27
1 The progenitor stars of core- collapse supernovae QuickTime TIFF (Uncomp are needed QuickTime TIFF (Uncomp are needed QuickTime™ and a TIFF (Uncompressed) decompre are needed to see this pic Stephen J. Smartt Astrophysics Research Centre Queen’s University Belfast Queen’s SNe & Massive star group: J. Eldridge, S. Mattila, A. Pastorello, M. Crockett, D. Young, M. Hendry, P. Dufton, C. Trundle, I. Hunter Others: J. Maund (Texas), J. Danziger (Trieste), P. Meikle (Imperial),

1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe Massive star

Embed Size (px)

DESCRIPTION

3 Credit: LOSS and T. Debosz

Citation preview

Page 1: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

1

The progenitor stars of core-collapse supernovae

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture. QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Stephen J. SmarttAstrophysics Research CentreQueen’s University Belfast

Queen’s SNe & Massive star group: J. Eldridge, S. Mattila, A. Pastorello, M. Crockett, D. Young, M. Hendry, P. Dufton, C. Trundle, I. Hunter

Others: J. Maund (Texas), J. Danziger (Trieste), P. Meikle (Imperial),

Page 2: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

2

Overview

Core-collapse SNe drive the chemical evolution of galaxies, and formation through feedback

Test stellar evolution theory and NS/BH formation scenarios

Linked to the formation of long duration GRBs

Are the ideas of SNe progenitor stars correct ? Are SNe explosion and lightcurve models

consistent ?

Page 3: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

3Credit: LOSS and T. Debosz

Page 4: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

4

Summary of SNe types

Supernovae are classified by their optical spectra

No hydrogen

Type I

Si He He or Si Ia Ib Ic

———

Hydrogen lines

Type II

Photometry/spectra properties II-P, II-L, IIn, IIb, II-p

Page 5: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

5

Example: HST Key project – H0 with

Cepheids Blue supergiants at 2-7Mpc from

8m telescopes - Bresolin et al. (2001)

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

M101

NGC3621

NGC3949

Page 6: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

6

M81 zoom in

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 7: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

7

First red supergiant progenitor

SN2003gd discovered 2003 June 12

Normal type II-P M74 - distance 9.3 1.8

Mpc 3100s WFPC2 pre-

explosion image F606W Gemini gri (480-960s),

0.56” images

Page 8: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

8

Detection of progenitor

HST ACS - ToO (Cycles 10-15) Smartt et al. (2003), Van Dyk et al. (2003): possible progenitors

from ground based astrometry calibration Star A: Differential astrometry: r = 13 ± 33 mas

Page 9: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

9

Magnitudes and colours of progenitor

V=25.8 ± 0.15 V–I=2.5 ± 0.2

d=9.1 ± 1.9 kpc ; E(B–V)=0.14 ± 0.13

K5-M3Ib supergiant (Elias et al. 1985)

STARS stellar evolutionary tracks:M = 8 -2 M

+4 Smartt et al. 2004, Science

Page 10: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

10

SN2005cs in M51

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

• SN2005cs – discovered 20050628

• Hubble Heritage Team - deep mosaic BVI+H with ACS (Jan. 2005)

• F814W/F555W 1360s•WFPC2 U+R band (Jul.

1999)

Also deep NIR images:NICMOS (F110W+F160W; see Li et al. 2006) Gemini NIRI (JHK) 500-600s deep UBVRIJHK images

Page 11: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

11

Detection of progenitor

HST ToO : ACS post-explosion (F555W) Star detected in I-band only (J. Maund PhD thesis) I=23.3±0.05, and limiting V-band mag is V5 > 25 Not detected in any of the NIR bands; K>20.7

Maund et al. (2005), Li et al. (2006)

Page 12: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

12

Other examples: no detection

SN1999gi in NGC3184, HST U+V pre-explosion D=11Mpc (Leonard et al. 2002) M 12 M

SN2001du in NGC1365 HST UVI pre-explosion D=17Mpc (Cepheid Key P.) M 15 M

Smartt et al. 2001

Smartt et al. 2002

Page 13: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

13

Summary of II-P progenitors

SN Type Mass Z Ref2006bc II-P <15 ~Z

2005cs II-P 9 +3/-2 ~Z

2004et II-P 15 2 ~1-0.5Z Li et al. 2005

2004dj II-P 15 5 ~ZMaiz-Apellaniz et al. 2004, Wang et al. 2005,2006

2004am II-P 8-10 ~Z

2004dg II-P <12 ~Z

2004A II-P 10 2 ~0.5Z

2003gd II-P 8 +4/-2 ~Z

2002hh II-P <15 ~Z

2001du II-P <15 ~Z

1999ev II-P 16 2 1-2 Z

1999em II-P <15 1-2 Z

1999gi II-P <12 1-2 Z

1999br II-P <12 ~Z

1999an II-P <20 ~2 Z

Rest from Crockett et al. 2006, Maund & Smartt 2005, Maund et al. 2005, Hendry et al. 2006, Smartt et al. 2004, 2003, 2002, 2001

