310

320

330

340

350

360

370

380

390

300

400

5

10

15

20

25

0

30

freq, GHz

S21_dB

_avg_1stg

S21_dB

_avg_2stg

S21_dB

_avg_3stg

310

320

330

340

350

360

370

380

390

300

400

-2

-1

0

1

2

-3

3

freq, GHz

S21_dB

_err

or_

1stg

S21_dB

_err

or_

2stg

S21_dB

_err

or_

3stg

310

320

330

340

350

360

370

380

390

300

400

-4

-2

0

2

4

-6

6

freq, GHz

S21_phase_err

or_

1stg

S21_phase_err

or_

2stg

S21_phase_err

or_

3stg

Average Gain = dB((S21+S31)/2) Magnitude Error = dB(S21 / S31) Phase Error = phase(S21 / S31)-180

2-stage

3-stage

1-stage

1-stage

2-stage

3-stage

3-stage

2-stage

1-stage

For a 3-stage differential configuration, amplitude and phase imbalances

are less than 0.1 dB and 0.5 deg, respectively.

15

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Effects of AC-ground Impedance: Single-Ended Amplifier Example

RAC-GND= 0, LAC-GND= 0, CAC-GND= ∞

RAC-GND= 1 Ω, LAC-GND= 0, CAC-GND= ∞

RAC-GND= 2 Ω, LAC-GND= 0, CAC-GND= ∞

RAC-GND= 2 Ω, LAC-GND= 10 pH, CAC-GND= 25 fF

Amplifier in a single-ended topology, but otherwise, equivalent to the previous 3-stage differential 350 GHz design (e.g. same matching network, same bias)

Effects of AC-ground resistance / inductance are clearly seen: Even RAC-GND = 1 Ω degrades circuit gain by 4-5 dB (= 1.5 dB reduction per stage).

LAC-GND = 10 pH reduces amplifier 3-dB bandwidth by half !!

16

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

350 GHz Differential Cascode Amplifier: Layout & Hierarchy

VEE

RFOUT+

Q3 Q4

RE

RFOUT-

RFIN+ RFIN-

Q1 Q2¼ ¼

¼

Core circuit block

(mostly diff.)

Full EM model

(multi-port S-param)

Bias circuitry (SE)

EM or compact model

Single-stage cell

Multi-Stage Cell Final on-wafer testing structure

M1

M2

M3

General layout hierarchy: core_half core single_stage multi_stage top_cell

Note M3 top ground plane covers entire circuit.

Diff. half circuit

17

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

3-D Top View

Top M3 ground plane set to partially transparent

M1 / M2 Signal, M3 GND (inverted microstrip)

18

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Inverted MSL-to-Pad Transition

M2

M3

M1

L1

L2

On-wafer testing of inverted-MSL-based circuits requires a transition to a co-planar GSG pad.

Distance from M3 GND plane to signal pad (L1, L2) was adjusted for broadband low-loss transition.

Simulated S21= -0.5dB @300 GHz, -1.4dB @550 GHz (S11 < -12 dB)

-5

-4

-3

-2

-1

0

500 550 600 650

Frequency (GHz)

S2

1 (

dB

)

Meas

EM sim.

19

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

2-port Vector Network Analyzer (VNA) Setup

• 220-325 GHz (WR3) OML VNA Extenders

• Interfaced with HP8510C

• 500-750 GHz (WR1.5) VDI VNA Extenders

• Interfaced with Agilent PNA-X

mm-wave extenders interface with main VNA module via IF / LO

VNA setup for 325-500 GHz (WR2.2) band available at JPL

A VNA extender can also be used as a Up/Down conversion harmonic mixer

—e.g. oscillator frequency measurement (Watch out for image responses!!)

