36
Progress in Organic Coatings 77 (2014) 913–948 Contents lists available at ScienceDirect Progress in Organic Coatings j o ur na l ho me pa ge: www.elsevier.com/locate/porgcoat Review Recent advances in ATRP methods in relation to the synthesis of copolymer coating materials Piotr Król, Paweł Chmielarz Department of Polymer Science, Faculty of Chemistry, Rzeszów University of Technology, Al. Powsta´ nców Warszawy 6, 35-959 Rzeszów, Poland a r t i c l e i n f o Article history: Received 31 October 2013 Received in revised form 17 January 2014 Accepted 29 January 2014 Available online 25 February 2014 Keywords: Polymer synthesis ATRP Copolymer coatings Biomaterials Bioactive surface a b s t r a c t Atom transfer radical polymerization (ATRP) is currently one of the most often used synthetic polymer- ization methods to prepare well-defined copolymers with complex architecture. This review covers some fundamentals of ATRP, presents new ATRP initiating processes with ppm amounts of copper catalysts and various reducing agents together with recent developed electrochemically controlled ATRP, as well as discusses ATRP enables to precise control over macromolecular structure, order, and functionality. More- over, this review briefly describes some of the copolymer coating materials that can now be prepared e.g., protective coatings with increased hydrophobicity, functional bioactive surfaces and functional bio- materials, as well as highlights some of the commercialization efforts currently underway. The research activities in the last decade indicate that ATRP has become an essential tool for the design and synthesis of advanced, noble and novel copolymer coatings. © 2014 Elsevier B.V. All rights reserved. Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913 2. The most important mechanisms of the growth of polymer chains used in ATRP methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914 3. Controlled polymer structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917 4. Applications of copolymers with particular emphasis on coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918 4.1. Protective coatings with increased hydrophobicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919 4.2. Antifouling surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920 4.3. Antibacterial surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928 4.4. Stimuli-responsive surface (micelles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929 4.5. Hydrogels (tissue engineering scaffolds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935 4.6. Microgel-core star polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939 5. Comercial applications of copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940 6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941 1. Introduction Recent needs in a range of protective coatings permanently con- nected with natural materials such as wood and paper or with ceramics and metal articles force the search for new polymeric materials. However raw material limited possibilities and envi- ronmental issues are directing the attention of researchers for improving polymerization methods of the well-known and widely applied such as vinyl monomers, as well as raw materials useful for Corresponding author. Tel.: +48 661038877. E-mail address: p [email protected] (P. Chmielarz). producing condensation polymers and additive polymers e.g. PU. In recent years, these needs have been additionally enhanced by the need to develop new synthetic biomaterials well cooperating with the tissues of the human body. In our opinion, new polymeriza- tion methods discovered in recent years allow for the production of polymers with controlled macromolecular structure and they are outgoing opposite these very specific applications of polymer coatings. In addition less important is to use the new monomers, and much more important is obtaining during the polymerization step of even known vinyl monomers and acrylic new structures of such macromolecules. Latest methods in this regard, already well developed from the side of preparative and theoretical explaining kinetics and mechanism of their progress, but still poorly used in 0300-9440/$ see front matter © 2014 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.porgcoat.2014.01.027

1-s2.0-S0300944014000538-main(1)

Embed Size (px)

Citation preview

  • Progress in Organic Coatings 77 (2014) 913948

    Contents lists available at ScienceDirect

    Progress in Organic Coatings

    j o ur na l ho me pa ge: www.elsev ier .com

    Review

    Recentcopoly

    Piotr KrDepartment of

    a r t i c l

    Article history:Received 31 OReceived in reAccepted 29 JaAvailable onlin

    Keywords:Polymer synthATRPCopolymer coaBiomaterialsBioactive surfa

    Contents

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9132. The most important mechanisms of the growth of polymer chains used in ATRP methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9143. Controlled polymer structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9174. Applications of copolymers with particular emphasis on coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918

    4.1. 4.2. 4.3. 4.4. 4.5. 4.6.

