13
A new look at T cell receptorsignaling tonuclearfactor-kB Suman Paul 1 and Brian C. Schaefer 1, 2 1 Departmentof MicrobiologyandImmunology,UniformedServicesUniversity,Bethesda,MD20814,USA 2 CenterforNeuroscienceandRegenerativeMedicine,UniformedServicesUniversity,Bethesda,MD20814, USA AntigenstimulationofTcellreceptor (TCR)signalingto nuclearfactor(NF)-kB isrequiredforTcellproliferation and differentiation ofeffectorcells. TheTCR-to-NF- kB pathwayisgenerallyviewedasalinearsequenceof eventsinwhichTCRengagement triggersacytoplasmic cascadeofprotein–protein interactions andpost- translational modications, ultimately culminatingin thenucleartranslocation ofNF-kB. H ow ev e r, recent ndingssuggest amorecomplexpictureinwhichdis- tinctsignalosomes, previously unrecognized proteins, andnewlyidentiedregulatorymechanisms playkey rolesinsignal transmission. Inthisreview, weevaluate recentdataandsuggest areasoffutureemphasisinthe studyofthisimportant pathway. Thecurrentconsensus modelofTCRsignalingtoNF-kB Inthe pas t decade, much progresshas bee nmade in dening mo le cula r mechanisms by whic h theTCR (see Glossary )ac ti vates the NF-kBtranscriptionfactor. Most of the key  mediatorsin this cascadeare now dened, and many key  signal tra nsmiss ionmechanisms havebeen elucidated [1–4] (Figures1and2).The generalconsensus understanding is t hatengagement of  theTCR by major hist ocompati bili ty complex (MHC)plus ant ige ninitiates do wnst rea m CD3 i mmu no t yr osine ac ti vati onmotif (ITAM)phosphoryl ation by the Src family kinases,FYN and leu koc yteC-t erminal src kinase(LCK). Phos phory - lated CD3 activates the Tce ll speci c tyrosine ki nase, ze ta-chain associated proteinkinase(ZAP-70), which phosphorylates the ada pte rproteinslinkerforactivation of Tce ll s (LAT) and SH2 doma in co nt ai ni ng le ukoc yt e proteinof 76 kDa (SLP-76), cau si ng SLP-76 to bind to  VAV1. The VAV1–SLP76–IL- 2-inducible Tce ll ki nase (ITK) complex acti vates phospholi pase(PL)Cg1, gener at- ing inositol 1,4,5-tr ipohosphate (IP3)anddiacylglycerol (DAG) , whi ch ult ima tel y tri gge r calcium rel eas e and pro- tein kinase(PK)C acti vati on,respectively.  Activation of a specicPKC isof orm, PKCu,connectstheabove described TCR pro ximal signal ing events todistalevents that ul ti- mately lead toNF-kBactivation. Importantly, PKCu activation isalsodrivenby engage me nt of  the Tcell co-s timul ator y rece ptorC D28 by B7 ligand sonantigen- presen ti ng cel ls (APCs ).This mo le cularinteraction activates pho sphoinosi tid e3-kinase (PI3K), inducing recruitment of  phosphoi nositi de-dependent ki nase (PDK1) andAKT totheplasmamembrane. Atthe immune synapse(IS),PDK1phosphorylates and ac ti vates PKCu. PKCu-mediatedphosphorylati on of caspase rec ruitment domain (CARD) -containi ng MAGUK protei n (CARMA1) Review Glossary CD28: a cell surf ac e receptor provid ing a co-sti mu latory si gnal requir ed in con jun ction wit h TCR sig nalin g for productive act ivation of naı  ¨ve T cells. Effector T cel ls: short-li ved differen tiate d T cells with immunological activ itie s that can inc lude cyt oki ne pr odu cti on and cyt oly tic act ivi ty. Act ivati on req uir e- ments ar e less stri ngent than for na ı  ¨veT cells, req uir ing sho rter TCR eng age - ment ($1 h) and no co-stimulati on. IKK: IkB kina se. A trimeric prot ein comp lex comp osedof two cata lyti c subu nits, IKKa andIKKb, anda homodime r of theregul ato rysubunit,IKK g  /NF-kBessen- tialmodier (NEMO).The cano nicalNF- kB acti vati on path wayconverg es on IKK acti vati on, resu ltin g in phos phor ylat ionand subse quen t deg rada tionof I kB, the prot ein resp onsible for NF- kBcytosolic sequestratio n. IS (immu nolo gical syna pse) /SMAC (supr amol ecula r activ atio n clust er): micro- clu stersfuse toformthe micrometersize d IS betwe enthe APCandT cell.The IS is comp osed of concentr ic ri ngs of si gnalin g molecules: in general, c- SMAC con tai ns the TCR and sig nalin g partn er s, and the per iph era l SMAC (p- SMA C) contains mole cule s primaril y involved in T cell –APC adhesion. ITAM: immu noty rosi ne activation moti f. Conserved amin o acid sequ ence con- taining tyrosi ne resi dues located in cytosoli c regi on s of cert ai n cell surf ac e receptors , inclu din g CD3 cha ins of T cells. Phosphoryl ate d tyr osi nes ser ve as bind ing site for down stre am sign alin g prot eins. K48- vs K63- polyu biqu itina tion: dist inct pol yub iqu itin chai n con jug ations in whic h po lymeric li nk ages ar e via ly sine 48 or lysine 63 , respectivel y. K48-p ol y- ubi qui tina ted pro tei ns are generall y de gr aded by the prot easome. The con se- quences of K63-polyubiquitinationare morediverse,rangingfrommodicationof protein functi onto targe tingproteinsfor degrad ationby theautophagy -lysosomal pathway. Memor y T cel ls: long- lived dif fer ent iat ed T cells tha t per sis t in a restin g sta te until re-encounterwith spec ic anti gen. Activati ng requ irements are simi lar or ide nti cal to eff ector cel ls. upon res timula tio n, memor y cel ls pro lif erate and dif fer ent iate into sec ondary eff ect or and memory popul ations. Memory cel ls ma y be direct ly deri ved fr om st imulated na ı  ¨ve cells (di ver gen t dev elo pment model), or sur viv ing eff ect or cel ls (li near dev elo pme nt mod el) (re vi ewe d in [109,110] ) Microclusters: nanometer-s iz ed clu ste rs of lig and -engaged TCR tha t ini tia te sign altransduc tion. Thecytopla smicface of microclu ster s isenrichedin spec ic sign alin g mole cule s and phos phot yros ine. Naı ¨ve T cells: T cells tha t hav e never encounteredantig en.Entry into cell cyc le and conc omit ant effector/memo ry diff eren tiati on requ ires susta ined stimula- tion from hours to da ys by en gage ment of TCR an d CD28 molecules. NF-kB: nuclearfactor- kB.A ve- memberfamilyof tran scrip tionfactor s thatexist in homo - or heterodimers. Memb ers are RELA, RELB, cREL , p100 /p52and p105/ p50.NF-kBis gene rall y usedto refer to the RELA–p50activat ing hete rodi mer.In unstimulated T cell s, NF-kBis seq uestered in thecytos ol by itsbindin g partner IkB. IkB is phos phor ylat ed by IKK, trig ger ing prot easomal degr adat ion , free ing NF-kB to tra nsl oca te to the nucle us and dri ve transc rip tio n of tar get gen es. Signalosome: an organized clu ste r of pr ote ins tha t coo rdinat el y controls cel l sign al tran smission and regu lation. T cell recept or ( TC R) c omplex: heteromeric comp lex comprised of the T cell receptor a  / b het er odi mer and CD3 compl ex. TCR recog nizes pep tid e ant igens pres ente d by MHC prot eins , wher eas the CD3 chains are the sign al-transducin g subunits. 1471- 490 6/$ see fro nt matter. Published by Els evier Ltd. http://dx.doi.org/10.1016/j.it.2013.02.002 Corre spondi ng author : Sc haefe r, B. C. ([email protected] ). TREIMM-1014;No.of Pages13 Trends in Immunology xx (2012 ) 1–13 1

1-s2.0-S1471490613000185-main

Embed Size (px)

Citation preview

Page 1: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 1/13

Page 2: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 2/13

triggers   a  conformational change, causing CARMA1 to

bind   to  B  cell leukemia/lymphoma (BCL10) and mucosa-

associated   lymphoid tissue  lymphoma  translocation   pro-

tein (MALT1), forming the CARMA1-BCL10-MALT1

(CBM) complex.  Through a  mechanism  that may   involve

TNF receptor-associated  factor   (TRAF6), both BCL10 and

MALT1 become  polyubiquitinated.  The IkB kinase  (IKK)

complex is then  recruited to  the CBM complex via the

IKK g polyubiquitin binding motif.  This  association leads

to   polyubiquitination  of   IKK g  and phosphorylation of 

IKK b  by TGF-b activated kinase  (TAK1),   activating 

IKK b.  IKK b  then  phosphorylates  inhibitor  of   kB (IkBa),

triggering its  proteasomal degradation, enabling nuclear

translocation  of canonical NF-kB  heterodimers comprised

of p65 reticuloendotheliosis viral  oncogene homolog A 

(RELA) and p50 proteins.  Once in the nucleus,  NF-kB

governs  the transcription of numerous genes involved  in T

cell survival, proliferation, and effector  functions.

AcƟvaƟon signal

MALT1-mediated acƟons

Key:

Calcium-mediated signal

Calmodulin

SLP-76

PI3K

PDK1GLK

PKCθ

NF-κ B

CARMA1

TCR CD28

BCL10

MALT1

NF-κ B  NF-κ B

Iκ Bα

TCR-dependent PKCθ acƟvaƟon

CD28-dependent PKCθ 

acƟvaƟon

ADAP

CK1α

HPK1

CBM complex formaƟonTAK1 recruitment

CBM complex formaƟonCARMA1 phosphorylaƟon

CARMA1 phosphorylaƟon

MIB2Calcineurin

IKK recruitmentand ubiquiƟnaƟon

BCL10 dephosphorylaƟon

BCL10

CYLD

A20

RELB

T cell adhesion

JNK acƟvaƟon

NF-κ B acƟvaƟon

Caspase 8

Gene transcripƟon

cFLIPFLIP

IKK recruitment

cFLIP cleavage

TRAF6

TRAF2 IKK ubiquiƟnaƟon

Homer3AcƟn regulaƟon

TAK1

CaMKIICARMA1 and BCL10phosphorylaƟon

Ca2

IKKα IKKβ

U

P

IKKγ   IKKγ U

P AcƟvaƟng phosphorylaƟon

U K63-polyubiquiƟnaƟon

TRENDS in Immunology 

Figure1 .  Newdevelopments in the T cell receptor (TCR)-to-nuclear factor (NF)-kB  signaling pathway. TheTCR transmits signals through the linker for activation of T cells

(LAT)–SH2 domain containing leukocyte protein of 76 kDa (SLP76) complex, and possibly through glucokinase (GCK)-like kinase (GLK) to activate protein kinase (PK)Cu.

CD28 signals through phosphoinositide 3-kinase (PI3K) and phosphoinositide-dependent kinase (PDK1) to activate PKCu. 

Activated PKCu 

induces formation of the CARD-containing MAGUK protein (CARMA1), B cell leukemia/lymphoma (BCL10),mucosa-associated lymphoid tissue lymphoma translocation protein (MALT1) (CBM) complex.

Newly identified proteins acting on CARMA1 and BCL10 are shown on the left. MALT1 enzymatic protein cleaving functions and caspase-8 recruitment are shown on the

right. The CBM complex transmits activating signals to IkB  kinase (IKK) through the ubiquitin ligases TNF receptor-associated factor (TRAF6), TRAF2 and/or mind bomb-2

(MIB2). IKK phosphorylates inhibitor of kB  (IkBa)  leading to IkBa ubiquitination and degradation, allowing NF-kB  nuclear translocation and gene transcription.