20

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

350 GHz 3-Stage Differential Cascode Amplifier: Measurement Results

250 300 350 400 450 500200 550

-25

-20

-15

-10

-5

0

-30

5

freq, GHz

dB

(W084_F

21_M

KS

400_3stg

04.S

22)

dB

(TH

zIC

2_data

set_

LN

AD

CC

3_400_re

sim

.S11)

250 300 350 400 450 500200 550

-20

-10

0

10

20

30

-30

40

freq, GHz

dB

(W084_F

21_M

KS

400_3stg

04.S

12)

dB

(TH

zIC

2_data

set_

LN

AD

CC

3_400_re

sim

.S21)

250 300 350 400 450 500200 550

-60

-50

-40

-30

-20

-10

-70

0

freq, GHz

dB

(W084_F

21_M

KS

400_3stg

04.S

21)

dB

(TH

zIC

2_data

set_

LN

AD

CC

3_400_re

sim

.S12)

250 300 350 400 450 500200 550

-25

-20

-15

-10

-5

0

-30

5

freq, GHz

dB

(W084_F

21_M

KS

400_3stg

04.S

11)

dB

(TH

zIC

2_data

set_

LN

AD

CC

3_400_re

sim

.S22)

S21

(d

B)

S12

(d

B)

S22

(d

B)

S11

(d

B)

sim meas

Peak S21,SE = 27 dB @350 GHz, @ PDC=150 mW

Testing in 2-port SE mode, with unused output port (P3) terminated on-chip.

Noise figure of receiver chain (3-stage LNA + down-mixer) was measured to be 13 dB (will be shown later)

Size: 870350 m2

Layout

Chip photograph

21

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

450 GHz 3-Stage Differential Cascode Amplifier: Measurement Results

S21

(d

B)

S12

(d

B)

S22

(d

B)

S11

(d

B)

sim meas

300 350 400 450 500 550250 600

-20

-10

0

10

20

30

-30

40

freq, GHz

dB

(W084_F

21_M

KS

500_3stg

03.S

12)

dB

(TH

zIC

2_data

set_

LN

AD

CC

3_500_re

sim

.S21)

300 350 400 450 500 550250 600

-25

-20

-15

-10

-5

0

-30

5

freq, GHz

dB

(W084_F

21_M

KS

500_3stg

03.S

22)

dB

(TH

zIC

2_data

set_

LN

AD

CC

3_500_re

sim

.S11)

300 350 400 450 500 550250 600

-25

-20

-15

-10

-5

0

-30

5

freq, GHz

dB

(W084_F

21_M

KS

500_3stg

03.S

11)

dB

(TH

zIC

2_data

set_

LN

AD

CC

3_500_re

sim

.S22)

300 350 400 450 500 550250 600

-60

-50

-40

-30

-20

-10

-70

0

freq, GHz

dB

(W084_F

21_M

KS

500_3stg

03.S

21)

dB

(TH

zIC

2_data

set_

LN

AD

CC

3_500_re

sim

.S12)

Peak S21,SE = 9 dB @440 GHz, @ PDC=150 mW

Testing in 2-port SE mode, with unused output port (P3) terminated on-

chip.

22

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

300 GHz Oscillator: Schematic

VEE VTUNE

VOUT

VBB

Q3

Q1

CVar

Q4

Q2

Tuning

range

control

OSC core

Common-base

buffer

(gain, isolation)

Output

matching

Load

coupling

“T” feedback “π” feedback

Less discontinuities

More predictable

More scalable

Improves

Common-mode

stability

Provides

VBE of of Q1-Q4

Defines

VCB of Q1-Q4

VEE can be tuned

for an optimum JE

VBB can be tuned

for an optimum VCB

Topology: Differential series-tuned oscillator w/ stacked common-base buffer

— Fixed-frequency designs (FFO) and voltage-controlled designs (VCO)

RF operation in diff. mode (blue line), DC biasing in common mode (black line)

Make sure no common-mode oscillation (dc-fmax)

23

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

300 GHz VCO: Core Layout / EM Model

OSC core HBT Common-base

HBT

Varactor

Virtual-ground line

RF out

Inverted-Microstrip: M1/M2 Signal, M3 GND

Line width= 5m (except for 50Ω output line)

Size: 28080 m2

M1

M2

M3

Total 23 ports (16 device, 2 RF, 5 bias)

23-port S-parameter

Bottom view

24

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Layout: 300 GHz versus 570 GHz

150 m

300 GHz VCO

570 GHz VCO (1) Stronger line coupling

(2) Mostly “discontinuous”

More CKT-EM cycles

25

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Freq. Testing with an External Mixer

WR-3 VNA Extender Spectrum Analyzer OSC

under test

IF < 100 MHz WR3 probe

(GGB)