    5. Come6. Summ

    Refer

    1. Introdu

    Recent nnected withceramics anmaterials. Hronmental improving papplied suc

    CorresponE-mail add

    0300-9440/$ http://dx.doi.oProtective coatings with increased hydrophobicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919Antifouling surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920Antibacterial surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928Stimuli-responsive surface (micelles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929Hydrogels (tissue engineering scaffolds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935Microgel-core star polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939

    rcial applications of copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941

    ences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941

    ction

    eeds in a range of protective coatings permanently con- natural materials such as wood and paper or withd metal articles force the search for new polymericowever raw material limited possibilities and envi-

    issues are directing the attention of researchers forolymerization methods of the well-known and widely

    h as vinyl monomers, as well as raw materials useful for

    ding author. Tel.: +48 661038877.ress: p [email protected] (P. Chmielarz).

    producing condensation polymers and additive polymers e.g. PU. Inrecent years, these needs have been additionally enhanced by theneed to develop new synthetic biomaterials well cooperating withthe tissues of the human body. In our opinion, new polymeriza-tion methods discovered in recent years allow for the productionof polymers with controlled macromolecular structure and theyare outgoing opposite these very specic applications of polymercoatings. In addition less important is to use the new monomers,and much more important is obtaining during the polymerizationstep of even known vinyl monomers and acrylic new structures ofsuch macromolecules. Latest methods in this regard, already welldeveloped from the side of preparative and theoretical explainingkinetics and mechanism of their progress, but still poorly used in

    see front matter 2014 Elsevier B.V. All rights reserved.rg/10.1016/j.porgcoat.2014.01.027 advances in ATRP methods in relation to the synthesis ofmer coating materials

    l, Pawe Chmielarz

    Polymer Science, Faculty of Chemistry, Rzeszw University of Technology, Al. Powstancw Warszawy 6, 35-959 Rzeszw, Poland

    e i n f o

    ctober 2013vised form 17 January 2014nuary 2014e 25 February 2014

    esis

    tings

    ce

    a b s t r a c t

    Atom transfer radical polymerization (ATRP) is currently one of the most often used synthetic polymer-ization methods to prepare well-dened copolymers with complex architecture. This review covers somefundamentals of ATRP, presents new ATRP initiating processes with ppm amounts of copper catalysts andvarious reducing agents together with recent developed electrochemically controlled ATRP, as well asdiscusses ATRP enables to precise control over macromolecular structure, order, and functionality. More-over, this review briey describes some of the copolymer coating materials that can now be preparede.g., protective coatings with increased hydrophobicity, functional bioactive surfaces and functional bio-materials, as well as highlights some of the commercialization efforts currently underway. The researchactivities in the last decade indicate that ATRP has become an essential tool for the design and synthesisof advanced, noble and novel copolymer coatings.

    2014 Elsevier B.V. All rights reserved./ locate /porgcoat

  • 914 P. Krl, P. Chmielarz / Progress in Organic Coatings 77 (2014) 913948

    Notations

    AA acrylic acidAFM atomic force microscopyAGET ARGET ATRP BIBB Bpy CM CMU CRP CuBr CuBr2CuCl CuCl2DI DMAEMADMMSA

    DMVSA

    DP eATRP EBIB EGDMA GMA HEMA ICAR LCST LRP MDI ME Me6-TREMIP MPC MUBIB MW MWD NI NIP NIPAM OEG OEGMA PBA PDA PDMS PEG PMDETAPMMA PES PPCPA PPPGMAPS PSf PTMO PTX PU PVDF PVP RA SAM SEM SET-LRP

    SI-ATRP surface-initiated ATRPSR reverse initiationSR&NI activators generated by electron transferactivators regenerated by electron transferatom transfer radical polymerization2-bromoisobutyryl bromide2,2-bipyridinecellulose membranesCarnegie Mellon Universitycontrolled radical polymerizationcopper (I) bromidecopper (II) bromidecopper (I) chloridecopper (II) chloridedispersity