Review Trends   in   Immunology   xxx   xxxx,   Vol.  xxx,  No.  x

TREIMM-1014;  No.  of   Pages  13

2

Page 3: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 3/13

Recent  data  suggest  that  aspects  of   the  consensus model

for TCR  signaling   are  overly   simplistic,  and  that  additional

molecules  play   a  role  in  the  TCR-to-NF-kB   cascade.  Here,

we  summarize  data  suggesting   that multiple  signalosomes

participate  in  TCR  activation  of   NF-kB, and  describe  the

negative  regulatory   mechanisms  that  control  this  path-

way.  We  also  discuss  evidence  for  connections  between

control  of   NF-kB activation  and  other  cellular  processes,

such  as  actin  remodeling.  Overall,  the  emerging   picture  is

that  the TCR-to-NF-kB   signaling   cascade  is  a  crucial  nexus

that  both  governs  and  is  regulated  by   a  diverse  network   of 

T  cell  biological  processes.

New  developments  in  the  TCR-to-NF-kB pathway

Deletion  of   the  genes  encoding   PKCu  and  CBM  complex

proteins  results  in  impaired  TCR-induced  NF-kB activa-

tion.  Recent  work   has  also  identified  several  additional

molecules  that  regulate  this  pathway   (Figure 1).

PKC u 

Phosphorylated  PKCu  connects LAT and SLP76 with the

CBM complex  [4,5].  The protein  kinase  PDK1   is consid-

ered   essential  for   PKCu  activation   as PDK1-deficient Jur-

kat and primary   CD4 T  cells  show  a  defect in PKCu

phosphorylation  and NF-kB  activation  [6,7].  However,

there is  a  lack of   in  vitro   evidence that  PDK1 directly 

phosphorylates PKCu.  Moreover,  PDK1 activation  is

dependent  on CD28 engagement,  whereas PKCu IS

translocation andNF-kB  activation   can occur in a  purely 

CD3-dependent  manner, without  participation of CD28

[6,8–10].  These observations suggest  that  another  kinase

links  theTCR–CD3complex with  PKCu. Indeed,GCK-like

kinase   (GLK),   a  SLP76-regulated kinase, was recently 

reported   to  phosphorylate  directly PKCu  both in  vitro

and in primary   T cells and T  cell lines  in response  to

TCRstimulation[11].  Additionally, GLK-deficient  murine

lymph  node  cells exhibit  reduced PKCu and IKK   phos-

phorylation,  correlating   with   reduced cytokine  and anti-

body   production.  Collectively, these  data  suggest  that

PDK1  and   GLK1  might  function   together  to   inducePKCu

phosphorylation  and activate  NF-kB  (Figure 1).   Alterna-

tively, GLK and/or  PDK1 may   be utilized  in an  exclusive

manner  to  phosphorylate PKCu,  depending on the activa-

tion  and/or  differentiation state  of   the T  cells,  the type  of 

antigen-bearing stimulatory cell, etc. Elucidation of   such

details will require a  careful comparison  of the GLK and

PDK1  knockout  models   under  a  variety of  T  cell activation

paradigms.

Gene transcripƟon

NF-κ B

Iκ Bα

NF-κ B

Iκ Bα

NF-κ B

IKKα IKKβ

BCL10MALT1

P

BCL10MALT1

TRAF6U

P

U

U

P

U

P

TCR  CD28

PKCθP

P

     L    a     t    e

A20

BCL10P

U

p62

GAKIN

CARMA1

CARMA1

CARMA1

CARMA1

CARMA1

P

CK1α

PP2A

SLP-76

PKCθ

ZAP70P

P

PDK1PI3KL

AT P

SLP-76

P

LCK

PLCγ 

ZAP70 LCK

STS

IP3

DAG

P

LAT

U

c-Cbl

SLP-76

P

HPK1

SHP1

NF-κ B

Autophagosome

Proteasome

Endosome-bound

signalosome

p62

Membrane-associated

signalosome

Cytosolic signalosome

AcƟvaƟon signal

Key:

InhibiƟon signal

Inhibitory phosphorylaƟon

AcƟvaƟng phosphorylaƟon

K48-polyubiquiƟnaƟon

P

P

PP4c

IKKγ   IKKγ U

U

K63-polyubiquiƟnaƟon

UbiquiƟnaƟon, undetermined form

TAK1

CYLD

?

? Unknown mediator

CRADD

BCL10

U

E ar l y 

TRENDS in Immunology 

LAT

P

P

U

U

U

Figure 2.   Negative regulation of T cell receptor (TCR)-to-nuclear factor (NF)-kB  signaling. TheTCR/CD28activation signal, shown by green arrows, passes throughmultiple

intermediate signaling proteins, ultimately causingNF-kB  activation. Negative modulation activities are depicted by red arrows. Yellow ovals indicatemembraneproximaland cytosolic signalosomes described in detail in the text.

Review Trends   in   Immunology   xxx   xxxx,  Vol.   xxx,   No.  x

TREIMM-1014;  No.   of   Pages  13

3

Page 4: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 4/13

CARMA1

CARMA1, a  critical   target   of PKCu  phosphorylation,

resides  in lymphocytes  in an inactive  state.  Extensive

CARMA1 mutagenesis data suggest that this inactive

state  is maintained  by intramolecular interactions that

prevent  the CARMA1 CARD from  interacting with  the

CARD of BCL10 [12,13]. PKCu  phosphorylates  human

CARMA1 at three serine 

residues, S552, S645 and S637(S564, S657, S649 in mice) [1].  Phosphorylation  at S552

and S645 is critical  for   the CARMA1 conformational

change  that enables  binding   to   BCL10–MALT1, leading 

to  further signal transmission  [14,15] (CBM  complex

post-translational   modifications are reviewed  in [1]).  By 

contrast,  S649 phosphorylation suppresses  CARMA1-

mediated   NF-kB  and C-jun  N-terminal   kinase   (JNK)

activation   [16]. Although PKCu  induces CARMA1 S649

phosphorylation in  vitro  and PKC inhibitors block the

phosphorylation event  in   vivo,  there is to  date little  evi-

dence  that PKCu  directly phosphorylates  CARMA1 at

S649 in living cells.   Also,   the phosphorylation events  of 

opposing function  do   not occur   simultaneously;  the acti-

 vating phosphorylation   at S552/S645 is early   and tran-sient,  whereas the inhibitory phosphorylation at S649 is

delayed,  but sustained for  a  longer  duration. Considering 

both the absence of evidence of direct PKCu  phosphory-

lation   of   CARMA1 S649 and  the rapid PKCu  activation

kinetics   post-TCR activation, it remains a  strong possi-

bility that the delayed CARMA1S649 phosphorylation is

mediated   by anunidentified PKCu-dependent  kinase that

is  activated  and/or   interacts  with   CARMA1 in a  delayed

manner (Figure 2).

 Apart  from  PKCu, three  additional  protein  kinases,

hematopoietic  progenitor  kinase  (HPK-1),  casein  kinase

(CK1a)   and  calcium/calmodulin-dependent  protein  kinase

(CaMKII) 

are 

capable 

of  

phosphorylating  

CARMA1 

andregulating   CBM  complex  activity   (Figure 1). In  Jurkat  T

cells,  siRNA   knockdown  of   HPK-1  reduces  IKK   enzymatic

activity,  NF-kB nuclear   translocation,  and  T  cell  survival

[17]. HPK-1  overexpression  produces  the  opposite  effect

[18]. Demonstration  of   TCR-regulated  interaction  between

HPK-1  and  CARMA1  explains  the  ability   of   HPK-1  to

stimulate  NF-kB activation.  These  authors  also  provided

evidence  that  HPK-1  phosphorylates  CARMA1  at  S551,  a

site  distinct  from  the  residues  modified  by   PKCu  [18].

However,  the  overall  role  of   HPK-1  in  lymphocyte  function

remains  a  hotly   debated  issue,  because  mouse  knockout

data  have  demonstrated  that  HPK-1   suppresses  lympho-

cyte  activation,  due  to  its  inhibitory   effect  on  the  proximal

signaling  protein SLP76   [19,20]  (see Negative  regulation  of 

TCR  signaling   to  NF-kB, below).

CK1a, another  kinase  that  acts   via  modification  of 

CARMA1,  has  been  identified  by   mass  spectrometry   as  a

CARMA1  binding   partner.  CK1a induces  TCR-mediated

NF-kB activation  in  Jurkat  cells  and  interleukin  (IL)-2

secretion  in  primary   human  T  cells  [21]; probably   by 

recruiting   activated  IKK b  to  the  CBM  complex.   Although

CK1a phosphorylates  CARMA1  at  S608,  limiting   NF-kB

activation,  the  positive  CK1a function  supercedes  its

negative  role.  [21]. Thus  CK1a enzymatic  activity   opposes

its IKK   recruiting   function,  indicating   that  CK1a is  also

a bifunctional  regulator  of   the  TCR-to-NF-kB  pathway.

 Accumulating   data  suggest  that  the  TCR-to-NF-kB

pathway   is  also  regulated  by   the  protein  kinase,  CaMKII.

TCR  stimulation  results  in  a  rapid  increase  in T  cell

cytosolic  calcium,  which  binds  CaM,   triggering   activation

of CaMKII  and  the  phosphatase,  calcineurin  (see  also

BCL10  section  below)  (Figure 1). Both  enzymes  influence

the  TCR-to-NF-kB  pathway.  In  Jurkat  cells,  following 

 APC

+

antigen 

or 

CD3

+

CD28 

stimulation 

[22,23], CaMKIIis recruited  to  the  IS.  CaMKII  inhibition  by siRNA   knock-

down  (g or   d  isoform)  or  by   the  pharmacological  inhibitor,

KN-93,  reduces  NF-kB activation  [23]. However,  the mech-

anism  of   CaMKII  action  is  unclear.  In   a  cell-free  system,

CaMKII  can  phosphorylate  CARMA1  at  S109  [23]   and

BCL10  at  S138   [24]  or  at  S48  and  T91  [22]. Studies  in

Jurkat  cells  have  shown  CARMA1  S109  phosphorylation

assists  in  CARMA–BCL10  binding   [23], and  BCL10  T91

phosphorylation  promotes  K63-polyubiquitination  of 

BCL10  and  signaling   to  IKK   [22]. By   contrast,  there  is

evidence  that  BCL10  phosphorylation  at  S138   might  have

a  negative  effect  on  NF-kB activation  [24]. Considering   the

above  data,  the  mechanism  by   which  CaMKII  connects

calcium–CaM  signals  to  NF-kB remains  largely   unclear.Future  studies  using   genetic  deletion  or   RNAi  silencing   of 

CaMKII  in  primary   T  cells  will  be  required  to  clarify   the

role  of   CaMKII  in  TCR  activation  of   NF-kB.

Interestingly,  CARMA1  phosphorylation  is  necessary 

but  not  sufficient  for  CBM  complex  formation.   An  addi-

tional  essential  step  involves  interaction  with  the  integrin

receptor  regulatory   protein  adhesion  and  degranulation-

promoting   adapter  protein  (ADAP)  (Figure  1). ADAP-defi-

cient  T  cells  show  impaired  TCR-  and  CD28-dependent

proliferation  and  reduced  cytokine  secretion.   ADAP  binds

both  CARMA1,  facilitating   CBM  complex  assembly   [25],

and  TAK1,  promoting   IKK   activation  [26], and  these

actions 

might 

account 

for 

the 

effect 

of  

 ADAP 

on 

NF-kBactivation  and  cytokine  secretion.  The  molecular  mecha-

nism  by   which   ADAP  enhances  CBM  complex  assembly 

remains  unclear.  The   ADAP–CARMA1  interaction  is  also

critical  for  cyclin-dependent  kinase  (CDK)2  and  cyclin  E

expression  [27]. As  cyclins  regulate  progression  through

the  cell  cycle,  this  observation  suggests  a  molecular  basis

for  the  impaired  T  cell  proliferation  observed  in   ADAP

deficiency.

