41
1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479. (Reserved in the DC library. Call No. TK5105. L46 2004.)

1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

Embed Size (px)

Citation preview

Page 1: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

1

Topic 7Local Area Networks (LAN)

Overview of LANsLAN Bridges

LAN Standards

ReferenceA. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479. (Reserved in the DC library. Call No. TK5105. L46 2004.)

Page 2: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

2

What is a LAN?

LAN Topology

LAN Protocol Architecture

7.1 Overview of LANs

Page 3: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

3

What is a LAN?

Private ownership freedom from regulatory constraints of WANs

Short distance (~1km) between computers imply low cost very high-speed, relatively error-free communication complex error control unnecessary

Machines are constantly moved Simply give each machine a unique address Broadcast all messages to all machines in the LAN

Need a medium access control protocol

Page 4: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

4

LAN Topology A number of nodes (computers and network devices)

are interconnected by a shared transmission medium Nodes are connected to the cabling system through a

network interface card (NIC) or LAN adapter card Nodes can be arranged in bus, ring, or star topology

Bus Ring Star

Page 5: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

5

LAN Protocol Architecture

Data linklayer

802.3CSMA-CD

802.5Token Ring

802.2 Logical link control

Physicallayer

MAC

LLC

802.11Wireless

LAN

Network layer Network layer

Physicallayer

OSIIEEE 802

Fiber, twisted pairs, coax, wireless

OtherLANs

Page 6: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

6

Medium Access Control

Coordinate access to medium Connectionless frame transfer service Machines identified by MAC/physical

address Broadcast frames with MAC addresses

Page 7: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

7

7.2 LAN Bridges

Page 8: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

8

Hub

Station Station Station

Two TwistedPairs

Interconnecting Networks Types of devices

Repeater (physical layer): Signal regeneration - extend the range

Bridge (data link layer): MAC address filtering - reduce LAN saturation

Routers (network layer): Internet routing Gateway (higher layers): Protocol conversion and security

Hub

Station Station Station

Two TwistedPairs

?

Page 9: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

9

Operation at data link level Implies capability to work with multiple network layers

However, need deal with Difference in MAC formats, data rates, maximum frame length Security Broadcast storm

Types: transparent, source routing

Bridges

Bridge

Network

Physical

Network

LLC

PhysicalPhysicalPhysical

LLC

MAC MACMAC MAC

Page 10: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

10

Interconnection of IEEE LANs with complete transparency

Use table lookup, and discard frame, if source &

destination in same LAN forward frame, if source &

destination in different LAN use flooding, if destination

unknown Use backward learning to build

table observe source address of

arriving LANs handle topology changes by

removing old entries Prevents loops in the topology

Transparent Bridges

Bridge

S1 S2

S4

S3

S5 S6

LAN1

LAN2

Page 11: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

11

B1

S1 S2

B2

S3 S4 S5

Port 1 Port 2 Port 1 Port 2

LAN1 LAN2 LAN3

Address Port Address Port

Page 12: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

12

B1

S1 S2

B2

S3 S4 S5

Port 1 Port 2 Port 1 Port 2

LAN1 LAN2 LAN3

Address Port

S1 1

Address Port

S1 1

S1→S5

S1 to S5 S1 to S5 S1 to S5 S1 to S5

Page 13: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

13

B1

S1 S2

B2

S3 S4 S5

Port 1 Port 2 Port 1 Port 2

LAN1 LAN2 LAN3

Address Port

S1 1S3 1

Address Port

S1 1S3 2

S3→S2

S3S2S3S2 S3S2

S3S2 S3S2

Page 14: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

14

B1

S1 S2

B2

S3 S4 S5

Port 1 Port 2 Port 1 Port 2

LAN1 LAN2 LAN3

S4 S3

Address Port

S1 1S3 2

S4 2

Address Port

S1 1S3 1

S4 2

S4S3

S4S3S4S3

S4S3

Page 15: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

15

B1

S1 S2

B2

S3 S4 S5

Port 1 Port 2 Port 1 Port 2

LAN1 LAN2 LAN3

Address Port

S1 1S3 2

S4 2

S2 1

Address Port

S1 1S3 1

S4 2

S2S1

S2S1

S2S1

Page 16: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

16

Adaptive Learning

In a static network, tables eventually store all addresses & learning stops

In practice, stations are added & moved all the time Introduce timer (minutes) to age each entry &

force it to be relearned periodically If frame arrives on port that differs from frame

address & port in table, update immediately

Page 17: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

17

Avoiding LoopsLAN1

LAN2

LAN3

B1 B2

B3

B4

B5

LAN4

(1)

(2)

(1)

Page 18: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

18

Spanning Tree Algorithm1. Select a root bridge among all the bridges.