    2-dimethylaminoethyl methacrylate2-(methacryloyloxyethyl) ethyl-dimethyl-(3-sulfopropyl)-ammoniumN,N-dimethyl-N-(p-vinylbenyl)-N-(3-sulfopropyl)ammoniumdegree of polymerizationelectrochemically mediated ATRPethyl 2-bromoisobutyrateethylene glycol dimethacrylateglycidyl methacrylate2-hydroxyethyl methacrylateinitiation for continuous activators regenerationlower critical solution temperatureliving radical polymerization4,4-methylene diphenyl diisocyanate2-mercaptoethanolN hexamethylated tris(2-aminoethyl)aminemolecularly imprinted polymer2-methacryloyloxyethyl phosphorylcholine-mercaptoundecyl bromoisobutyratemolecular weightmolecular weight distributionnormal initiationnonimprinted polymerN-isopropylacrylamideoligo(ethylene glycol)oligo(ethylene glycol) methacrylatepoly(n-butylacrylate)poly(dopamine)poly(dimethylsiloxane)poly(ethylene glycol)

    N,N,N,N,N-pentamethyldiethlyenetriaminepoly(methyl methacrylate)polyethersulfonepoly(pentachlorophenyl acrylate)

    poly(poly(propylene glycol methacrylate))polystyrenepolysulfonepoly(oxytetramethylene) glycolpaclitaxelpolyurethanepoly(vinylidene uoride)poly(N-vinylpyrrolidone)reducing agentself-assembled monolayerscanning electron microscopesingle-electron transfer living radical polymeriza-tion

    SS TEA QA VBA

    materials eof atom trapresented pdevelopmetions of pola few years

    This artcopolymer applicationmost of thelow surfacematerials aimprove ad

    ATRP iscesses usewell-deneable sequefunctionalitmaterials teach indiviAs block leblock copoltant and th[5]. Most ofmers (synththeir abilitmorphologprimary drapplicationtive) syntheMWD blockapplicationsized by conin regular aintermolecutallization a

    Recent focused onpletely newrespect to mental frieexperimentsynthesis oinvolves ating polymeoften Cu, asto ppm levregeneratio

    2. The mopolymer ch

    ATRP ismer sciencweights, nasimultaneous reverse and normal initiationstainless steeltriethylaminequaternary ammoniumvinylbenzoic acid

    ngineering are methods known under the general namensfer radical polymerization (ATRP). Therefore in theublication we would like to draw attention to the latestnts in this eld and to indicate the directions of applica-ymers with a very specic structure, not known before

    in the engineering of protective coatings.icle reviews recent advances in the preparation ofcoating materials using ATRP for biomedical and others. The modication of polymer surfaces, hydrophobic in

    cases, is required for multiple applications. For instance, energy polymeric materials do not adhere well to othernd need of further modication/surface treatment tohesion.

    one of the most powerful and versatile CRP pro-d for the synthesis of functional copolymers withd architectures, controlled molecular weights, and tun-nces. It enables precise control over MW, MWD, andy [14]. Block copolymers are an interesting class ofhat possess different properties compared to those ofdual homopolymer segments they are composed of.ngth is playing a major role on the properties of theymers, effective control of the block lengths is impor-is can easily be achieved using different CRP methods

    the desirable properties of narrow MWD block copoly-esized by living polymerization or ATRP) originate from

    y to form well-dened nanostructures with differenties of tunable periodicity or size, and this provides theiving force for the intensive interest in eld of coatings over the polydisperse copolymers (random or alterna-sized by conventional radical polymerization. Narrow

    copolymers (controlled) are more useful for coating rather than polydisperse random copolymers synthe-ventional radical polymerization. It results from it, that

    rrangements, in which arranging structures results fromlar interactions, exists a possibility of the simpler crys-s a result of stronger intermolecular interactions.advances in the synthesis of block copolymers have

    techniques that either enable the preparation of com- materials or represent a substantial improvement withthe existing methods in terms of scalability, environ-ndliness, or scope. One observable trend is to designal setups which allow for the automated and optimizedf polymers and block copolymers. Another ongoing topictempts to reduce the environmental impact of exist-r syntheses. In ATRP reactions, the metal catalyst (most

    well as Fe, Ru, Ni, etc.) loading could be decreased downels through the use of a suitable additive for catalystn, for example in ARGET process [6,7].st important mechanisms of the growth ofains used in ATRP methods

    one of the most rapidly developing areas of poly-e, allowing to obtain effective control over molecularrrow molecular weight distributions, functionalities,