BCL10 

 As  a  result  of   the  above  modifications  and  interactions  of 

CARMA1,  the  constitutively   associated  BCL10–MALT1

complex  associates  with  CARMA1,  forming   the  CBM  com-

plex  [3,4].  Immediately   following   TCR  stimulation,  BCL10

is  phosphorylated  and  ubiquitinated.  BCL10  post-transla-

tional  modification  is  complex,  with  many   reported  sites  of 

modification.  The  regulation  and  significance  of   many 

modifications  remain  poorly   understood  (see  [1,5]  for  re-

 view).  To  date,  evidence  suggests  that  IKK b is  one  of   the

principal  kinases  responsible  for  BCL10  phosphorylation

(Figure 2) (see  above  for  discussion  of   BCL10  phosphory-

lation  by   CaMKII).  Initially,  IKK b-phosphorylation  of 

BCL10  stabilizes  the  CBM  complex,  but  subsequent  IKK b

phosphorylation  of   BCL10  triggers  BCL10  dissociation

from  MALT1  [28]   and/or  BCL10  degradation  [29]. Thus

BCL10  phosphorylation  may   be  an  important  step  for

Review Trends   in   Immunology   xxx   xxxx,   Vol.  xxx,  No.  x

TREIMM-1014;  No.  of   Pages  13

4

Page 5: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 5/13

terminating   TCR  signals  to  NF-kB. Interestingly,  calci-

neurin,  a  calcium-dependent  phosphatase,  has  been

reported  to  dephosphorylate  BCL10  [30,31], stabilizing 

the CBM  complex  and  enhancing   NF-kB activation

(Figure 1). Calcineurin,  primarily   known  for  its  role  in

TCR-induced  activation  of   the  nuclear  factor  of activated T

cells  (NFAT)  transcription  factor,  is  also  involved  in  lyso-

some-dependent 

degradation 

of  

PLCg1 and

 

PKCu 

upon 

Tcell  restimulation,  resulting   in  T  cell  anergy   [32]. As  PKCu

is essential  for  NF-kB activation,  these  seemingly   conflict-

ing   roles  of   calcineurin  in  TCR  activation  of   NF-kB require

further  examination.

 An  area  of   intense  recent  investigation  involves  eluci-

dation  of   the  mechanism  and  purpose  of   BCL10  ubiquiti-

nation.  Reports  indicate  that  BCL10  is  modified  by 

K63-polyubiquitination  [33,34]  or  both  K48-  and  K63-

polyubiquitination  with  K63-  preceding   K48-polyubiquiti-

nation  [35]. Mutagenesis  data  suggest  that  both  K48-  and

K63-polyubiquitin  chains  are  conjugated  exclusively   to

lysines  31  and  63  of   BCL10  [35]. K63-polyubiquitination

of   Bcl10  is  triggered  by interaction  with  CARMA1  [12,13].

The  identity   of   the  BCL10  ubiquitin  ligase  is  highly   con-troversial,  with  neural  precursor  cell  expressed,  develop-

mentally   downregulated  (NEDD4)  and  ITCH  [36], cellular

inhibitor  of   apoptosis  (cIAP2)  [37], b-transducin  repeats-

containing   proteins  bTrCP [29], and  TRAF6  [35]  all  impli-

cated as  E3  ligases  targeting   BCL10.  These  uncertainties

aside,  the  emerging   consensus  is  that  BCL10  ubiquitina-

tion serves  two  important  purposes:  initial  transmission  of 

the  NF-kB activation  signal  [33,35], followed  by   BCL10

degradation  and  signal  termination  [29,33,35,36]  (see Neg-

ative  regulation  of  TCR  signaling   to NF-kB, below). BCL10

ubiquitination  is  important  for  signal  transmission,

because  ubiquitin  chains  create  binding   sites  for  IKK g

[35]  and  p62  [33]   (Figure 2); two  molecules  critical  for

NF-kB activation.  Interestingly,  the  requirement  for  p62

and  certain  other  signaling   molecules  seems  to  depend  on

the stage  of   T  cell  differentiation  (Box 1).

 Another  emerging area of   interest   regarding the biology 

of BCL10  involves the relation between  TCR-dependent

post-translational 

modification 

of  

BCL10 

and regulationof the T  cell actin cytoskeleton  [38].   Although current  evi-

dence   suggests   that actin cytoskeletal  dynamics do  not

directly   influence NF-kB  activation, actin  polymerization

has  a  profound   influenceon  the immunological  synapseand

TCR  microclusters   (see Cell membrane  and cytosolic  com-

plexes  in TCR  signaling   to NF-kB,  below), indirectly   linking 

regulation   of   the actin cytoskeleton  to  TCR  signaling   to

downstream   transcription   factors [39,40]. Also,  there are

multiple   points  of intersection between  TCR-to-NF-kB  sig-

naling   and regulation of   the actin cytoskeleton,  suggesting 

an  as-yet   poorly understood  mechanistic   coupling of   the

regulation   of   these pathways.  TCR  stimulation   alters   the

T  cell actin cytoskeleton,  enabling   T  cell spreading   and

conjugation  with APCs.  In  Jurkat  cells, successful actinremodeling   post-TCR   stimulation requires BCL10  S138

phosphorylation [38] and IKK b–Homer3   association at

the  IS  [41] (Figure 1). Interestingly,BCL10 S138  phosphor-

ylation  is  alsorequired for  macrophage  Fc  receptor-induced

actin polymerization,  leading   to  phagosome   formation   [42].

Phosphorylation   of   S138  is  unrelated to CARMA1–BCL10–

MALT1  mediated   NF-kB  activation in  both   T  cells and

macrophages   [38,42]. Similarly, the  IKK b–Homer3  mediat-

edactin regulation  in T  cells is also  NF-kB  independent  [41].

The  identity of   the precise  mechanisms   that link   phospho-

BCL10  and Homer3  to  actin remains to  be  determined.

Box  1.  Differences  in  TCR-to-NF-kB  signaling   between   naı̈ve  and  effector/memory  T  cells

Compared to naı ¨ve T cells, effector and memory cells demonstrate a

faster response to antigen stimulation. This accelerated response of 

effector/memory T cells may partly reflect differentiation-dependent

changes in NF-kB signaling mechanisms. One proposed mechanism

is that crucial signaling prote ins  in dif ferent iated T cells are

constitutively phosphorylated, allowing more rapid activation. How-

ever, investigations have failed to reveal differences in phosphoryla-

tion states of ZAP70 and PLC-g  between naı ¨ve andmemory cells [111].

A second possible mechanism is that signaling proteins in effector/ 

memory T cells may  be constitutively associated with lipid rafts;

cholesterol-rich regions in the  cell membrane that   are sites  of 

signaling molecule aggregation. Studies have indeed demonstrated

increased interaction of signaling proteins with lipid rafts in memoryCD4 and CD8 T cells [112,113],  but the functional consequences have

not been established.

A third potential mechanism is that key signaling proteins may be

more highly expressed in  effector/memory T cells. Single  cell

experimental studies and computer modeling suggest a correlation

between increased signaling protein expression and T cell functional

capacity [114]. Multiple studies have shown higher total ZAP70

protein expression in CD4 effector and memory T cells, compared

to naı ¨ve  T cells [115,116].  Furthermore,  data show that IFN-g

production occurs selectively from effector T cells expressing the

highest levels of ZAP70, and that IFN-g expression can be reduced by

silencingZAP70 using siRNA. Another study hasdemonstratedhigher

levels of the adaptor protein BCL10 in both effector CD4 and memory

CD8 T cells, compared to naı ¨ve  T cells [33], although the functional

importance  of this difference remains unexplored. Importantly,

elevations of signaling protein levels do not universally accompany

T cell differentiation. For example, relative to naı ¨ve  T cells, SLP-76

levelsare increased in effector T cells butdecreased inmemoryT cells

[117].

A final possible mechanism is that differentiated T cells might

utilize signaling molecules that are distinct from those involved in

naı ¨ve cell   signaling.  Two studies have demonstrated  that the

scaffolding protein p62 is required for TCR-to-NF-kB  signaling in

effector T cells, but not in naı ¨ve T cells [33,118].  Consistent with these

findings, p62 expression is dramatically increased concomitant with

TCR stimulation and effector differentiation [119]. These studies have

indicated that differentiation-dependent increases in expression of 

certain intermediate signaling proteins and utilization of distinctsignaling proteins may enhance TCR signaling in effector/memory T

cells, versus naı ¨ve  T cells.

Apart from changes in signal transduction, alterations in transcrip-

tion factor utilization and chromatin modification contribute to the

rapid responses of memory T cells to antigen stimulation. The

increase in IFN-g production by memory CD4 T cells compared to

naı ¨ve cells is associatedwith a switch fromT-bet- to NF-kB-dependent

transcription. Additionally,memory cells exhibit increasedexpression

and promoter binding of the NF-kB subunit p50 [120]. Also, the

kinetics of gene transcription maybe accelerated inmemoryT cells by

histone acetylation of the promoter regions of specif ic genes,

including perforin and Eomes, facilitating transcription factor binding

[121]. Thus, epigenetic modifications and differential transcription

factor usage may contribute to the rapid transcriptional response of 

memory T cells.

Review Trends   in   Immunology   xxx   xxxx,  Vol.   xxx,   No.  x

TREIMM-1014;  No.   of   Pages  13

5

Page 6: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 6/13

MALT1

MALT1,  the  third  member  of   the  CBM  complex,  plays  a

more  nebulous  role  in  TCR  activation  of   NF-kB. Initial

studies  suggested  that  MALT1  functions  as  a  scaffolding 

protein  that  participates  in  NF-kB activation  by   connect-

ing   the  CBM  complex  with  TRAF6.  Later  studies  showed

that  MALT1  contributes  less  to  TCR  activation  of   NF-kB

than 

BCL10 

or 

PKCu 

in 

primary  

mouse 

cells 

[43] 

andthat  silencing   MALT1  expression  in  Jurkat  cells  reduces

but  does  not  completely   block   IkBa  phosphorylation  [44].

 Additionally,  in  B  cells,  BCL10  is  essential  for  RELA 

activation,  whereas  MALT1  is  dispensable  [45]. Thus,

there is  an  emerging   understanding   of  MALT1  as  a  protein

which modifies  antigen  receptor-mediated  signaling   to NF-

kB, without  being   strictly   required  for  NF-kB activation.

Moreover,  the  protease  activity   of   MALT1  is  associated

with  regulation  of   diverse  cellular  functions,  most  of   which

are  distinct  from   NF-kB signal  transduction.  MALT1

cleaves  target  proteins  after  arginine  residues  preceded

by a  serine  [44,46]. To  date,  four  MALT1  substrates,

BCL10,  A20,  cylindromatosis  (CYLD)  and  reticuloendothe-

liosis   viral  oncogene  homolog   B  (RELB),  have  been  identi-fied  (Figure 1). MALT1  cleavage  of BCL10  and  CYLD

regulates  T  cell  adhesion  [44]   and  JNK   activation  [47]

respectively,  with  no  detected  effect  on  NF-kB signal

transduction.   Another  target  of   MALT1  cleavage  is   A20,

a  known  inhibitor  of   NF-kB activation  [46]. However,

MALT1  cleaves  only   a  small  fraction  of   the  total  cellular

 A20  pool  [46], and  blockade  of   MALT1  protease  activity 

fails  to  limit  IKK   activation  [48]. Thus,  the  significance  of 

 A20  cleavage  as  a  mechanism  regulating   TCR  signaling   to

NF-kB  remains  uncertain.   Among   known  MALT1  sub-

strates,  RELB  is  most  compelling   as  an  NF-kB signal

mediator  that  is  cleaved  to  regulate  NF-kB activation.

MALT1-dependent 

RELB 

cleavage 

and 

concomitant 

deg-radation  leads  to  increased  RELA   and  c-REL DNA   binding 

[49,50]. How  RELB  degradation  affects  RELA   or   c-REL

activity   is  not  well  understood,  but  it  might  reflect  compe-

tition  between  different  NF-kB heterodimers  for  DNA 

binding   sites,  or  inhibition  of   canonical  activation  by 

gene  products  of   the  noncanonical  (i.e.,  RELB-dependent)

pathway.

Caspase-8 

The  protease  caspase-8  is  well  known  as  a  mediator  of 

apoptosis.  Impaired  lymphocyte  activation  in  caspase-8-

deficient  mice   has  also  suggested  a  role  of   caspase-8  in  the

TCR-to-NF-kB  pathway   [51]; a  finding   now  confirmed  and

extended  by   several  additional  studies  (Figure  1). Caspase-

8 recruits  IKK   to  activated  BCL10–MALT1  by   a  TRAF6-

dependent  mechanism  [51,52], and  MALT1  activates  cas-

pase-8,  causing   caspase-8-mediated  cleavage  of   the  NF-kB

inducer  cellular  FLICE  (Caspase-8)-inhibitory   protein,

long   form  (c-FLIPL)   [53]   (reviewed  in  [54]). Additionally,

caspase-8  proteolytic  activity   is  required  for  CD3/CD28-

dependent  NF-kB activation,  because  T  cells  treated  with

the  caspase  inhibitor  Z-VAD-FMK   or   expressing   the  cas-

pase-8  catalytically   inactive  mutant,  C360S,  fail   to  induce

NF-kB  [51]. Interestingly,  in  HEK293  cells,  neither  Z-

 VAD-FMK   nor  caspase-8  C360S  blocks  caspase-8-induced

NF-kB activation  [55], suggesting   that  the  mechanistic

link between   caspase-8  and  NF-kB activation  might  be

cell-type  specific.  Thus,  additional  mechanistic  data  are

required  to  yield  a  clear  understanding   of   how  caspase-8

participates  in  this  signaling   pathway.