3-4dB loss

Typical IF Spectrum

HP8565 Down-converter

297

298

299

300

301

302

303

304

0 0.5 1 1.5

Vtune [V]

Oscil

lati

on

fre

qu

en

cy (

GH

z)

Typical VCO tuning curve

VCO Cell (Core+Bias)

Size: 400200 m2RFOUT

VBB VEE

VTUNE

Test chip size: 740550 m2

HBT JE = 7-10 mA/m2

PDC= 70-110 mW

Fixed-frequency & voltage-controlled designs from 250 to > 600 GHz

300 GHz VCO

in waveguide

package

WR-3 VNA

extender

26

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

OSC Freq. Testing: Integrated OSC+MIX

IF+ IF-

LO

VTUNE

VEE

VBB VEEM VEFM

Mixer Oscillator

(FFO / VCO)

Size: 880470 m2

Integrated mixer facilitates spectrum measurement.

— No > 300 GHz mm-wave interface

Sub-harmonic operation

— fLO ~ 20 GHz (BWIF > 25 GHz)

— N=21-31 for 400-600 GHz RF input

— Conv. Loss = 30-40 dB

Mixer consumes 60 mW.

LO

VEEM VEFM

IF+

IF-

Oscillator

VEE VBB VTUNE

27

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

OSC Freq. Testing: Integrated OSC+MIX

Spectrum Analyzer

OSC+Mixer under test

fIF < 20 GHz HP8565

Signal Generator fLO ~ 20 GHz

HP8341B 30~40dB loss

-100

-90

-80

-70

-60

-50

-40

1

CENTER: 2.897 GHz SPAN: 2 GHz

fIF = 2.893 GHz

fLO = 0.2 GHz

Po

we

r (d

Bm

)

fLO = 19.8 GHz

RBW = 1 MHz

VBW = 1 MHz

-100

-90

-80

-70

-60

-50

-40

1

CENTER: 7.100 GHz SPAN: 2 GHz

fIF = 7.100 GHz

Po

we

r (d

Bm

)

fLO = 20.0 GHz

RBW = 1 MHz

VBW = 1 MHz

OSCLOIF fNff

21035.21Round0.2

2.893-7.1RoundRound

LO

IF

Δf

ΔfN

Small

OSCLOIF

LO

IF fNfff

f

0

28

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

300 GHz VCO Tuning Bandwidth

0

0.5

1

1.5

2

2.5

240 250 260 270 280 290 300 310

Oscillation frequency (GHz)

Tu

nin

g V

olt

ag

e (

V)

BW= 10.6 GHz 11.8 GHz 12.3 GHz

Theoretical max. tuning range =

Varactors lightly coupled (QVAR~8, QTL~25)

(20%) 2.14.1 RATIOC

29

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Measured Phase Noise

-110

-105

-100

-95

-90

-85

-80

-75

-70

-65

-60

1 10 100Offset from the carrier (MHz)

Ph

as

e n

ois

e (

dB

c/H

z)

FFO-267

FFO-287

FFO-310

FFO-346

-102.36

-99.76

-95.58

-88.84

-104

-102

-100

-98

-96

-94

-92

-90

-88

240 260 280 300 320 340 360

Oscillation frequency (GHz)P

ha

se

no

ise

(d

Bc

/Hz)

@ 1

0 M

Hz

-20dB/dec Voltage-controlled designs (VCO)

Fixed-frequency designs (FFO)

Approximately follow -20 dB/dec curve —1/f noise corner < 1 MHz

IF noise floor limits measurement for offsets > 20 MHz

Drifts in oscillation frequency must be minimized for accurate phase noise testing

— Stable, low-noise power supplies

4.5 5.0 5.5 6.04.0 6.5

-90

-80

-70

-60

-100

-50

freq, GHz

lo19g82_rb

vb1m

.Tra

ceA

Readout

m32

m32freq=lo19g82_rbvb1m.TraceA=-50.333

5.227GHz

4.5 5.0 5.5 6.04.0 6.5

-90

-80

-70

-60

-100

-50

freq, GHz

lo19g82_rb

vb1m

_aft

er1

0m

in.T

raceA

5.220G-51.00

m33

m33freq=lo19g82_rbvb1m_after10min.TraceA=-51.000

5.220GHz

Initial

spectrum

After 10-min

∆freq ≈ 7MHz

30

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Oscillator Power Testing

Waveguide taper Power meter

OSC under test

WR3 probe (3-4dB loss) WR2.2 probe (5-8dB loss) Erikson Inst.