  • P. Krl, P. Chmielarz / Progress in Organic Coatings 77 (2014) 913948 915

    architectures, and well-dened compositions [8,9]. ATRP processeshave evolved signicantly during the past 15 years and it hasstrongly inuenced the development of many elds of polymerscience, invigorating great interest in controlled polymerizations[10]. There are several reports on the synthesis of copolymers andthe study of their properties, as these copolymers are importantmaterials in the several elds of natural science, for example, col-loid science and biochemistry, as well as in industrial elds [11,12].Moreover, the interface of ATRP with biology has always been oneof the most attractive areas for applications due to ATRPs robustnature and ability to grow polymers from a variety of surfaces [10].

    The essential feature of original normal (NI) ATRP is con-trolled by apropagatingdominatelyspecies (Rnis halogen acally react wmetal comprepresents tL is a ligandmittently fometal comphalide ligan

    The deacreaction (kdtor. ATRP iredox-activintermediatrate constaoccur in ATation. Howeterminationcentration oof dormant is most compounds [21can also beActually, otemployed t[35,36], Re

    Howeveused is senthis drawbgroup has d[9]. Subsequof the transas Cu(II)/L cCu(I)/L com(II), for exa(AIBN) [42

    After deotion of Cu(Iof conventiassociated w

    SR&NI Ause more a

    CXR +n

    M

    I.

    I I

    R

    M

    .X Cu(II)/LCu(I)/LXR

    RR

    +

    kpkt

    +n n

    n n

    kact

    kdeact

    (2)

    Scheme 2.

    M

    I.

    I I

    C+

    P Initiator

    amot of r

    SR&gen-er wits cot of of bloNI AithouSR&Ns hasopol

    fracr [15rdermer ocedentioompnic r

    newNI eby var [47]. In a typical AGET ATRP system, the activator (Cu(I)

    s) is rst rapidly oxidized by oxygen to the Cu(II) species, butter is quickly reduced to the Cu(I) state in the presence of aere is an induction period during which air is consumed, andally the polymerization starts. This process has been suc-ly used to prepare well-dened products in organic mediao in miniemulsion. Unfortunately, it is difcult to estimatect amount of RA needed [48].

    R

    M

    .X Cu(II)/LCu(I)/L

    RR

    u(II)/L

    +

    kpkt

    + n

    n n

    kact

    kdeact

    (4)

    Scheme 4.n equilibrium between a low concentration of active species and a larger number of dormant chains, pre-

    in the form of initiating alkyl halides/macromolecularX, where Rn represents growing polymer chain and Xtom) [13,14] (Scheme 1). The dormant species periodi-ith the rate constant of activation (kact) with transitionlexes in their lower oxidation state (Cu(I)/L, where Cu(I)he transition metal species in lower oxidation state and). After which, these species acting as activators to inter-rm growing radicals (Rn), and deactivatorstransitionlexes in their higher oxidation state, coordinated withds Cu(II)/L (Scheme 1) [15].tivator reacts with the propagating radical in a reverseeact) to re-form the dormant species and the activa-s a catalytic process and can be mediated by manye transition metal complexes [1]. Upon addition of thee radicals to monomers, polymer chains grow with thent of propagation kp. Termination reactions (kt) alsoRP, mainly through radical coupling and disproportion-ver, a very small percentage of polymer chains undergo

    in a well-controlled ATRP. This is due to the low con-f active propagating radicals and higher concentrationspecies, which minimizes termination. Although coppermonly used metal catalyst in ATRP [1620], iron com-28], which are generally considered to be less toxic,