IKK complex 

 A   key   step  in  TCR  activation  of   NF-kB is  CBM  complex-

dependent 

K63-polyubiquitination 

of  

IKK g. TRAF6

 

hasbeen  proposed  as  the  ubiquitin  ligase  that  performs  this

key function  [1,3,54]  (Figure1). However, TRAF6-deficient

T cells  do  not  show  impaired  NF-kB activation  [56], sug-

gesting   either  that TRAF6  does  not  play   such  a  role,  or  that

there  are  redundant  ubiquitin  ligases  that  compensate  for

loss  of   TRAF6.  For  example,  TRAF2,  an  ubiquitin  ligase

recruited  by   the  caspase-8–FLIP  complex  is  also  capable  of 

polyubiquitinating   IKK g  [53]. Another   possible  candidate

is  the  ubiquitin  ligase  mind  bomb-2  (MIB2),  which  binds  to

BCL10  and  promotes  IKK g ubiquitination  and  NF-kB

activation  in  transfection–overexpression  experiments

[57]  (Figure  1). Thus,  it  is  possible  that  several  ubiquitin

ligases  contribute  to  K63-polyubiquitination  of   IKK g.  It  is

also  possible  that  there  is  a  key   role  for  modification  of IKK g by   M1  (linear  head-to-tail  linked)  polyubiquitin

chains.  M1  polyubiquitination  plays  a  key   role  in  TNF

receptor  activation  of   NF-kB [58], but  involvement  in

TCR-mediated  activation  of   IKK   is  undetermined.  Resolu-

tion  of   these  lingering   mechanistic  questions  will  require

compelling   genetic  and  biochemical  evidence  using   prima-

ry T  cells  to  definitively   demonstrate  which  ligases  and

which  ubiquitin  modifications  are  essential.

 Activation  of   IKK   requires  a  combination  of   IKK gubqui-

tination  and  IKK b phosphorylation.  The  latter  process  is

mediated by   the protein kinase TAK1  [59]   (Figure1). TAK1

activation  seems  to  be  dependent  on  PKCu, but  not  on  the

CBM 

complex 

members 

CARMA1 

and 

BCL10 

[60]. Theadapter  molecule   ADAP  is  required  for  TAK1  recruitment

to  PKCu  [26]. However,  the  precise  mechanism  of   PKCu-

mediated TAK1  activation  is  not  well  defined.  The  IKK b

phosphorylation  events  can  be  countered  by the  protein

phosphatase  4  regulatory   subunit  1-protein  phosphatase  4

regulatory   subunit  (PP4R1–PP4c)  phosphatase  complex,

limiting   IKK   activation  and  T  cell  function  [61]   (Figure 2).

The   ‘all-or-none’   NF- kB   response 

 At  a  single  cell  level,  signaling   pathways  may   be  broadly 

classified  as  digital  or  analog.  Whereas  analog   signaling   is

a  graded  response  that  is  proportional  to  stimulus  intensi-

ty, digital  signaling   produces  an  all-or-none  response,

irrespective  of   intensity   of   the  activation  stimulus  [62].

In   T  cells,  increasing  TCR  stimulation  strength  leads  to  an

increasing   percentage  of   cells  with  IkBa  phosphorylation

and RELA   activation,  without  altering   per   cell  level  of   the

two  proteins  [63]. This  observation  suggests  a  digital  sig-

naling   mechanism  similar  to  findings  regarding   tumor

necrosis  factor  (TNF)a-induced  NF-kB signaling   [64],

and  TCR-induced  extracellular  signal-regulated  kinase

(ERK)  phosphorylation  [65,66]  or   NFATc2  activation

[67]. By   contrast,  bypassing   the  TCR   via  stimulation  with

phorbol  12-myristate  13-acetate  (PMA+ionomycin)  leads

to  a  graded  (analog)  NF-kB response  in  T  cells  [63,67],

indicating   that  signal  digitization  occurs  at  an  early 

Review Trends   in   Immunology   xxx   xxxx,   Vol.  xxx,  No.  x

TREIMM-1014;  No.  of   Pages  13

6

Page 7: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 7/13

TCR-proximal  step.  The  molecular  switch  enabling   digiti-

zation  of   TCR  signals  remains  to  be  determined.

The  above  studies  have  demonstrated  that,  rather  than

the  early   understanding   of   TCR  activation  of   NF-kB as  a

simple  linear  cascade  (PKCu!CBMcomplex!IKK),  there

is  a  complex  web  of   interconnected  signaling   molecules

that  link   the  TCR  to  NF-kB. In  particular,  there  is  accu-

mulating  

evidence 

of  

multiple 

signaling  

inputs 

converging on key   proteins,  particularly   CARMA1  and  BCL10.   Addi-

tionally,  the  mechanistic  understanding   of   the  crucial

functions  of   certain  mediators  in  transmitting   the  activat-

ing   signal  to  NF-kB, for  example,  MALT1,  is  incomplete.

 Also,  the  precise  roles  and  relative  importance  of   kinases

recently   implicated  as  regulators  of   this  pathway,  includ-

ing   PDK1,  GLK,  HPK-1,   and  CK1a remain  to  be  well

defined.  Crosstalk   between  the  TCR-to-NF-kB  pathway 

andother  cellular  processes,  such  as  regulation  of   the  actin

cytoskeleton  and  T  cell–APC  interactions,  is  an  emerging 

area   of   interest  for  which  there  is  currently    very   limited

mechanistic  understanding.

Cell   surface  and  cytosolic  complexes  in  TCR  signaling  toNF-kB

Cell   surface   TCR   microclusters   and   the   IS 

The  concept  of   the  IS  developed  in  the  late  1990s  when

imaging   revealed  micrometer-sized  clusters,  composed  of 

surface  receptors  and  signaling   proteins,  at  the T  cell–APC

intercellular  contact  site  [68,69]. Initially,  the  IS  was

proposed  as  the  site  at  which  intracellular  signaling   from

the  TCR  is  initiated  and  sustained.  Later  studies  showed

that  initiation  of   TCR  signaling   and  tyrosine  kinase  acti-

 vation  can  be  detected  within  seconds  following   stimula-

tion  and  before  IS  formation,  in  peripheral  TCR-rich

regions  termed microclusters  [70,71]. Current data  suggest

that 

the 

earliest 

signaling  

events 

occur 

in 

these 

peripheralmicroclusters,  which  move  centripetally   and  eventually 

fuse  to  form  the  mature  IS.

Recent data  also cast doubt  on  the model  that the IS

represents the primary   site   of   sustained  signaling   to  down-

streammediators. Specifically, TCR  signaling to NF-kB  can

occurin   theabsence  of   an  IS  [72,73]. Also, as detailedbelow,

accumulating   data  point  towards   the existence of   cytosolic

signaling   clusters/signalosomes   thatmay   sustain  andregu-

late  TCR  signal   transduction.   Although the IS might  not  be

involved in  signal   initiation or  maintenance, the IS  has

certain   other  critical functions.  Experimental   studies  and

computer  modeling  haverevealed  that at  low antigen–MHC

concentrations,   the IS amplifies  TCR activationby  grouping 

together  antigens, TCR,  and signaling   proteins. This  allows

the TCR  to  engage   rapidly the smallnumber   of   stimulatory 

ligands, resulting in  efficient  signal   transduction   [74].  Also,

the IS  may   serve  as  a  site   of   TCR  internalization   and

degradation,   serving   to  limit signal  strength and/or  dura-

tion [75].  Interestingly,   ubiquitination of   as-yet-undefined

central supramolecular  activation cluster  (c-SMAC)   pro-

teins  leads  to  interactionwith  theubiquitin-binding  protein,

tumor susceptibility gene  (TSG101), a  component  of 

the  endosomal  sorting complex required for   transport

(ESCRT).  This  interaction   is  requiredfor   c-SMAC  formation

and organization, as  well   as  for  termination   of   signaling 

by   microclusters   and TCR  degradation   [76].  These

observations suggest  that TCR  signaling and signal termi-

nation by   TCR  degradation   are intimately connected.

Cytosolic   T   cell   signalosomes 

Emerging   data  suggest  that  several  distinct  cellular  sites

may   together  coordinate  TCR  signaling   to  NF-kB. Imme-

diately   following   TCR  engagment,  the  integral  membrane

protein 

LAT 

and 

the 

cytosolic 

protein 

SLP76 

are 

recruitedto  the  region  immediately   below  the TCR microclusters  [3].

ZAP70-mediated  phosphorylation  of   LAT  and  SLP76

enables  these  adaptor  proteins  to  bind  downstream  med-

iators,  transmitting   the  activation  signal.  Data  suggest

that  following   initial  recruitment,  LAT  and  SLP76  disso-

ciate  from TCR microclusters  in  endosomes  [77]   (Figure 2).

SLP76  remains  on  the  the  outer  cytosolic  side  of   the

endosome,  and  its  attachment  to  endosomes  is  mediated

indirectly   through  LAT.  Endosome-associated  LAT  and

SLP76  remain  phosphorylated,  indicating   that  these  adap-

tors  are  capable  of   binding   effector  molecules  and  continu-

ing   the  signaling   cascade.  LAT–SLP76  endosomes  might

represent  sites  of   continous  signaling   to  downstream  med-

iators,  similar  to  the  signaling   complexes  on  intracellularendosomal  membranes  observed  downstream  of the  epi-

dermal  growth  factor  receptor  (EGFR)  [78,79]. LAT–

SLP76  endosomes  might  also  have  a  role  in  termination

of TCR  signaling,  as  inhibition  of   microcluster  movement

results  in enhanced  TCR  signaling   [80,81].

There  is  also  evidence  for  cytosolic  signalosomes  con-

taining   BCL10  and  MALT1  that  specifically   sustain  NF-

kB-activation.  Upon  PKCu  activation,  CARMA1  is

recruited  to  the  plasma membrane,  apparently   undergoing 

a  conformational  change  that  opens  access  to  binding   sites

for  BCL10  and  MALT1,  leading   to  activation  of   IKK   [3,4]

(Figure  2). However,  the  mechanism  that  links  the  mem-

brane 

bound 

CBM 

complex 

to 

IKK  

activation 

is 

not 

welldefined.  One  possibility   is  that  BCL10–MALT1  clusters

interact  transiently   with  membrane  bound  CARMA1,  fol-

lowed  by   redistribution  to  a  cytosolic  site  at  which  these

proteins  transmit  the  signal  to  IkBa–NF-kB. Biochemical

analysis  of   Jurkat  cells  has  revealed  the  existence  of   two

complexes  [34]: an  early   membrane-bound  CBM  complex

(Figure 2), and  a  late  BCL10–MALT–IKK   complex,  and

this  late  complex has  been  shown  to  interact  inducibly  with

IkBa.  Additionally,  in a  cell-free  system,  purified  recombi-

nant  BCL10  and  MALT1  proteins  along   with  TRAF6,

ubiquitin-conjugating   enzyme  (UBC13),  and  TAK1  were

sufficient  for  IKK   activation,  demonstrating   that  the

BCL10–MALT1  complex  can  activate  IKK   in  a  manner

that  is  independent  of   concurrent  physical  association with

CARMA1  [48]   (i.e.,  although  CARMA1  is  required  for

transmitting   the  activating   signal  to  BCL10,  it  does  not

need  to  remain  associated  with  BCL10–MALT1).  Impor-

tantly,  IKK   activation  is mediated  by   a  small  fraction  of   the

total BCL10  and MALT1  pool  that  exists  as  high molecular

weight  oligomers,  providing   biochemical  evidence  of 

BCL10–MALT1  signalosomes.  However,  it  is  also  impor-

tant  to  note  that  there  are  as  yet  no  published  biochemical

data  showing   that  similar  signaling-competent  oligomers

of   BCL10–MALT1  exist  in  intact  cells  or   cellular  lysates.