WR-10

Waveguide taper

Power meter

OSC

WR1.5 probe (8-10dB loss) Erikson Inst. WR-10

0.2dB loss

Waveguide transition

DC supply

software

9dB loss

WR3 (220-330G)

WR2.2 (330-500G)

WR1.5 (500-750G)

Problem: Tiny raw power → Lowest full-scale → Long settling time → Subject to drift

Solution: Modulated sensing

dc supply Modulation

(3 s ON, 3 s OFF)

digitized readout de-modulation

31

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

WR-1.5 Power Testing Setup (JPL)

500-750 GHz (WR1.5)

probe

Power

meter W/G

transition

Custom S/W

for post-processing

32

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

250 300 350 400 450 500 550 600

Oscillation frequency (GHz)

Ou

tpu

t p

ow

er

(dB

m)

InP HEMT

InP HBT

SiGe

CMOS

This work (THzIC1)

This work (THzIC2)

Oscillator Measurement Summary / Performance Comparison

TABLE I

SUMMARY OF FIXED-FREQUENCY OSCILLATOR RESULTS

Oscillation Frequency Single-ended output power1 (dBm) Process

Technology Design Measured Simulation w/

revised HBT model

Simulation w/

revised HBT model2

Measured

(uncorrected)

Measured

(corrected3)

Phase noise

@ 10 MHz

offset

THzIC1 292.4 GHz 267.4 GHz 261.5 GHz -3.6 dBm -5.1 dBm -2.1 dBm -102.4 dBc/Hz

THzIC1 315.4 GHz 286.8 GHz 280.6 GHz -4.7 dBm -6.9 dBm -3.9 dBm -99.8 dBc/Hz

THzIC1 336.5 GHz 310.2 GHz 303.7 GHz -6.4 dBm -9.2 dBm -6.2 dBm -95.6 dBc/Hz

THzIC1 387.8 GHz 346.2 GHz 346.0 GHz -7.7 dBm -11.0 dBm -7.0 dBm -88.8 dBc/Hz

THzIC2 397.0 GHz 412.9 GHz 394.5 GHz -3.5 dBm -11.1 dBm -5.6 dBm -

THzIC2 508.0 GHz 487.7 GHz 505.9 GHz -5.2 dBm -16.4 dBm -8.9 dBm -

THzIC2 587.9 GHz 573.1 GHz 586.3 GHz -9.0 dBm -36.2 dBm -19.2 dBm -

1 VEE and VBB tuned for a maximum measured power (PDC = 76─115 mW, depending on design). 2 Inverted-microstrip-to-GSG-pad transition loss included. 3 Probe and/or waveguide transition loss is deembedded.

[2]

[1]

[3] [4]

[6]

[7]

[8]

[9]

[12]

[13]

[7]

33

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

mm-wave OSC beyond 250 GHz: References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

34

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

300 GHz Dynamic Frequency Divider: Schematic Traditional R-loading: < 220 GHz

Inductive loading: < 360 GHz

DIVOUT

VEF

RFIN

VEE

Q3,4 Q5,6

Q1 Q2

L1 L2

L3 L4

Improves

sensitivity

by ~3dB

LPF

ff2

3,

2

1f f

2

1

f2

1

“Regenerative” frequency divider

Many implementations possible

-Single-TR circuit

w/ implicit feedback

-Multi-TR circuit

w/ explicit feedback

Topology: Double-balanced mixer with emitter follower (EF) feedback and inductive loading (Adapted from H. M. Rein’s original design)

Compared to a traditional resistive / trans-impedance loading, inductive loading significantly extends divider bandwidth.

Beyond ~400 GHz, divider operation is ultimately limited by the EF stage.