    used, especially for biomedical applications [29,30].her various metal complexes have been successfullyo mediate ATRP, including Ru [31,32], Ni [33,34], Ti[37], Mo [38], Co [39], and Os [40,41].r, NI ATRP has one notable limitation that is the catalystsitive to air and other oxidant. In order to overcomeack of normal ATRP, more recently, Matyjaszewskiseveloped an improved reverse (SR) ATRP techniqueently, SR ATRP was developed that started by additionition metal complex in its higher oxidation state, suchomplexes, which was then converted to the activatorplexes by reaction with a standard free radical initiatormple benzoyl peroxide (BP) or 2,2-azoisobutyronitrile44] (Scheme 2).xygenation, the polymerization is initiated by the reac-I) with radicals, generated by thermal decompositiononal thermal initiators. This circumvents the problemith oxidation of catalysts [45].

    TRP was developed to take advantage of the ability toctive catalyst complexes with addition of a relatively

    R

    M

    .X Cu(II )/Lu(I)/L

    RR

    kact

    kdeact+

    kpkt

    n

    n n (1)

    Scheme 1.

    XRn

    ATR

    larger amoun

    In aor halotogethreagenamounthesis

    SR&tion wWhile procesblock ca smallinitiato

    In ocopolytion pra convCu(II) cof orgainitiate

    SR&vated initiatospeciethe latRA. Theventucessfuland alsthe exa

    XR

    X C

    n

    RAR

    M

    .X Cu(II)/Lu(I)/L

    RR

    +

    kpkt

    n

    n n

    kact

    kdeact

    (3)

    Scheme 3.

    unt of alkyl halide initiator concurrently with a smalladical initiators [15].NI initiation procedure, ATRP initiators, alkyl halidesterminated macroinitiator, are added to the reactionth a conventional thermal initiator II (Scheme 3). Bothntribute to the ATRP equilibrium, so that the relativecatalysts can be dramatically decreased, and the syn-ck copolymers can be achieved [45].TRP provided a way to reduce the catalyst concentra-t sacricing the level of control over polymerization.I is a signicant improvement over SR ATRP, the SR&NI

    an intrinsic deciency when it is used to synthesizeymers [45]. A limitation of SR&NI was the formation oftion of polymer chains initiated by the added free radical].

    to overcome this limitation, and prepare a pure blockwithout contamination by homopolymers, an initia-ure named AGET was developed for ATRP. Instead ofnal radical initiator, a RA was used to react with thelex and to generate the activator without involvementadicals or formation of reaction products which could

    chains (Scheme 4) [45,46].volved into AGET where the added deactivator was acti-rious RA including Mt0 species rather than a radical

  • 916 P. Krl, P. Chmielarz / Progress in Organic Coatings 77 (2014) 913948

    I.

    R

    M

    .X Cu(II)/LCu(I)/LXR

    RR

    I II X

    +

    kpkt

    +n n

    n n

    kact

    kdeact

    (5)

    Scheme 5.

    In addition to normal ATRP, the development of AGET ATRP,which enables polymerizations to be conducted without freeze-pump-thaw cycles, has poised AGET ATRP to be carried out bybiologists and other scientists in jars on the bench top [8].

    In fact, based on the development of SR&NI and AGET techniquesdiscussed above, new initiation method, such as ICAR, were devel-oped at about 8 years ago [49]. In this system, a large excess of RA(free radicals from thermal initiator) were used for a continuousregeneration of very low levels of catalyst activators. By using ICARinitiation technique, the amount of Cu catalyst necessary for anATRP was lowered from several thousand ppm under normal con-ditions to 90%) by the

    sulation and release of hydrophilic dyes of cation-condensed microgel in water [296].

  • 940 P. Krl, P. Chmielarz / Progress in Organic Coatings 77 (2014) 913948

    linking reaction of a PEG macroinitiator with a quaternary ammo-nium cation-carrying linking agent in ruthenium-catalyzed LRP.Owing to the locally high concentration of quaternary ammoniumcations in the core, the star polymers afforded efcient and versatileencapsulation of various dyes carrying sodium sulfonate in water.The efcient dye encapsulation is due to the high concentration ofquaternary ammonium cations in the core. Additionally, stimuli-responsive release of dyes from cation-condensed star polymerswas successfully achieved via ion exchange with NaCl aqueoussolution. Cation-condensed star polymers would be useful as ver-satile delivery vessels, contributing to a wide variety of biomedicalapplications [296].