Imaging   studies  in  primary   mouse  T  cells  and  D10  T

cells  have  demonstrated  the  presence  of   TCR-induced

Review Trends   in   Immunology   xxx   xxxx,  Vol.   xxx,   No.  x

TREIMM-1014;  No.   of   Pages  13

7

Page 8: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 8/13

cytosolic  BCL10–MALT1  clusters,  termed  POLKADOTS

[9,82], at  locations  that  are  distinct  from  membrane  bound

PKCu, a  marker  for  the  IS.  Furthermore,  these  BCL10–

MALT1  clusters  are  also  enriched  in  the  downstream

signaling   protein  TRAF6  [82]. Formation   of   the  POLKA-

DOTS  clusters  is  dependent  both  on  expression  of   the

autophagy   adaptor  protein  p62  and  K63-polyubiquitina-

tion 

of  

BCL10 

[33]. Interaction 

between 

BCL10–MALT1and  p62  and  the  resultant  signal  transmission  to  IKK   is

driven  by   BCL10  K63-polyubiquitination  (Figure  2). The

formation  of   the  proposed  POLKADOTS  signalosome  is

strongly   correlated  with  IKK a / b phosphorylation  [33]  and

RelA   nuclear  translocation  [63], supporting   a  direct  role  in

NF-kB activation.

The above  studies  provide  compelling   evidence  that

TCR  signaling   to  NF-kB involves  several  organized  signa-

losomes  that  concentrate  groups  of   interacting   signaling 

proteins.  Interestingly,  these  signalosomes  are  not  univer-

sally required  for  TCR  signaling   to  NF-kB. Specifically,

NF-kBactivation  can  occur  in  the absence  of   the  IS,  and  the

POLKADOTS  signalosome  apparently   plays  no  role  in

naı̈ve T  cells  (Box 1). Although  early   data  suggest  thatsuch  signalosomes  represent  cellular  platforms  for  coordi-

nating and  precisely   regulating   positive  and  negative  sig-

nals  to  NF-kB,much  further  work   is  needed  to  define  fully 

the  components  and  functions  of   these  intriguing   macro-

molecular  structures.   Areas  for  future  focus  include:  de-

termining   how  TSG101  and  the  ESCRT  complex  interact

with microclusters  and  c-SMAC  constitutents  to  regulate

signal  transmission  by   the  TCR;  better  establishing   the

role  of   endosomal LAT–SLP76  in  activation  of   downstream

transcription  factors;  establishing   the  mechanistic  connec-

tion  between  the  IS  and  POLKADOTS  signalosome;  and

defining   inmolecular detail  how mechanistic  requirements

for 

NF-kB activation 

change 

with 

cell 

differentiation(Box  1).

Negative  regulation  of  TCR  signaling  to  NF-kB

TCR  activation  of   NF-kB is  critical  for  T  cell  proliferation

and  differentiation.  However,  unrestricted  and  persistent

NF-kB activation  can  lead  to  development  of   autoimmune

diseases  and  neoplasms  [83], cellular  senescence  [84], or

apoptosis  [85]. In   order  to  strike  a  balance  between  pro-

ductive  T  cell  activation  and  deleterious  consequences  of 

excessive  NF-kB activation,  TCR  signaling   has  to  be  pre-

cisely   regulated.   After  T  cell  activation,  negative  regula-

tionstarts  at  the  level  of   cell  surface  receptors  (e.g.,  byTCR

endocytosis  and  degradation)  and  continues  at  multiple

steps  of   cytoplasmic  and  nuclear  signaling.  In   this  review,

we focus  on  cytoplasmic  mechanisms  that  limit  TCR-to-

NF-kB  signaling   (cell  surface  receptor  and  nuclear  regula-

tionmechanisms  are  reviewed  in  [2,3]  and  [86], respective-

ly).  Cytosolic  negative  regulators  and  mechanisms  of 

action  are  listed  in  Table  1  and  illustrated  in  Figure  2.

TCR-proximal   regulatory   mechanisms 

Successful  transmission  of   the  activation  signal  from  the

TCR  to  NF-kB requires  dynamic  regulation  at  multiple

intermediate  steps.  TCR  engagement  results  in  the  phos-

phorylation  and/or  ubiquitination  of   many   intermediates,

and these  post-translational  modifications  activate  or

repress  signal  transmission.  The  TCR-proximal  signaling 

events involving   ZAP70,  LCK,  LAT,  and  SLP-76   are  dy-

namically   regulated  by   multiple  protein  phosphatases  and

kinases  (Figure 2). Data  suggest  that  Src  homology   region

2  domain-containing   phosphatase  (SHP-1),   well  known  for

its  ability   to  regulate  T  cell  signaling,  dephosphorylates

LCK   [87], ZAP70  [88], and  SLP-76  [89]. Mice  with  T  cell-

specific 

deletion 

of  

SHP-1 

exhibit 

increased 

expansion 

of CD8  effector  (but  not  memory)  T  cells  in  response  to   viral

infection  [90]. In   addition  to  SHP-1,  ZAP70  can  also  be

dephosphorylated  by   suppressor  of   T  cell  receptor  signal-

ing   Sts-1  and  Sts-2,  limiting   TCR  stimulation.  Deletion  of 

both  Sts-1  and  Sts-2  causes  T cell  hyper-responsiveness,

with  augmented  cytokine  secretion  in  response  to  antigen

stimulation  [91]. In  stimulated  T  cells,  Sts-1  and  -2  dele-

tion  results  in  accumulation  of   hyper-phosphorylated  and

ubiquitinated  proteins  [92]. Deletion  of   either  Sts-1  or  Sts-

2  alone  does  not  produce  any   detectable  phenotype,  thus,

there  is  likely   a  wide  overlap  in  the  function  of these

related  molecules  [93].

LCK activity   is  controlled  by   two  opposing   enzymes:

c-src  tyrosine  kinase  (CSK),  a  protein  kinase,  and  CD45,  aprotein  phosphatase.  Data  show  that  CSK-mediated  in-

hibitory   phosphorylation  of   LCK   diminishes  TCR  activa-

tion  (Figure 2), whereas  CSK   silencing   amplifies  TCR-

induced  IL-2 production  [94]. CD45  removes  this  inhibitory 

phosphate  group  from LCK,  allowing  LCK   to  participate  in

TCR signaling   [95]. SLP-76  activity   is  also  limited  by 

phosphorylation.   After  the  initial  transient  ZAP70-medi-

ated activating   phosphorylation  of   SLP-76  (at   Y112,   Y128

and Y145;  reviewed  in  [96]), HPK-1  adds  a  phosphate

group  to  SLP-76   at  S376  (Figure  2), causing   increased

binding   to  the  inhibitory   protein  14-3-3  [19,20]. T  cells

lacking   HPK-1  demonstrate  CD3-induced  hyperprolifera-

tion 

and 

increased 

cytokine 

secretion, 

although 

it 

is 

un-clear  whether  this  effect  is  mediated  by   the  effect  of  HPK-1

on NF-kB or  on  other  T cell  transcription  factors  (e.g.,

NFAT  and  activator  protein   AP-1).

TCR-distal   regulatory   mechanisms 

In   the  case  of   the  CBM  complex  and  other  TCR-distal

mediators  of   NF-kB activation,  these  proteins  were

identified  relatively   recently,  and  regulatory   mechanisms

are  therefore  only  now  being   recognized. One protein newly 

identified  as  a  CARMA1  regulator  is  the  serine–threonine

phosphatase,  PP2A   (Figure  2). As  discussed  above,

PKCu  phosphorylation  of   CARMA1  at  Ser645  is  critical

for  assembly   of   the  CBM  complex  [1].  PP2A   removes  the

phosphate  group  from  Ser645,  destabilizing   the CARMA1–

BCL10  interaction  and  reducing   NF-kB activation.

Further,  siRNA   silencing   of   PP2A   results  in  higher

TCR-induced  IL-2  and  interferon  (IFN)-g  production

[97]. However,  it  is  also  important  to  note  that  PP2A 

directly   deactivates  the  IKK   complex  [98], making   it  un-

clear  whether  inhibition  of   NF-kB activation  is  primarily 

due  to  PP2A   effects  on  CARMA1  or  IKK.

 Also  discussed  above,  CARMA1  phosphorylation  at

S649  and  S608   by   PKCu  (directly   or  indirectly)  [16]   and

CK1a  [21], respectively,  impairs  NF-kB signaling.   A   phos-

phorylation-independent  mechanism  of   CARMA1  regula-

tion involves  binding   of   CARMA1  to  the  kinesin  motor

Review Trends   in   Immunology   xxx   xxxx,   Vol.  xxx,  No.  x

TREIMM-1014;  No.  of   Pages  13

8

Page 9: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 9/13

protein  Guanylate  kinase-associated  kinesin  (GAKIN)

[99].  This  interaction  results  in CARMA1  movement  away 

from   PKCu  at  the  IS  and  reduces  CARMA1  interaction

with  BCL10  (Figure 2). Post-TCR  stimulation  CARMA1–

BCL10  binding   is  also  interrupted  by   caspase  and  receptor

interacting   protein  adaptor  with  death  domain  (CRADD),

which  competes  with  CARMA1  to  bind  BCL10  (Figure 2).

 Accordingly,  CRADD-deficient  murine  T  cells  show  in-

creased  CARMA1–BCL10  binding   and  RELA   activation.

CRADD  deletion  results  in  increased  T  cell  cytokine  pro-

duction  with  concanavalin   A   stimulation,  but  does  not

yield  any   identified  autoimmune  phenotype  [100].

Regulation   of   TCR   signaling   by   ubiquitin-modifying 

enzymes 

The  ubiquitin-editing   enzyme,   A20,  has  been  long   known

as  an  inhibitor  of   TNF-dependent  NF-kB activation.   A20

can both  remove  K63-polyubiquitin  chains  from  and  add

K48-polyubiquitin  chains  to  target  proteins  [101]. A20  has

a  high  basal  expression  in  T  cells,  and  it  can  limit  TCR-

induced  NF-kB activity   by   removing   K63-polyubiquitin

chains  from   the  CBM  complex  protein,  MALT1  [102]

(Figure 2). Interestingly,  MALT1  can  cleave   A20  in  a

TCR-dependent  manner,  and  this  proteolytic  cleavage

has been  suggested  to  disrupt  the  ability   of    A20  to  limit

TCR  activation  of   NF-kB [46]. A20  is  also  capable  of 

cleaving   K63-polyubiquitin  chains  from  receptor-interact-

ing   serine/threonine-protein  kinase  (RIP1),  TRAF6,  and

IKK g, limiting   TNF-,  IL-1-,  and  lipopolysaccharide  (LPS)-

dependent NF-kB activation  [103]. However,  there  is  so  far

no  evidence  that  these  specific  mechanisms  regulate  the

TCR-to-NF-kB  pathway.   A20  activity   is  critical  for  down-

regulating   NF-kB activity   in  numerous  cell  types,  there-

fore,  A20-deficient mice  (Tnfaip3À/À) die  shortly   after  birth

due  to multiorgan  inflammation  [101]. Although  condition-

al  inactivation  of    A20  in  B cells  results  in  autoantibody 

production  and  lupus-like  disease  [101], the  in  vivo  role  of 

 A20  in  T  cells  remains  uncertain.

 A second  ubiquitin-modifying   enzyme,  CYLD,  has  been

reported  as  a  modulator  of   JNK   and  NF-kB activation

[101]. CyldÀ/À mice  develop  spontaneous  autoimmune

colitis.  Biochemical  studies  of   CyldÀ/À peripheral  T  cells

Table   1.  Cytosolic  proteins  involved   in  negative   regulation  of  TCR-to-NF-kB  signaling.