• root bridge = the lowest bridge ID.

2. Determine the root port for each bridge except the root bridge

• root port = port with the least-cost path to the root bridge

3. Select a designated bridge for each LAN• designated bridge = bridge has least-cost path from the LAN

to the root bridge. • designated port connects the LAN and the designated bridge

4. All root ports and all designated ports are placed into a “forwarding” state. These are the only ports that are allowed to forward frames. The other ports are placed into a “blocking” state.

Page 19: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

19

LAN1

LAN2

LAN3

B1 B2

B3

B4

B5

LAN4

(1)

(2)

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(3)

Page 20: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

20

LAN1

LAN2

LAN3

B1 B2

B3

B4

B5

LAN4

(1)

(2)

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(3)

Bridge 1 selected as root bridge

Page 21: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

21

LAN1

LAN2

LAN3

B1 B2

B3

B4

B5

LAN4

(1)

(2)

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(3)

Root port selected for every bridge except root port

R

R

R

R

Page 22: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

22

LAN1

LAN2

LAN3

B1 B2

B3

B4

B5

LAN4

(1)

(2)

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(3)

Select designated bridge for each LAN

R

R

R

R

D

D

D D

Page 23: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

23

LAN1

LAN2

LAN3

B1 B2

B3

B4

B5

LAN4

(1)

(2)

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(3)

All root ports & designated ports put in forwarding state

R

R

R

R

D

D

D D

Page 24: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

24

Ethernet

Token Ring

FDDI

802.11 Wireless LANs

7.3 LAN Standards

Page 25: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

25

A bit of history… 1970 ALOHAnet radio network deployed in Hawaiian islands 1973 Metcalf and Boggs invent Ethernet, random access in wired net 1979 DIX Ethernet II Standard 1985 IEEE 802.3 LAN Standard (10 Mbps) 1995 Fast Ethernet (100 Mbps) 1998 Gigabit Ethernet 2002 10 Gigabit Ethernet Ethernet is the dominant LAN standard

Metcalf’s Sketch

Ethernet: IEEE 802.3

Page 26: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

26

IEEE 802.3 MAC Protocol CSMA/CD Minislot Time is the critical system parameter

upper bound on time to detect collision upper bound on time to acquire channel upper bound on length of frame segment generated by

collision quantum for retransmission scheduling max{round-trip propagation, MAC jam time}

Truncated binary exponential backoff algorthm For retransmission n, select an integer r equally likely btw 0

and 2k -1 (0 <= r <= 2k -1), where k=min(n,10) Retransmission time = (minislots time)x(r) Give up after 16 retransmissions

Page 27: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

27

IEEE 802.3 Physical Layer

(a) transceivers (b)

10base5 10base2 10baseT 10baseFX

Medium Thick coax Thin coax Twisted pair Optical fiber

Max. Segment Length 500 m 200 m 100 m 2 km

Topology Bus Bus StarPoint-to-point link

IEEE 802.3 10 Mbps medium alternatives

Thick Coax: Stiff, hard to work with T connectors

Hubs & Switches!

Page 28: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

28

Ethernet Repeaters & Bridges

(a)

Single collision domain

(b)

High-Speed backplane or interconnection fabric

Twisted Pair CheapEasy to work withReliableStar-topology CSMA-CD

Twisted Pair CheapBridging increases scalabilitySeparate collision domainsFull duplex operation

Page 29: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

29

Fast Ethernet

100baseT4 100baseTX 100baseFX

MediumTwisted pair category 3

UTP 4 pairs

Twisted pair category 5

UTP two pairs

Optical fiber multimode

Two strands

Max. Segment Length

100 m 100 m 2 km

Topology Star Star Star

IEEE 802.3 100 Mbps Ethernet medium alternatives

To preserve compatibility with 10 Mbps Ethernet: Same frame format, same interfaces, same protocols Hub topology only with twisted pair & fiber Bus topology & coaxial cable abandoned Category 3 twisted pair (ordinary telephone grade) requires 4 pairs Category 5 twisted pair requires 2 pairs (most popular) Most prevalent LAN today