Page 14: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

14Heger et al. (2000) - now can place observational constraints

Observed II-P

93J

87A80K

Observed Ib/c

Page 15: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

15

STARS stellar evolutionary tracks (Eldridge & Tout 2004) Eldridge, Smartt (in prep) - probability without mass cut ~5%

Page 16: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

16

Late time tail powered by radioactive 56Ni

56Ni explosively created from Si burning after core-collapse

Direct probe of the explosion

How Is it related to progenitor mass ?

UVOIR Light Curves and 56Ni Mass

56Ni→ 56Co+ e+ +νe +γ(τ1/2 =6y)56Co→ 56Fe + e+ +νe +γ(τ1/2 =77.1y)

Page 17: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

17

Black-hole forming SNe ?

Zampieri et al., Nomoto et al - low luminosity SNe form black-holesNo evidence so far of the branching at high luminosityDetailed comparison with models now possible

Page 18: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

18

Constraints on a Type Ic

SN2004gt - type Ic Gamma-ray bursts

coincident with Ic supernovae

Page 19: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

19

Restricted region in the HRD

We would have detected massive evolved stars

Either a star of 120-150M or

More likely a lower mass object in a binary

Maund, Smartt, Schwiezer (2005)Gal-Yam et al. (2005)

Four other Ib/c SNe, all with similar luminosity limits

Type Ia SNe - 7 events, no object/cluster.

Page 20: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

20

Conclusions

SN II-P: most common type, red supergiant progenitors (~M0Ib 8-12M)

Detections and limits on 15 II-P SNe imply they only come from RSG stars with MZAMS<15M

No evidence for BH forming Sne Within 3 years project ~30 progenitors (HST SNAP +

VLT/Gemini NIR purpose built archive) Optical/NIR monitoring of SNe gives 56Ni - probe of explosion

Direct constraints on all core-collapse SNe types

Page 21: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

21

Nearby core-collapse SNe: discovery rates

0

2

4

6

8

10

12

1999 2000 2001 2002 2003 2004 2005

<1000 km/s<1500 km/s

No. of SN per year in galaxies less thanVrad km/s

Nsn (Vrad <1500) = 8.7 yr-1

H0= 75 kms-1Mpc-1

Page 22: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

22

Radio and X-ray luminosity of II-P

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Chevalier et al. (2005)Radio and X-ray LP consistent with direct mass estimates

Page 23: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

23

M31 RSG variable

Young, Smartt et al. in prep.

4 years monitoring of M31 (microlensing)

Largest variation ±0.5m

±0.2 dex in logL/L M-type

supergiant, M~20M, logL~5.2 dex

Page 24: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

24

Magnitudes and colours of progenitor

d=8.4 ± 1 kpc; E(B – V)=0.14 ± 0.02 Colours of K5-M4Ib

supergiant scaled to I=23.3

Bluer than early K-type and it would be detected in V and R.

WavelengthM

agnitude

Page 25: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

25

Dust enshrouded red supergiants ?

Could progenitors be dusty red supergiants, some of higher luminosity ?

SNe are clearly not reddened But could be destroyed in

explosion (e.g. Meikle & Graham 1986)?

Our deep K-band image rules this out (K>20.7)

If visual extinction AV~5 K-band limit implies MK>-9.5 or

log L/L < 4.6 Hence M < 12M

Gemini NIRI K-band 0.5”

50 Galaxies (<10Mpc) surveyed with VLT/Gemini/UKIRT. Deep JHK images for future SNe

Page 26: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

26

ACS images SN1993J: U330=20.8 3 Faint companions within 0.35” Contribution to SN of <20% Why is SN1993J so bright in

UV ? Deep, near-UV Keck spectrum

with LRIS-B

Page 27: 1 The progenitor stars of core-collapse supernovae Stephen J. Smartt Astrophysics Research Centre Queens University Belfast Queens SNe  Massive star

27

Evolutionary model

ZAMS = 15 and 14M stars

5.8 year period High mass loss from

progenitor to companion ~1000 yrs pre-explosion (4x10-2 M /yr)

SN1987A like event (in 10 000 years time) ?

Maund, Smartt, Kudritzki, Podsiadlowski, Gilmore 2004, Nat.