Protein mediator Proposed mechanism Gene deletion or silencing phenotype Refs

SHP-1 (phosphatase) Dephosphorylates LCK,

ZAP70, SLP-76

me/me   ‘moth-eaten’ mouse

TCR-induced thymocyte hyperproliferation, increases IL-2

production

Increased CD8 effector cell expansion with viral infection

[87–90,122]

STS-1, STS-2 (phosphatase) Dephosphorylates ZAP-70 Sts1À /  À Sts2 À /  À double knockout

T cell hyperproliferation

Increased IL-2, -4, -5, -10, IFN-g secretionIncreased susceptibility in murine multiple scelerosis model

[91]

CSK (protein kinase) LCK  inhibitory phosphorylation siRNA silencing: increased TCR-induced IL-2 secretion [94]

CBL-B, C-CBL (E3 ubiquitin

ligase)

C-CBL: LAT trafficking to

endosomes

Cbl-b À /  À: increased lymphocyte proliferation and secretion

of IL-2 and antibody

c-Cbl À /  À: lymphoid hyperplasia

[77,81,107]

HPK-1 (protein kinase) SLP-76 inhibitory

phosphorylation increases

14-3-3 binding

Map4k1À /  À: T cell hyperproliferation, increased T cell

cytokines and B cell antibody production

Increased susceptibility to autoimmune encephalitis

[19,20]

PP2A (phosphatase) Dephosphorylates CARMA1

and IKK

siRNA  silencing: increased IL-2 and IFN-g secretion

TAXmediated PP2A inhibition: constitutive IKK activation

[97,98]

CK1a (protein kinase)a Phosphorylates CARMA1 CK1a inactive kinase mutant: increased NF-kB activity

CK1a silencing: reduced NF-kB activity, T cell IL-2 secretion

and proliferation (contradictory results suggest CK1a is a

bifunctional regulator; dominant effect is positive regulation)

[21]

PKCu (protein kinase)a

(direct or indirect effect)

Late   CARMA1phosphorylation

at S649

Mutation  of S649 phosphorylation site increases IKK and

NF-kB activation in Jurkat cells(PKCu knockout blocks NF-kB activation;dominant effect is

positive regulation)

[16]

GAKIN (kinesin 13B) Competes with BCL10 for

CARMA1 binding

shRNA silencing: increased IKK activation and IL-2 secretion [99]

CRADD (adaptor protein) Competes with CARMA1 to

bind BCL10

Cradd À /  À: increased T cell CARMA1–BCL10 binding, RELA

activation and cytokine secretion

[100]

Autophagy pathway,

proteasomes

BCL10  degradation Autophagy-deficient T cells: increased IL-2 secretion, CD25

expression; decreased survival

Inhibition of BCL10 phosphorylation: increased secretion of 

IL-2 and TNFa

[28,29,33,36,108]

A20 (deubiquitinase and

ubiquitin ligase)

Removal of K63-polyubiquitin

from MALT1

Tnfaip3 À /  À: multiorgan inflammation, leading to death

B cell conditional knock out: lupus-like disease, increased

antibody secretion

[101,102]

CYLD (deubiquitinase) Removal of K63-polyubiquitin

from TAK1

Cyld À /  À: increased IKKb  phosphorylation

Hyper-responsive T and B cellsSpontaneous colonic infiltration

[104,105]

PP4R1–PP4c (phosphatase) IKKa / b  dephosphorylation PP4R1-silenced T cells demonstrate enhanced IKK

phosphorylation and NF-kB activation

[61]

aBifunctional NF-kB  regulator with stimulatory effect over-riding negative function.

Review Trends   in   Immunology   xxx   xxxx,  Vol.   xxx,   No.  x

TREIMM-1014;  No.   of   Pages  13

9

Page 10: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 10/13

and  B  cells  showed  constitutively   phosphorylated  IKK b

and  activated  NF-kB [104,105].  This  is  explained  by   loss  of 

CYLD-mediated  TAK1  K63-deubiquitination  [106], which

suppresses  TAK1  activation  in  wild  type  lymphocytes

(Figure 2). Curiously,  in  CD3+CD28-stimulated  Jurkat  T

cells,  MALT1  cleaves  CYLD  increasing   activation  of   JNK,

but  not NF-kB [47]. Further   studies  of   A20À/À and CyldÀ/À

cells 

will 

be 

required 

to 

determine 

the 

relative 

impor-tance  of   these  regulators  of   protein  ubiquitination  in  TCR-

to-NF-kB  signaling,  and  to  assess  whether  there  is  any 

redundancy   in  their  activities.

Regulation   of   TCR   signaling   by   molecular   sequestration 

Emerging   data  suggest  a  novel  mechanism  of   TCR  signal

transduction  regulation,  whereby   cytosolic  mediators  are

selectively   sequestered  in  cytosolic   vesicular  compart-

ments,  making   them  unavailable  for  signal  transmission.

The  ubiquitin  ligases  of   the Casitas B  cell  lymphoma  (CBL)

family,  CBL-B  and  C-CBL,  negatively   regulate  T  cell  acti-

 vation.  Both  CBL-B  and  C-CBL  knockout  results  in  higher

NF-kBactivation,  lymphoid  hyperplasia,  and  increased  IL-

2 secretion  from   T  cells  [107]. Reports  indicate  that  CBLactivity   might  depend  on  promotion  of   TCR  trafficking   to

lysosomes  [107]   and/or  on  ubiquitination  of   the  adaptor

protein  LAT,  targeting   LAT  for  endosomal  sequestration

[81] (Figure 2). A   similar  mechanism  involving   the  distal

TCR  signaling   adaptor  BCL10  has  also  recently   been

reported.  Data  suggest  that  BCL10  is  selectively   targeted

for sequestration  within  autophagosomes  [33], followed  by 

lysosomal  degradation  [33,36]. The  proteasome  also  con-

tributes  to  TCR-dependent  BCL10  degradation   via  an

unclear  mechanism  [29,33]. The  role  of   autophagy   in lim-

iting   TCR  activation  of   NF-kB is  further  supported  by   the

observation  that  T  cell-specific  inactivation  of   the  autop-

hagy  

genes 

 ATG7 

[108] 

or 

 ATG3 

[33] 

results 

in 

increasedIL-2  secretion  and  CD25  expression.  BCL10  autophagy   is

highly   selective,  because  the  BCL10  binding   partner

MALT1  is  neither  detected  inside  autophagosomes  nor

degraded  [33]. The  process  whereby   MALT1  is  separated

from  BCL10,  protecting   MALT1  from  degradation,  might

depend  on  autophagosome  formation  [33]  and/or  IKK b-

mediated  BCL10  phosphorylation  [28,29]. Data  showing 

that  phosphorylation  of   BCL10  by   IKK b  causes  BCL10  to

dissociate  from  the  CBM  complex  [28]   suggest  that  IKK b

has  a  dual  function,  both  positively   and  negatively   regu-

lating   the  TCR-to-NF-kB  pathway.

Interestingly,  the  process  of  BCL10  autophagy   occurs  at

the  POLKADOTS  signalosome,  requiring   the  same  molec-

ular  interactions  that  play   a  central  role  in  TCR  activation

ofNF-kB. Specifically,  autophagy   of   BCL10  requires  inter-

action  between  p62  and  K63-polyubiquitinated  BCL10

[33,35,36]  (Figure 2). Thus,  p62  is  an  additional  bifunc-

tional  regulator  of   TCR  signaling   to  NF-kB, controlling 

both assembly   of   the  POLKADOTS  signalosome  and  deg-

radation  of   its  key   signaling   component,  BCL10.  How  NF-

kB activation  and  BCL10  autophagy   (a  signal  limiting 

mechanism)  are  coordinately   regulated  at  the  POLKA-

DOTS  signalosome  will  require  further  investigation.

The  above  studies  illustrate  that  negative  regulatory 

mechanisms  act  at  multiple  points  in  the  TCR-to-NF-kB

signaling   cascade.  Interestingly,  diverse  independent

mechanisms  including   phosphorylation,  dephosphoryla-

tion,  ubiquitination,  deubiquitination,  protein  trafficking,

andprotein degradation  contribute  to  limiting   activation  of 

TCR  signaling.  These  data  suggest  that  negative  regula-

tion of    this  pathway   is  critical  for  T  cell  function  and/or

survival,  in  line  with  emerging   data  that  unrestrained

NF-kB   activation  has  a  spectrum  of   possible  deleterious

outcomes.

Concluding  remarks

Recent findings  have  significantly   altered  our  views  of  TCR

signaling   to  NF-kB. Certain  mediators,  such  as  PKCu  and

CARMA1,  are  phosphorylated  by   multiple  kinases,  dispel-

ling   early   models  that  postulated  a  simple  linear  cascade

by   which  the  TCR  transmits  activating   signals  to  NF-kB.

Studies  have  also  revealed  that  cytosolic  mediators  in  this

pathway   do  not  all  coalesce  in  a  single  TCR-proximal

signalosome  at  the  IS.  Rather,  cytosolic  signalosomes  far

removed  from  the  TCR  are  also  integral  to  NF-kB activa-

tion.  Despite  these  new  complexities,  precise  molecular

mechanisms  of   signal  transmission  are  gradually   being 

revealed,  with  several  essential  post-translational  modifi-cations  and  their  downstream  effects  now  identified.  For

example,  BCL10,  once  thought  to  be  a  simple  adaptor

connecting   CARMA1  to  MALT1,   is  now  known  to  undergo

K63-polyubiquitination,  triggering   association  with  p62

and  activation  of   IKK.   Additionally,  numerous  mecha-

nisms  of   negative  regulation  have  been  recognized,

indicating   that  the  TCR-to-NF-kB  pathway   is  tightly   mod-

ulated. Four  kinases  (PKCu, HPK-1, CK1a, and  IKK b)   and

two  ubiquitin-binding   proteins  (TSG101  and  p62)  play   a

dual  role  in  signaling   to  NF-kB, with  both  activating   and

signal  limiting   activities.  Precise  control  of NF-kB activa-

tion  may   guarantee  production  of   exact  levels  of   cell  cycle

Box  2.  Directions  for  future  research

Elucidation of differencesbetween naı ¨ve and effector T cells in the

TCR-to-NF-kB pathway. In particular, it is unclear why effector/  

memory T cells require a cytosolic signalosome to successfully

activate NF-kB (Box 1), and why levels of signaling proteins differ

between naı ¨ve and effector/memory cells.

Defining how the CBM complex and the POLKADOTS signalo-

some are mechanistically connected to IKK activation. Related

questions include how BCL10 is physically   separated  from

MALT1, allowing selective BCL10 degradation, and whether

MALT1 function changes after its signaling partner BCL10 is

degraded.

Revealing the mechanism and purpose of coupling NF-kB

activation with other T cell signaling cascades. In particular, it iscurrently unclear why JNKactivation andactin polymerization are

closely networked to the TCR-to-NF-kB  cascade.

Exploring the role of miRNAs in TCR-to-NF-kB signaling. miRNAs

are emerging as key regulators of T cell activation, with likely

effects on signaling to NF-kB. Indeed, recent data show mir-146

andmir-155 affectmediators utilized by theTCR-to-NF-kB cascade

and alter T cell behavior [123–126].

Determining the role of atypical ubiquitination in TCR-to-NF-kB

signaling. To date, most research in this pathway has focused on

typical K48- and K63-polyubiquitination, due to the  existence of 

highly specific tools that enable detailed study of these modifica-

tions. The six atypical ubiquitins have demonstrated function in

NF-kB activation [58] but there are few data to date regarding how

these under-studied ubiquitin polymers modulate TCR signaling

to NF-kB.

Review Trends   in   Immunology   xxx   xxxx,   Vol.  xxx,  No.  x

TREIMM-1014;  No.  of   Pages  13

10

Page 11: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 11/13

proteins,  thereby   avoiding   failed  cell  division  and  apopto-

sis.  Emerging   data  also  suggest  that  signaling   to  NF-kB is

coupled  to  seemingly  unrelated  biological processes  such  as

regulation  of   the  actin  cytoskeleton.   Additionally,  there

may   be  considerable  differences  in  mechanisms  of   TCR

activation  of   NF-kB utilized  by T  cells  at  distinct  stages  of 

differentiation.  Despite  these  recent  advances  in our  un-

derstanding  

of  

this 

pathway, 

there 

remain 

many  

mecha-nistic  details  that  are  poorly   understood.  Important

questions  for  the  field  are  outlined  in Box  2.

AcknowledgmentsThe authors thank A. Snow, C. Gray, K. McCorkell, M. May, and C-Z.