Emitter-follow

feedback

35

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Divider Layout / EM Model

Size: 14090 m2

M1

M2

M3

RFIN+ RFIN-

DIVOUT(-)

DIVOUT(+)

Bias

Total 29 ports (24 device, 4 RF, 1 bias)

29-port S-parameter RFIN

DIVOUT

VEE

VEF

Test Chip (880470 m2) Divider Core (also EM Model)

Upper

diff. pairs

Lower

diff. pair

36

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Divider Simulation Results

Typical output waveform Typical output spectrum

Vo

ltag

e (V

)

Po

wer

(d

Bm

)

-10

-8

-6

-4

-2

0

2

4

6

260 280 300 320 340 360 380 400

Divider Input Freq. (GHz)

Inp

ut

Sen

sit

ivit

y (

dB

m)

-30

-25

-20

-15

-10

260 280 300 320 340 360

Divider Input Freq. (GHz)

Div

ider

Ou

tpu

t P

ow

er

(dB

m)

VCO output

Minimum input power (S.E) Typical output power

PIN,SE= -3dBm

Input

output

PDC = 90 mW

BW margin BW margin

Pin margin

37

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Divider Testing using External 300 GHz Source (UCSB)

/2Harmonic

Mixer Spectrumanalyzer

Divider

WR5 probe(2.1dB loss) HP-70000

60dB loss

SignalSource

X24Freq. Mult.

WR3 probe(3dB loss) OML Inc.

Virginia Diodes.

300 GHz 150 GHz

320GHz

VDI multiplier

WR3 mixer

Input = 314.24 GHz Output = 157.12 GHz

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

300 310 320 330 340

Divider Input Frequency (GHz)

Po

we

r (d

Bm

)

PIN (meas): 300 GHz VDI Source

Pout (meas)

Pout (sim)

Divider operating bandwidth: 305-330 GHz (PDC = 100 mW)

Testing @ < 300 GHz limited by insufficient source power

Sub-harm. mixer produces multiple image responses Use “Signal Identification” (spectrum analyzer built-in function) for correct output tone identification.

Insufficient PIN

38

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Divider Testing: Integrated VCO+DIV

Chip Size: 1,100600 m2

VCO

300 GHz 2:1

Dynamic

Divider

138.8 138.9 139.0138.7 139.1

-50

-40

-30

-20

-60

-10

freq, GHz

Div

ider

ou

tput (d

Bm

)

148.8 148.9 149.0148.7 149.1

-50

-40

-30

-20

-60

-10

freq, GHz

Div

ider

ou

tput (d

Bm

)

175.5 175.6 175.7175.4 175.8

-50

-40

-30

-20

-60

-10

freq, GHz

Div

ider

ou

tput (d

Bm

)

fIN = 278 GHz fIN = 298 GHz fIN = 350 GHz

Each divider design is integrated w/ VCO for on-chip self-testing

— 4 VCO designs centered at 275 GHz, 300 GHz, 325 GHz, and 350 GHz, w/ 5-10 GHz tuning bandwidth.

Confirms divider operation from 278 GHz to 350 GHz.

39

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Divider: Performance Comparison

References

350 GHz Single-Chip Receiver

300 GHz Single-Chip PLL

41

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

300 GHz / 350 GHz Integrated Differential Receiver

2-stage LNA DB-MIX VCO

Receiver chain w/ 2-stage LNA

RFIN

IFOUT+ IFOUT-

2-stage LNA DB-MIX VCO

Receiver chain w/ 2-stage LNA

RFIN

IFOUT+ IFOUT-

Receiver Layout Chip photograph

Includes LNA, double-balanced mixer, and VCO

Receiver designs at 300 GHz and 350 GHz

RF input is single-ended, IF output is differential

On-wafer noise figure (NF) testing performed at JPL

— Hot/Cold noise source coupled to receiver w/ horn-antenna

— NF derived using Y-factor method

— IF frequency: 2.18 GHz, 320 MHz bandwidth

5.5 dB

3 dB

Input

Probe Loss

13dB

10 dB

Receiver NF

303mW

222 mW

DC Power

27dB

32dB

Receiver GainVCO Freq.

345 GHz

305 GHz

5.5 dB

3 dB

Input

Probe Loss

13dB

10 dB

Receiver NF

303mW

222 mW

DC Power

27dB

32dB

Receiver GainVCO Freq.