    5. Comercial applications of copolymers

    In the early years of ATRP development, the expected fast andbroad devematerials wneeded to environmenin the matemers into thas been by

    The proATRP ConsoMellon Uniyears (1996and licenseformed the that uses thby their cuATRP has bthe researcATRP Solutbegun com

    With theprecisely ccially produand nd a[304], adhehydrogels [[304,309], ting agents[317319]. pounds, pri[320].

    In this cship some include mistional branhigher DI oprovide acc[15].

    (36)

    CH3

    OCHCH2

    C O

    O

    n

    R

    C

    O

    CH CH2

    OC

    O

    CHCH2

    R = H or

    Scheme 36.

    (37)CH

    3

    SiCHCH2

    C O

    O

    n

    R

    CH3

    SiCH3

    O

    O

    CH3

    CH3

    O

    OCH3

    CH3

    R = H or

    Scheme 37.

    of ter pre sevoistuhesivre poor hela 37se pond-fucompt proeat, o

    fromg ch

    con build1a anrisonthermapplttinglantves, e foather

    is PP, funcincluponeals tf the gs [3thermf surr the surface properties such as hydrophilicity/phobicity,

    lass in different buildings [322].lopment of ATRP for the production of large volume ofas frustrated by the large amounts of catalyst complexcontrol the polymerization. For both economical andtal aspects, the level of potentially hazardous catalystrial had to be strongly decreased to bring ATRP poly-he marketplace. ATRP catalyzed by copper complexes

    far the most studied and developed industrially [301].motion of ATRP towards industry began through thertium founded by Prof. K. Matyjaszewski at Carnegieversity (CMU) of Pittsburgh, PA, USA. It lasted for ve2000) and gave rise to several U. S. patents issueds signed with industrial partners [302]. In 2006, ATRPbasis for a CMU spin-off company called ATRP Solutionse technology to develop novel materials for evaluationstomers in their targeted markets [303]. Since 2003,een licensed to 8 of the over 40 corporations fundingh at CMU (Kaneka, PPG, Dionex, Ciba, Mitsubishi, WEP,ions, and Encapson). Licensees around the world havemercial production of specialty polymers [304].

    aid of numerous reports in literature, copolymers withontrolled complex architectures have been commer-ced by ATRP in U. S., Japan, and Europe since 2002,

    pplications among other as components of coatingssives [305], polar thermoplastic elastomers [306308],254,255,257,258,260262,264271], surface modierssealants [305], blend compatibilizers [310,311], wet-

    [310], surfactants [312316] and pigment dispersantsIn the latter example, they were used for coating com-nts, images, inks or lacquers, and other disperse systems

    ase, for optimization of the costperformance relation-structural imperfections can be tolerated. They maysing arms in star polymers, loss of functionality, addi-ching, and polymers with broader MWD. Sometimesf chains may not only facilitate processing but alsoess to materials with new nanostructured morphologies

    Onepolymincludples mand admers aof UV (formu

    Thehigh echain currenhigh haccruestaininsurfacerior of(Fig. 2compa

    Furety of and poing seaadhesiexibl

    Anoerage low DItures (as commateriglass obuildin

    Furtion oto tailo

    Fig. 21. Examples of glazing sealant for self cleaning ghe earliest industrial adopters of ATRP for large-scaleoduction was Kaneka. Kaneka XMAP range of productseral commercial reactive telechelic materials, for exam-re-curable and addition-curable PBA directed at sealante markets [301]. The most common Kaneka XMAP poly-lyacrylates type C (free-radical induced curing by meansat) (formula 36) and type S (moisture curable sealant)) (Schemes 36 and 37).lymers exhibit low MWD (1.11.3 for most grades) andnctionality. A range of molecular weights and mainositions is available [321]. The main advantages overducts are excellent performances in weatherability,il and ultraviolet resistance. One of the advantages that

    use of environmentally stable materials is their non-aracteristics [305]. The benets are seen in the lack oftamination on articial marble attached to the exte-ings by sealants (Kaneka XMAP polyacrylates type C)d b) prepared using ATRP (a perfect example is the

    of Fig. 22a with Fig. 22b and c) [321].ore these polymers have been developed for a vari-

    ications such as sealants, adhesives, coatings, gasketss. Some examples of projected applications are glaz-s for TiO2-coated glasses, oil resistant gaskets, elasticliquid injection molding, coatings, oil resistant linings,ms as well as pressure sensitive adhesives [301].