Giam for critical reading of themanuscript. Supported by grants from the

US National Institutes of Health (AI057481 to B.C.S.), the Center for

Neuroscience and Regenerative Medicine (CNRM) (to B.C.S.), and pre-

doctoral fellowships (to S.P.)  from the American Heart Association

(10PRE3150039) and the Henry M. Jackson Foundation. The views

expressed are those of the authors and do not necessarily reflect those of 

the Uniformed Services University or the Department of Defense. The

authors declare no competing financial interests.

References1 Thome, M. et al. (2010) Antigen receptor signaling to NF-kappaB via

CARMA1, BCL10, and MALT1. Cold Spring Harb. Perspect. Biol. 2,

a003004

2 Vallabhapurapu, S. and Karin, M. (2009) Regulation and function of 

NF-kappaB transcription factors in the immune system.  Annu. Rev.

 Immunol. 27, 693–733

3 Smith-Garvin,J.E. et al. (2009) T cell activation. Annu. Rev. Immunol.

27, 591–619

4  Schulze-Luehrmann, J. and Ghosh, S. (2006) Antigen-receptor

signaling to nuclear factor kappa B.  Immunity 25, 701–715

5 Thome, M. and Weil, R. (2007) Post-translational modifications

regulate distinct functions of CARMA1 and BCL10. Trends

 Immunol. 28, 281–288

6 Park, S.G.  et al. (2009) The kinase PDK1 integrates T cell antigen

receptor and CD28 coreceptor signaling to induce NF-kappaB and

activate T cells.  Nat. Immunol. 10, 158–166

7 Lee, K.Y.  et al. (2005) PDK1 nucleates T cell receptor-induced

signaling complex for NF-kappaB activation.  Science 308, 114–118

8 Cartwright, N.G. et al. (2011)An active kinase domain is required for

retention of PKCtheta at theT cell immunological synapse.  Mol. Biol.

Cell 22, 3491–3497

9 Schaefer, B.C. et al. (2004)Complexanddynamic redistribution ofNF-

kappaB signaling intermediates in response to T cell receptor

stimulation.  Proc. Natl. Acad. Sci. U.S.A. 101, 1004–1009

10 Huang, J. et al. (2002) CD28 plays a critical role in the segregation of 

PKC theta within the immunologic synapse.  Proc. Natl. Acad. Sci.

U.S.A. 99, 9369–9373

11 Chuang, H.C.  et al. (2011) The kinase GLK controls autoimmunity 

and NF-kappaB signaling by activating the kinase PKC-theta in T

cells.  Nat. Immunol. 12, 1113–1118

12 Lamason, R.L.  et al. (2010) Oncogenic CARD11 mutations induce

hyperactive signaling by disrupting autoinhibition by the PKC-

responsive inhibitory domain.  Biochemistry 49, 8240–825013 Chan, W.  et al. (2013) A quantitative signaling screen identifies

CARD11 mutations in the CARD and LATCH domains that induce

Bcl10 ubiquitination and human lymphoma cell survival.  Mol. Cell.

 Biol. 33, 429–443

14 Sommer, K.  et al. (2005) Phosphorylation of the CARMA1 linker

controls NF-kappaB activation.  Immunity 23, 561–574

15 Matsumoto, R.  et al. (2005) Phosphorylation of CARMA1 plays a

critical role in T cell receptor-mediated NF-kappaB activation.

 Immunity 23, 575–585

16 Moreno-Garcia, M.E.  et al. (2009) Serine 649 phosphorylationwithin

the protein kinase C-regulated domain down-regulates CARMA1

activity in lymphocytes.  J. Immunol. 183, 7362–7370

17 Brenner, D.  et al. (2005) Activation or suppression of NFkappaB by 

HPK1determines sensitivity to activation-induced cell death. EMBO

 J. 24, 4279–4290

18  Brenner, D.  et al. (2009) Phosphorylation of CARMA1 by HPK1 is

critical for NF- B activation in T cells.  Proc. Natl. Acad. Sci. U.S.A.

106, 14508–14513

19 Shui, J.W. et al. (2007) Hematopoietic progenitor kinase 1 negatively 

regulates T cell receptor signaling and T cell-mediated immune

responses.  Nat. Immunol. 8, 84–91

20 Di Bartolo, V.  et al. (2007) A novel pathway down-modulating T cell

activation involves HPK-1-dependent recruitment of 14-3-3 proteins

on SLP-76.  J. Exp. Med. 204, 681–691

21 Bidere, N.  et al. (2009) Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell

survival.  Nature 458, 92–96

22 Oruganti, S.R.  et al. (2011) CaMKII targets Bcl10 in T-cell receptor

induced activation of NF-kappaB.  Mol. Immunol. 48, 1448–1460

23 Ishiguro,K. et al. (2006) Ca2+ /calmodulin-dependent protein kinase II

is a modulator of CARMA1-mediated NF-kappaB activation.  Mol.

Cell. Biol. 26, 5497–5508

24 Ishiguro, K.  et al. (2007) Bcl10 is phosphorylated on Ser138 by Ca2+ / 

calmodulin-dependentproteinkinase II. Mol. Immunol.44, 2095–2100

25 Medeiros, R.B. et al. (2007) Regulation of NF-kappaB activation in T

cells via association of the adapter proteins ADAP and CARMA1.

 Science 316, 754–758

26 Srivastava, R.  et al. (2010) NF-kappaB activation in T cells requires

discrete control of IkappaB kinase alpha/beta (IKKalpha/beta)

phosphorylation and IKKgamma ubiquitination by the ADAP

adapter protein.  J. Biol. Chem. 285, 11100–1110527 Srivastava, R. et al. (2012)ADAP regulates cell cycle progression of T

cells via control of cyclin E and Cdk2 expression through two distinct

CARMA1-dependent signaling pathways.  Mol. Cell. Biol. 32, 1908–

1917

28 Wegener,E. et al. (2006)Essential role for IkB  kinase b in remodeling 

Carma1-Bcl10-Malt1 complexes upon T cell activation.  Mol. Cell 23,

13–23

29 Lobry, C.  et al. (2007) Negative feedback loop in T cell activation

through IkB  kinase-induced phosphorylation and degradation of 

Bcl10.  Proc. Natl. Acad. Sci. U.S.A. 104, 908–913

30 Palkowitsch, L.  et al. (2011) The Ca2+-dependent phosphatase

calcineurin controls the formation of the Carma1-Bcl10-Malt1

complex during T cell receptor-induced NF-kB  activation.  J. Biol.

Chem. 286, 7522–7534

31 Frischbutter, S.  et al. (2011) Dephosphorylation of Bcl-10 by 

calcineurin is essential for canonical NF-kappaB activation in Th

cells.  Eur. J. Immunol. 41, 2349–2357

32 Heissmeyer, V.  et al. (2004) Calcineurin imposes T cell

unresponsiveness through targeted proteolysis of signaling 

proteins.  Nat. Immunol. 5, 255–265

33 Paul,S. et al. (2012)Selective autophagy of the adaptor protein Bcl10

modulates T cell receptor activation of NF-kappaB.  Immunity 36,

947–958

34 Carvalho, G.  et al. (2010) Interplay between BCL10, MALT1 and

IkappaBalpha during T-cell-receptor-mediated NFkappaB

activation.  J. Cell Sci. 123, 2375–2380

35 Wu,C.J. andAshwell, J.D. (2008)NEMOrecognition of ubiquitinated

Bcl10 is required for T cell receptor-mediated NF-kappaBactivation.

 Proc. Natl. Acad. Sci. U.S.A. 105, 3023–3028

36 Scharschmidt, E. et al. (2004) Degradation of Bcl10 induced by T-cell

activation negatively regulates NF-kappaB signaling. Mol. Cell. Biol.

24, 3860–3873

37  Hu, S. et al. (2006)cIAP2is a ubiquitinprotein ligasefor BCL10andis

dysregulated in mucosa-associated lymphoid tissue lymphomas.  J.

Clin. Invest. 116, 174–181

38 Rueda, D.  et al. (2007) Bcl10 controls TCR- and FcgammaR-induced

actin polymerization.  J. Immunol. 178, 4373–4384

39 Gomez, T.S.  and Billadeau, D.D. (2008) T cell activation and the

cytoskeleton: youcan’t have onewithout theother. Adv. Immunol. 97,

1–64

40 Beemiller,P. andKrummel,M.F. (2010)Mediation ofT-cellactivation

by actin meshworks. Cold Spring Harb. Perspect. Biol. 2, a002444

41 Yatherajam, G. et al. (2010)Cutting edge: association with I kappa B

kinase beta regulates the subcellular localization of Homer3.  J.

 Immunol. 185, 2665–2669

42 Marion, S.  et al. (2012) The NF-kappaB signaling protein Bcl10

regulates actin dynamics by controlling AP1 and OCRL-bearing 

 vesicles.  Dev. Cell 23, 954–967

Review Trends   in   Immunology   xxx   xxxx,  Vol.   xxx,   No.  x

TREIMM-1014;  No.   of   Pages  13

11

Page 12: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 12/13

43 Kingeter, L.M. and Schaefer, B.C. (2008) Loss of protein kinase C

theta,Bcl10, orMalt1 selectively impairs proliferation andNF-kappa

B activation in the CD4+ T cell subset.  J. Immunol. 181, 6244–6254

44 Rebeaud, F.  et al. (2008) The proteolytic activity of the paracaspase

MALT1 is key in T cell activation.  Nat. Immunol. 9, 272–281

45 Ferch, U.  et al. (2007) MALT1 directs B cell receptor-induced

canonical nuclear factor-kappaB signaling selectively to the c-Rel

subunit.  Nat. Immunol. 8, 984–991

46 Coornaert, B. et al. (2008)T cell antigen receptor stimulation induces

MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20.  Nat. Immunol. 9, 263–271

47 Staal, J. et al. (2011) T-cell receptor-induced JNK activation requires

proteolytic inactivation of CYLD byMALT1. EMBO J. 30, 1742–1752

48 Sun, L.  et al. (2004) The TRAF6 ubiquitin ligase and TAK1 kinase

mediate IKKactivationby BCL10andMALT1in T lymphocytes. Mol.

Cell 14, 289–301

49 Hailfinger, S.  et al. (2011) Malt1-dependent RelB cleavage promotes

canonical NF-kB  activation in lymphocytes and lymphoma cell lines.

 Proc. Natl. Acad. Sci. U.S.A. 108, 14596–14601

50 Hailfinger,S. et al. (2009)Essential role ofMALT1protease activity in

activated B cell-like diffuse large B-cell lymphoma. Proc. Natl. Acad.

 Sci. U.S.A. 106, 19946–19951

51 Su, H.  et al. (2005) Requirement for caspase-8 in NF-kappaB

activation by antigen receptor.  Science 307, 1465–1468

52 Bidere, N. et al. (2006) Caspase-8regulationby direct interactionwith

TRAF6 in T cell receptor-induced NF-kappaB activation. Curr. Biol.16, 1666–1671

53  Misra, R.S. et al. (2007)Caspase-8 andc-FLIPL associatein lipid rafts

withNF-kappaBadaptorsduringT cell activation. J. Biol. Chem. 282,

19365–19374

54 Kingeter, L.M. and Schaefer, B.C. (2010) Malt1 and cIAP2-Malt1 as

effectors of NF-kappaB activation: kissing cousins or distant

relatives? Cell. Signal. 22, 9–22

55 Chaudhary, P.M. et al. (2000) Activation of the NF-kappaB pathway 

by caspase 8 and its homologs. Oncogene 19, 4451–4460

56 King, C.G. et al. (2006) TRAF6 is a T cell-intrinsic negative regulator

required for the maintenance of immune homeostasis.  Nat. Med. 12,

1088–1092

57 Stempin, C.C.  et al. (2011) The E3 ubiquitin ligase mind bomb-2

(MIB2) protein controls B-cell CLL/lymphoma 10 (BCL10)-

dependent NF-kB  activation.  J. Biol. Chem. 286, 37147–37157

58 Kulathu, Y. and Komander, D. (2012) Atypical ubiquitylation – the

unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages.

 Nat. Rev. Mol. Cell Biol. 13, 508–523

59 Wang, C.  et al. (2001) TAK1 is a ubiquitin-dependent kinase of MKK 

and IKK.  Nature 412, 346–351

60 Shambharkar, P.B.  et al. (2007) Phosphorylation and ubiquitination

of the IkappaB kinase complex by two distinct signaling pathways.