345 GHz

305 GHz

Measured Receiver Gain and Noise Figure

On-wafer NF testing setup at JPL

Horn

antenna

2-stage LNA Mixer 300 / 350 GHz

VCO

(1,300570 m2)

42

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Phase-Locked Source @ 300 GHz

www.vadiodes.com

REF

CLK

PLL

OUTPhase

Detector

300 GHz VCO

2:1 Dynamic

Frequency

Divider

Active Loop

Filter

Size: 1,380610 m2

Commercially available source Single-Chip 300 GHz InP PLL IC

Technology

Size

Weight

Power consumption

Output power

Tunable range

GaAs Shottky diodes (modules)

~1000 cm3

~1 kg

~ 10 W

0 ~ 13 dBm

20 GHz (320-340 GHz)

0.25 InP HBT (one-chip)

~1 mm2 (unpackaged)

~1 g (unpackaged)

0.3 W

-23 dBm

0.36 GHz (300.76-301.12 GHz)

Low-power / Portable / Handheld

→ Critical, power hungry, building block for THz imager / instrumentation

43

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

300 GHz InP PLL: Overview

Phase detector

(5 sub-harmonic)

300 GHz

VCO

300 GHz 150 GHz

REF CLK

(30 GHz) 300 GHz

PLL OUT

IPD

C1

C2

R1

VTUNE

Active loop filter

Static

2:1 DIV PD

PD

300 GHz

VCO

37.5 GHz Static

2:1 DIV

Static

2:1 DIV

Dynamic

2:1DIV

Static

2:1 DIV

Static

2:1 DIV

37.5 GHz 300 GHz

VCO

Sub-harmonic

PD

Dynamic

2:1 DIV

150 GHz 300 GHz

VCO

REF

REF

REF

(30 GHz)

Static Div

NOT fast enough

>100 HBTs, 2W PDC

50 HBTs, 0.3 W PDC

2:1 Dynamic

Frequency Divider

Critical path

44

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

Phase Detector: 5th-order Sub-harmonic

VEEM

L1 L2

VEFM

REF CLK

(30 GHz) OUT

From

divider

(150 GHz)

Size: 120200 m2

-20

-10

0

10

20

0 90 180 270 360

Phase error (degree)

Ph

as

e d

ete

cto

r

ou

tpu

t (m

V)

N=3,5,7,9 (PRF = -20dBm)

Gilbert Cell as a Odd-sub-harmonic PD

fVCO = N fREF

REF+

REF-

RF+

RF-

OUT+ OUT-

Gilbert Cell can operate as a phase detector in odd-order sub-harm. mode

Useful detection gain up to 5th-order (N=5) sub-harmonic operation

Operation at N > 5 may suffer from increased sensitivity of active loop filter offset voltages (phase noise may also degrade).

45

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

300 GHz PLL: Layout

Phase

detector

Divider

VCO

Loop filter PLL

Output REF

Input

REF

CLK

PLL

OUTPhase

Detector

300 GHz VCO

2:1 Dynamic

Frequency

Divider

Active Loop

Filter

Size: 1,380610 m2

M1

M2

M3

• Total 51 HBTs

• PDC = 302 mW

VCO: 96 mW,

DIV: 90 mW,

PD: 26 mW,

LF: 90 mW.

46

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

PLL: Measured Spectrum

WR-3

VNA extender

Spectrum

analyzer

OML Inc. HP-8565E

PLL output

(WR3)

300 GHz

PLL IC

x2 Freq.

Multiplier

Signal

generator

REF clock

(30 GHz)

15 GHz

HP83752B HP83554A

HP8349B

259.87 259.97 260.07 260.17259.77 260.27

-100

-90

-80

-70

-60

-110

-50

freq, MHz

PL

L O

utp

ut

(dB

m)

Readout

m1

m1freq=PLL_output_dBm=-52.667

260.02MHz

Center: 260MHz

Span: 500 KHz

RBW 3KHz

VBW 100Hz

100 200 300 4000 500

-90

-80

-70

-60

-100

-50

freq, MHz

PLL O

utp

ut (d

Bm

)

Readout

m1

m1freq=PLL_output_dBm=-51.000

260.02MHz

Center: 260MHz

Span: 500 MHz

RBW 100KHz

VBW 3KHz

Narrowband

Spectrum

Wideband

Spectrum

Measurement Setup

PLL output power = -23 dBm @ PDC= 302 mW

Most of VCO output power goes to the dynamic frequency divider

47

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

PLL: Measured Phase Noise

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

100 1000 10000 100000 1000000 10000000

Offset from the carrier (Hz)