    active licensees corporation with a strong patent cov-G Industries. PPG explored ATRP as a means to designtional polymer additives of various controlled architec-ding block, gradient, graft, comb and star copolymers)nts for various coatings applications. ATRP copolymer

    hat were evaluated include for example TiO2-treatedself-cleaning properties for use in ofces and residential04].ore, ATRP provides many advantages in modica-

    faces with thin polymer lms, which can be used

  • P. Krl, P. Chmielarz / Progress in Organic Coatings 77 (2014) 913948 941

    Fig. 22. Pictur sed seeffect of conta

    (bio)-compfriction. Thecopolymersment affect[323].

    Moreovecessfully uengineering

    Thus, ATcan be expof the procpolymers.

    6. Summa

    As has bnew types onisms of poTherefore, work, howewere limiteissues.

    This Revsentative reof functionaATRP metho

    New ATpresence ofprocesses. technique utionality is monomer c

    preor co. Thes of tiles attached with acrylate-based sealant prepared by ATRP (a), silicone-bamination after exposure for 4 years [322].

    atibility, adhesion, adsorption, corrosion resistance, and surface properties can also be tuned by tethering block, where the composition and size of each polymer seg-

    TheATRP fcations the morphology and behavior of the polymer brushes

    r, copolymers prepared by ATRP were already suc-sed for drug delivery [107,324337] and for tissue

    applications [107,338340].RP has already been employed in industry, and itected that in the near future it will surface as oneesses of choice for large-scale production of specialty

    ry

    een shown for use ATRP methods in the synthesis off polymer materials it is necessary to know the mecha-lymer chain growth process described in the literature.the major attention was paid to these issues in thisver extensively described in the literature kinetic issuesd here, and focused more to preparative and application

    iew aims to provide an overview of selected but repre-cent developments, trends, and emerging applicationsl block copolymers obtained by using a wide range ofds.

    RP procedures that utilize ppm amounts of Cu in the RA are more environmentally benign than earlier ATRPSignicant progress has been made in ARGET ATRPsing trace amounts of catalysts. If high chain end func-required, polymerization could be stopped at partialonversion and monomer recovered.

    particularlyincreased hing antifousurfaces, thof stimuli-ralso been cter CRP tecapplicationruthenium-

    It is posis returnedmers and cbiomaterialcreating detion of lineathe PU coatnew kinds o

    ATRP haexpected thcesses of chsuch as therials with m

    References

    [1] F. di Lenpolyme

    [2] V. Coestransfer

    [3] G. Zhanmers froalant (b) and both KANEKA XMAP PBA and PDMS sealants showing

    sent review summarizes recent research activities inpolymers with particular emphasis on coatings appli-e highly robust and exible ATRP techniques are suited for the preparation of protective coatings withydrophobicity, functional bioactive surfaces, includ-

    ling and antibacterial surfaces. In addition to bioactivee preparation of functional biomaterials in the formsesponsive micelle delivery systems and hydrogels hasonveniently accomplished by ATRP and macroinifer-hniques. Besides the above coating applications, others such as microgel-core star polymers obtained bycatalyzed LRP, are also worth mentioning.sible to notice that the greater attention, up till now,

    to the modication of acrylic polymers as homopoly-opolymers widely applied already in the production ofs. In our opinion new opportunities in this respect arescribed examples of using ATRP methods for modica-r PU among others to an increase in hydrophobicity ofings, what is creating great hopes for the synthesis off biomaterials.s already been employed in industry, and it can beat in the near future it will surface as one of the pro-oice for large-scale production of specialty polymers

    rmoplastic elastomers, coatings, surfactants, and mate-edical and pharmaceutical applications, among others.

