10
1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b

1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

Page 1: 1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b

1

Solar Radiation Physical Modeling

(SRPM)

J. FontenlaJune 30, 2005b

Page 2: 1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b

2

Emitted Spectra Radiative Losses

Mean Intensity

and Net Radiative Brackett

Radiative Transfer

Non-LTE

AtmosphericParameters

Continua

Molecular

LinesAtomicLines

Molecular

Continua

Populations & Ionization

Populations & Ionization Balance

Momentum & Energy Balance

Atomic

Atomic Data

Molecular Data

Page 3: 1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b

3

Critical Next Steps• Adjust photospheric models and abundances

– Low first-ionization-potential (FIP) contribute to ne and photospheric opacity

– High FIP are needed for upper layers• Re-think lower chromosphere

– Account for radio data showing Tmin<4200 K– Account for UV continua from SOHO-SUMER showing high Tmin– Account for molecular lines (CN, CH, CO) showing low Tmin

• Re-think upper chromosphere with current abundances and observations

• Re-compute transition region with updated abundances, atomic data, diffusion and flows, and energy-balance

• MHD, full-NLTE, 3D simulations of chromospheric variations

• Prominence eruptions-CMEs

Page 4: 1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b

4

Low Chromosphere Issues

5380 5381 5382 5383 5384 5385 53860

1 106

2 106

3 106

4 106

SynthesisKitt Peak

Wavelength (A)

Inte

nsity

C I line in between Fe I and Ti II lines - the large line is also Fe I

The CN band head, an Fe I and/or Cr I line is blend with the first CN line

3883 3884 3885 3886 3887 38880

1 106

2 106

3 106

SynthesisKitt Peak

Wavelength (A)

Inte

nsit

y

Fe & C abundanceseem good

But computed CN lines arenot good.Are abundancesincorrect?Or is the modelchromosphereincorrect?

C I line

Page 5: 1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b

5

H Ionization and Ly Alpha Line

2.16 108

2.165 108

2.17 108

2.175 108

2.18 108

2.185 108

2.19 108

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

Local IonizationWith Diffusion (PRD)With Diffusion (CRD)

Height (cm)

Neu

tral

H d

ensi

ty (

cm^-

3)

H Neutal Particle Density

1 104

2 104

3 104

4 104

5 104

6 104

7 104

8 104

9 104

1 105

1 104

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

Local IonizationWith Diffusion (PRD)With Diffusion (CRD)

Temperature (K)

Neu

tral

H D

ensi

ty (

cm^-

3)

H Neutal Particle Density

1214 1214.5 1215 1215.5 1216 1216.5 1217 1217.5 12180

2 104

4 104

6 104

8 104

1 105

1.2 105

With diffusionLocal ionizat ion

Wavelength (A)

Inte

nsit

y (e

rg/c

m^2

/s/s

r)

Ly Alpha Line

1213 1214 1215 1216 1217 12180

2 104

4 104

6 104

8 104

1 105

1.2 105

UVSP DataWith diffusion

Wavelength (A)

Inte

nsit

y (e

rg/c

m^2

/s/s

r)

Observed and Computed Ly Alpha

Page 6: 1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b

6

V1.5 Ly Computed Profiles

•Continuum too high due to Sulphur continuum•Not enough contrast for faculae and plage•Umbra profile has reversal unlike the observed

Page 7: 1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b

7

Trace Species Ionization

• For each species and ionization stage

kkekkkekkkkkekkjHkk CnnRnnRCnnVnt

n,11,111,1,u

w

• Or split the abundance and ionization 0w

1

jHH

H ann

at

aV

kkekkkekkkkkek

kHH

kH

k

CnxRnxRCnx

axnan

xant

x

,11,111,1,

kelem u

1

F

kppkaaTH

k

kAkakpH

ap

T

THjkHk

nnkT

VmD

TVn

nn

kT

Vm

kT

gm

kT

eEz

kT

kTn

1

0 lnQ

Page 8: 1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b

8

0.8

0.6

0.4

0.2

0.0

Ioniz

ati

onF

racti

on

104

2 3 4 5 6 7 8 9

105

2 3 4 5 6 7 8 9

106

Temperature (K)

Carbon Ionization and Mass FLow......... Static case (w/dif)_____ Upflow case (w/dif)

1.0

0.8

0.6

0.4

0.2

0.0

Ioniz

ati

onF

racti

on

104

2 3 4 5 6 7 8 9

105

2 3 4 5 6 7 8 9

106

Temperature (K)

Carbon Ionization in Static Case......... local ionization_____ including diffusion

Page 9: 1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b

9

Chromospheric Magnetic Heating Mechanism

Farley-Buneman Threshold Term

B

U, JHall

E,JPed

Uthr=Cs(1+ψ)

Page 10: 1 Solar Radiation Physical Modeling (SRPM) J. Fontenla June 30, 2005b

10

Prominence-Eruption-CME

• 3-D non-LTE radiative transfer & MHD modeling

• Instrumentation for observing Doppler spectra, spatial- and temporal-evolution