Ph

ase n

ois

e (

dB

c/H

z)

100

Offset from the carrier (Hz)

1K 10K 100K 1M 10M

REF CLK

(30.096 GHz)

PLL OUT

(300.96 GHz)

Measurement by HP8565E Built-in Phase-Noise Meas. Utility

-78 dBc/Hz @100 KHz

dB 2030

300log20factor mult. Freq. 10

48

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

PLL: Measured Tuning Bandwidth

m2freq=PLL_output_dBm=-49.667

101.61MHz

m3ind Delta=dep Delta=-4.167Delta Mode ON

3.588E8

100 200 300 4000 500

-70

-60

-50

-40

-30

-80

-20

freq, MHz

PL

L O

utp

ut

(dB

m)

101.61MHz-49.667

m2

Readout

m3

m2freq=PLL_output_dBm=-49.667

101.61MHz

m3ind Delta=dep Delta=-4.167Delta Mode ON

3.588E8

360 MHz

fref = 15.038 ~15.056 GHz (1 MHz step)

fvco = 300.76 ~301.12 GHz

49

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

220 GHz PLL (CSICS-2011)

REF

CLK

PLL

OUTPhase

Detector

220 GHz

VCO

Active Loop Filter

2:1 Dynamic

Frequency

Divider

2-stage

Amplifier

Size: 1,570700 m2

-70

-60

-50

-40

-30

-20

-10

0

CENTER 223.0 GHz SPAN 500 KHz

Po

we

r (d

Bm

)

RBW 3 KHz

VBW 100 Hz

CENTER 223.0 GHz SPAN 500 KHz

-70

-60

-50

-40

-30

-20

-10

0

CENTER 223.0 GHz SPAN 10 MHz

RBW 30 KHz

VBW 300 Hz

Po

wer

(dB

m)

-100

-95

-90

-85

-80

-75

-70

-65

-60

-55

-50

1000 10000 100000 1000000 10000000Offset from the center (Hz)

Ph

ase n

ois

e (

dB

c/H

z)

220.0 GHz

223.0 GHz

225.9 GHz

1K 10K 100K 1M 10M

Offset from the carrier (Hz)

Close-in Spectrum Wideband spectrum

Phase

noise

Improved locking range (increased loop filter gain) and output power (2-stage cascode output amplifier) compared to the previous 300 GHz PLL.

Measured locking range: 220-225.9 GHz (BW = 5.9 GHz)

PLL output power = -1 dBm (estimated) @ PDC= 465 mW

Phase noise: -83 dB/Hz @100 KHz

50

Rodwell Group

IEEE BCTM Short Course Oct. 9, 2011

PLL: Performance Comparison

*Using the second order harmonic # Excluding the output buffer

Published mm-Wave PLLs beyond 70 GHz

InP 300 GHz

(IMS-2011)

InP 220 GHz

(CSICS-2011)RFIC-2010 JSSC-2007 ISSCC-2009 MTT-2006 JSSC-2008

Frequency

[GHz]300.76–301.12 220-225.9

162–164*

86–92

81–82

91.8–101*

45.9–50.595.1–96.5 79.4 73.4–73.72

Technology InP HBT InP HBT 0.13m BiCMOS 0.13m CMOS 65nm CMOS SiGe 90nm CMOS

Divide ratio

[fVCO/fREF]10 10 16,32, 64,128 512 256 64 32

Phase noise

@100KHz

[dBc/Hz]

-78 -83-78.9 @163GHz

-93.8 @90GHz

-63.5

(50KHz offset)

-75.2 to -75.86

(1MHz offset)-81 -88

Supply voltage

[V]-4.3, -5.0 -4.3, -5.0 1.8, 2.5, 3.3 1.5, 0.8 1.2, 1.3 5.5 1.45

POUT [dBm] -23-1

(estimated)

-25 @163GHz

-3 @90GHz

-10 @50GHz

-31 to -22 @100GHz- - -

PDC [mW] 301.6 465.3 1,150 to 1,250 57 43.7 - 88#

Chip area

[mm2]

1.380.61 1.570.7 1.11.7 1.160.75 10.7 - 10.8

References