 EMBO J. 26, 1794–1805

61 Brechmann,M. et al. (2012) A PP4holoenzymebalancesphysiological

and oncogenic nuclear factor-kappa B signaling in T lymphocytes.

 Immunity 37, 697–708

62 Coward, J.  et al. (2010) Perspectives for computer modeling in the

study ofT cell activation.Cold SpringHarb. Perspect.Biol.2, a005538

63 Kingeter, L.M. et al. (2010) Cuttingedge:TCR ligation triggers digital

activation of NF-kappaB.  J. Immunol. 185, 4520–4524

64 Tay, S.  et al. (2010) Single-cell NF-kappaB dynamics reveal digital

activationand analogue informationprocessing. Nature 466,267–271

65 Das, J.  et al. (2009) Digital signaling and hysteresis characterize ras

activation in lymphoid cells. Cell 136, 337–351

66 Altan-Bonnet, G. and Germain, R.N. (2005) Modeling T cell antigen

discrimination based on feedback control of digital ERK responses.

 PLoS Biol. 3, e356

67 Podtschaske, M.  et al. (2007) Digital NFATc2 activation per cell

transforms graded T cell receptor activation into an all-or-none IL-

2 expression.  PLoS ONE 2, e935

68 Monks, C.R.  et al. (1998) Three-dimensional segregation of 

supramolecular activation clusters in T cells.  Nature 395, 82–86

69 Dustin, M.L.  et al. (1998) A novel adaptor protein orchestrates

receptor patterning and cytoskeletal polarity in T-cell contacts. Cell

94, 667–677

70  Lee, K.H.  et al. (2002) T cell receptor signaling precedes

immunological synapse formation.  Science 295, 1539–1542

71   Varma, R.  et al. (2006) T cell receptor-proximal signals are sustained

in peripheral microclusters and terminated in the central

supramolecular activation cluster.  Immunity 25, 117–127

72 Purbhoo,M.A. et al. (2004) T cell killingdoesnot requirethe formation

of a stablemature immunological synapse. Nat. Immunol. 5, 524–530

73 O’Keefe, J.P. and Gajewski, T.F. (2005) Cutting edge: cytotoxic

granule polarization and cytolysis can occur without central

supramolecular activation cluster formation in CD8+ effector T

cells.  J. Immunol. 175, 5581–5585

74 Lee, K.H.  et al. (2003) The immunological synapse balances T cellreceptor signaling and degradation.  Science 302, 1218–1222

75 Dustin, M.L. et al. (2010)Understanding thestructure andfunction of 

the immunological synapse. Cold Spring Harb. Perspect. Biol. 2,

a002311

76 Vardhana, S.  et al. (2010) Essential role of ubiquitin and TSG101

protein in formation and function of the central supramolecular

activation cluster.  Immunity 32, 531–540

77 Balagopalan,L. et al. (2009)Endocytic events in TCRsignaling: focus

on adapters in microclusters.  Immunol. Rev. 232, 84–98

78 Mills, I.G. (2007) The interplay between clathrin-coated vesicles and

cell signalling.  Semin. Cell Dev. Biol. 18, 459–470

79 Sadowski,L. et al. (2009)Signalingfrom endosomes: locationmakes a

difference.  Exp. Cell Res. 315, 1601–1609

80 Nguyen, K. et al. (2008) T cell costimulation via the integrin VLA-4

inhibits the actin-dependent centralization of signaling microclusters

containing the adaptor SLP-76.  Immunity 28, 810–82181 Balagopalan, L.  et al. (2007) c-Cbl-mediated regulation of LAT-

nucleated signaling complexes.  Mol. Cell. Biol. 27, 8622–8636

82 Rossman, J.S.  et al. (2006) POLKADOTS are foci of functional

interactions in T-cell receptor-mediated signaling to NF-kappaB.

 Mol. Biol. Cell 17, 2166–2176

83 Karin, M. and Greten, F.R. (2005) NF-kappaB: linking inflammation

and immunity to cancer development and progression.  Nat. Rev.

 Immunol. 5, 749–759

84 Zhi, H.  et al. (2011) NF-kappaB hyper-activation by HTLV-1 tax

induces cellular senescence, but can be alleviated by the viral anti-

sense protein HBZ.  PLoS Pathog. 7, e1002025

85 Krishna, S.  et al. (2012) Chronic activation of the kinase IKKbeta

impairs T cell function and survival.  J. Immunol. 189, 1209–1219

86 Natoli, G. and Chiocca, S. (2008) Nuclear ubiquitin ligases, NF-

kappaB degradation, and the control of inflammation.  Sci. Signal.

1, pe1

87 Stefanova, I.  et al. (2003) TCR ligand discrimination is enforced by 

competingERKpositive andSHP-1 negative feedbackpathways. Nat.

 Immunol. 4, 248–254

88 Plas, D.R. et al. (1996) Direct regulation of ZAP-70 bySHP-1 in T cell

antigen receptor signaling. Science 272, 1173–1176

89 Binstadt, B.A.  et al. (1998) SLP-76 is a direct substrate of SHP-1

recruited to killer cell inhibitory receptors. J. Biol. Chem. 273,27518–

27523

90 Fowler, C.C. et al. (2010)SHP-1 inT cells limits theproduction ofCD8

effector cells without impacting the formation of long-lived central

memory cells.  J. Immunol. 185, 3256–3267

91 Carpino, N.  et al. (2004) Regulation of ZAP-70 activation and TCR

signaling by tworelated proteins, Sts-1and Sts-2. Immunity 20, 37–46

92 Carpino, N.  et al. (2009) The Sts proteins target tyrosine

phosphorylated, ubiquitinated proteins within TCR signaling 

pathways.  Mol. Immunol. 46, 3224–3231

93 Carpino, N.  et al. (2002) Identification, cDNA cloning, and targeted

deletion of p70, a novel, ubiquitously expressed SH3 domain-

containing protein.  Mol. Cell. Biol. 22, 7491–7500

94 Vang, T. et al. (2004) Knockdown of C-terminal Src kinase by siRNA-

mediated RNA interference augments T cell receptor signaling in

mature T cells.  Eur. J. Immunol. 34, 2191–2199

95 Hermiston, M.L.  et al. (2003) CD45: a critical regulator of signaling 

thresholds in immune cells.  Annu. Rev. Immunol. 21, 107–137

96 Zou, T.  et al. (2010) Understanding signal integration through

targetedmutations of an adapter protein. FEBS Lett. 584, 4901–4909

97 Eitelhuber, A.C. et al. (2011) Dephosphorylation of Carma1 by PP2A 

negatively regulates T-cell activation.  EMBO J. 30, 594–605

98 Fu, D.X. et al. (2003)HumanT-lymphotropicvirus type I taxactivates

I-kappa B kinase by inhibiting I-kappa B kinase-associated serine/ 

threonine protein phosphatase 2A. J. Biol. Chem. 278, 1487–1493

Review Trends   in   Immunology   xxx   xxxx,   Vol.  xxx,  No.  x

TREIMM-1014;  No.  of   Pages  13

12

Page 13: 1-s2.0-S1471490613000185-main

7/28/2019 1-s2.0-S1471490613000185-main

http://slidepdf.com/reader/full/1-s20-s1471490613000185-main 13/13

99 Lamason, R.L.  et al. (2010) The dynamic distribution of CARD11 at

the immunological synapse is regulated by the inhibitory kinesin

GAKIN.  Mol. Cell 40, 798–809

100 Lin,Q. et al. (2012)Cutting edge: the ‘‘death’’ adaptorCRADD/RAIDD

targetsBCL10and suppressesagonist-inducedcytokine expressionin

T lymphocytes.  J. Immunol. 188, 2493–2497

101 Harhaj, E.W. andDixit, V.M.  (2011)Deubiquitinases in the regulation

of NF-kappaB signaling. Cell Res. 21, 22–39

102 Duwel, M.  et al. (2009) A20 negatively regulates T cell receptor

signaling to NF-kappaB by cleaving Malt1 ubiquitin chains.  J. Immunol. 182, 7718–7728

103 Shembade, N. and Harhaj, E.W. (2012) Regulation of NF-kappaB

signaling by the A20 deubiquitinase. Cell. Mol. Immunol. 9, 123–130

104 Reiley,W.W. et al. (2007) Deubiquitinating enzyme CYLDnegatively 

regulates the ubiquitin-dependent kinase Tak1 and prevents

abnormal T cell responses.  J. Exp. Med. 204, 1475–1485

105 Jin, W.  et al. (2007) Deubiquitinating enzyme CYLD regulates the

peripheral development andnaive phenotypemaintenance of B cells.

 J. Biol. Chem. 282, 15884–15893

106 Kovalenko, A. et al. (2003) The tumour suppressor CYLD negatively 

regulates NF-kappaB signalling by deubiquitination.  Nature 424,

801–805

107 Naramura, M.  et al. (2002) c-Cbl and Cbl-b regulate T cell

responsiveness by promoting ligand-induced TCR down-

modulation.  Nat. Immunol. 3, 1192–1199

108 Jia, W.  et al. (2011) Autophagy regulates endoplasmic reticulumhomeostasis and calcium mobilization in T lymphocytes.  J.

 Immunol. 186, 1564–1574

109 Kalia, V. et al. (2006) Differentiation of memory B and T cells. Curr.

Opin. Immunol. 18, 255–264

110 Jameson, S.C. andMasopust,D. (2009)Diversityin T cell memory: an

embarrassment of riches.  Immunity 31, 859–871

111 Farber, D.L. (2009)BiochemicalsignalingpathwaysformemoryT cell

recall.  Semin. Immunol. 21, 84–91

112 Watson, A.R. and Lee, W.T. (2004) Differences in signaling molecule

organization between naive and memory CD4+ T lymphocytes.  J.

 Immunol. 173, 33–41

113  Kersh, E.N.  et al. (2003) TCR signal transduction in antigen-specific

memory CD8 T cells.  J. Immunol. 170, 5455–5463

114 Feinerman, O.  et al. (2008) Variability and robustness in T cell

activation from regulated heterogeneity in protein levels.  Science

321, 1081–1084

115 Chandok,M.R. et al. (2007) A biochemical signature forrapid recall of 

memory CD4 T cells.  J. Immunol. 179, 3689–3698

116 Okoye, F.I. et al. (2007) Proximal signaling control of human effector

CD4 T cell function. Clin. Immunol. 125, 5–15

117 Hussain, S.F.  et al. (2002) Differential SLP-76 expression and TCR-mediated signaling in effector and memory CD4 T cells.  J. Immunol.

168, 1557–1565

118 Martin, P.  et al. (2006) The signaling adapter p62 is an important

mediator of T helper2 cell function andallergic airway inflammation.

 EMBO J. 25, 3524–3533

119 Yang, J.Q. et al. (2010) NBR1 is a new PB1 signalling adapter in Th2

differentiationandallergic airway inflammationin vivo. EMBOJ. 29,

3421–3433

120 Lai, W. et al. (2011) Transcriptional control of rapid recall bymemory 

CD4 T cells.  J. Immunol. 187, 133–140

121 Araki, Y. et al. (2008) Histone acetylation facilitates rapid and robust

memory CD8 T cell response through differential expression of  

effector molecules (eomesodermin and its targets: perforin and

granzyme B).  J. Immunol. 180, 8102–8108

122 Lorenz, U. et al. (1996) Lack of SHPTP1 results in src-family kinase

hyperactivation and thymocyte hyperresponsiveness.  Proc. Natl. Acad. Sci. U.S.A. 93, 9624–9629

123 Yang, L.  et al. (2012) miR-146a controls the resolution of T cell

responses in mice.  J. Exp. Med. 209, 1655–1670

124 O’Connell, R.M.  et al. (2010) MicroRNA-155 promotes autoimmune

inflammation by enhancing inflammatory T cell development.

 Immunity 33, 607–619

125 Lu, L.F.  et al. (2010) Function of miR-146a in controlling Treg cell-

mediated regulation of Th1 responses. Cell 142, 914–929

126 vanLoo, G. andBeyaert,R. (2011) Negative regulation ofNF-kappaB

and its involvement in rheumatoid arthritis. Arthritis Res. Ther. 13,

221

Review Trends   in   Immunology   xxx   xxxx,  Vol.   xxx,   No.  x

TREIMM-1014;  No.   of   Pages  13