Page 30: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

30

Gigabit EthernetIEEE 802.3 1 Gbps Fast Ethernet medium alternatives

1000baseSX 1000baseLX 1000baseCX 1000baseT

Medium

Optical fiber

multimode

Two strands

Optical fiber

single mode

Two strands

Shielded copper cable

Twisted pair category 5

UTP

Max. Segment Length

550 m 5 km 25 m 100 m

Topology Star Star Star Star

Slot time increased to 512 bytes Small frames need to be extended to 512 B Frame bursting to allow stations to transmit burst of short frames Frame structure preserved but CSMA-CD essentially abandoned Extensive deployment in backbone of enterprise data networks and

in server farms

Page 31: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

31

10 Gigabit EthernetIEEE 802.3 10 Gbps Ethernet medium alternatives

10GbaseSR 10GBaseLR 10GbaseEW 10GbaseLX4

Medium

Two optical fibersMultimode at 850 nm

64B66B code

Two optical fibers

Single-mode at 1310 nm

64B66B

Two optical fibers

Single-mode at 1550 nmSONET compatibility

Two optical fibers multimode/single-mode with four wavelengths at 1310 nm band8B10B code

Max. Segment Length

300 m 10 km 40 km 300 m – 10 km

Frame structure preserved CSMA-CD protocol officially abandoned LAN PHY for local network applications WAN PHY for wide area interconnection using SONET OC-192c Extensive deployment in metro networks anticipated

Page 32: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

32

Token Ring LAN: IEEE 802.5

Unidirectional ring network 4 Mbps and 16 Mbps on twisted pair Token passing protocol provides access

Fairness Access priorities Breaks in ring bring entire network down

Reliability can be improved by using star topology Relatively low speed

Page 33: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

33

Wiring Center

A

B

CD

E

Star Topology Ring LAN Stations connected in star fashion to wiring closet

Use existing telephone wiring Ring implemented inside equipment box Relays can bypass failed links or stations

Page 34: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

34

Fiber Distributed Data Interface (FDDI) Token ring protocol for LAN/MAN 100 Mbps on optical fiber Up to 200 km diameter, up to 500 stations FDDI has option to operate in multitoken mode Counter-rotating dual ring topology

A

E

DC

B

X

Dual ring becomes a single ring

Page 35: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

35

Wireless LAN(+) Easy, low-cost deployment Mobility & roaming: Access information anywhere Supports personal devices

PDAs, laptops, data-cell-phones Supports communicating devices

Cameras, location devices, wireless identification

(-) Signal strength varies in space & time Signal can be captured by snoopers Spectrum is limited & usually regulated

Page 36: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

36

B D

C

A

Wireless LAN Communications Ad hoc mode

Page 37: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

37

A2 B2

B1A1

AP1 AP2

Distribution SystemServer

Gateway tothe InternetPortal

Portal

Basic Service Set (BSS) A BSS B

Infrastructure mode

Page 38: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

38

IEEE 802.11 Wireless LAN

Stimulated by availability of unlicensed spectrum U.S. Industrial, Scientific, Medical (ISM) bands 902-928 MHz, 2.400-2.4835 GHz, 5.725-5.850 GHz

Ad Hoc & Infrastructure networks Based on CSMA with Collision Avoidance (CA) Why not CSMA/CD?

Cost: requires a full duplex radio Wireless media: not all stations hear each other

Page 39: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

39

IEEE 802.11 MAC

MAC sublayer responsibilities Channel access PDU addressing, formatting, error checking Fragmentation & reassembly of MAC SDUs

MAC security service options Authentication & privacy

MAC management services Power management

Page 40: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

40

MAC Services Contention Service: Best effort Contention-Free Service: time-bounded transfer

Physical

Distribution coordination function(CSMA-CA)

Point coordinationfunction

Contention-free service

Contention service

MAC

MSDUs MSDUs

Page 41: 1 Topic 7 Local Area Networks (LAN) Overview of LANs LAN Bridges LAN Standards Reference A. Leon-Garcia and I. Widjaja, Communication Networks, pp. 421-479

41

IEEE 802.11 Physical Layer Options

Frequency Band

Bit Rate Modulation Scheme

802.11 2.4 GHz 1-2 Mbps Frequency-Hopping Spread Spectrum, Direct Sequence Spread Spectrum

802.11b 2.4 GHz 11 Mbps Complementary Code Keying & QPSK

802.11g 2.4 GHz 54 Mbps Orthogonal Frequency Division Multiplexing (OFDM) & CCK for backward compatibility with 802.11b

802.11a 5-6 GHz 54 Mbps Orthogonal Frequency Division Multiplexing

802.11n 2.4GHz

5-6GHz

600+Mbps OFDM, Multiple input mulitple output (MIMO)