    a, K. Matyjaszewski, Transition metal catalysts for controlled radicalrization, Prog. Polym. Sci. 35 (2010) 9591021.sens, T. Pintauer, K. Matyjaszewski, Functional polymers by atom

    radical polymerization, Prog. Polym. Sci. 26 (2001) 337377.g, J. Hu, G. He, H. Zou, F. Liu, C. Hou, et al., Statistical uorinated copoly-m heterogeneous atom transfer radical copolymerization of styrene

  • 942 P. Krl, P. Chmielarz / Progress in Organic Coatings 77 (2014) 913948

    and 2,2,2-triuoroethyl methacrylate with similar reactivity ratios, J. Polym.Sci. Part A: Polym. Chem. 51 (2013) 18521864.

    [4] Y.-H. Yu, X.-H. Liu, D. Jia, B.-W. Cheng, F.-J. Zhang, H.-N. Li, et al., NascentCu(0) nanoparticles-mediated single electron transfer living radical polymer-ization of acrylonitrile at ambient temperature, J. Polym. Sci. Part A: Polym.Chem. 5

    [5] P. Krl, Pthrough24926

    [6] F.H. Schstructur(2012) 7

    [7] L. HataSalami-miniemInt. J. Ch

    [8] K. Matyfrom su(2007) 4

    [9] W. Jakutransfer39 (200

    [10] D.J. Siegrials for

    [11] G. Maset al., Amethacmethac

    [12] C. BouilcopolymJ. Polym

    [13] J.-S. Wagen atoprocess

    [14] C.Y. Lin,thermoand theJ. Am. C

    [15] K. Matytus and

    [16] R. Gongatom tr(2008) 6

    [17] C. Hou, Rmedium(2008) 3

    [18] Z. Xue, Batom trPolyme

    [19] G. WangmerizatSci. Part

    [20] H. TangChem. S

    [21] H. Gongdevelopof divin

    [22] L. Tong,tion of pPolyme

    [23] J. Jiang,polydis17701

    [24] M. Xionand pre38353

    [25] L. Zhanof styre23324

    [26] Y. Wu, GpolymeAdv. Po

    [27] W.W. HATRP folate in w

    [28] J. Cao, mediatevia rev17471

    [29] T. Wangof tria

    [30] Y. Wangof iron c

    [31] X. Zhaowith be(2008) 3

    [32] T. Opstal, F. Verpoort, Synthesis of highly active ruthenium indenylidene com-plexes for atomtransfer radical polymerization and ring-opening-metathesispolymerization, Angew. Chem. Int. Ed. 42 (2003) 28762879.

    [33] C. Gao, S. Muthukrishnan, W. Li, J. Yuan, Y. Xu, A.H.E. Muller, Linear andhyperbranched glycopolymer-functionalized carbon nanotubes: synthesis,

    netics. Shaol poly

    olyme.A. Kay, Ato

    olym. . Ouchal polnthes. Kotaf paraith rh7466

    Stoffekyl acntain. Luo, al pol4573.A. Brerizat.A. Brrigin oolecuS. Wansitiresenc5727.D.C. Peckelete/meolymed mo

    . Wu, Grylate

    26 (20. Min,ispers.J. Chef gemiini-em. Kwakce of

    4224. Dongte as a

    Yamaving ra. Konkszews012) . Mukith ppacro L.T. Porizatioacrom.R. Dhinetic . Kwakethylacrom

    Muellon of

    ARG.Y. Khf ATRP010) . Nicoolecud cop

    . Zongrfaceodic. Plichiblock6592. Chand acr

    hys. 201 (2013) 14681474.. Chmielarz, Synthesis of PMMA-b-PU-b-PMMA tri-block copolymers

    ARGET ATRP in the presence of air, Express Polym. Lett. 7 (2013)0.acher, P.A. Rupar, I. Manners, Functional block copolymers: nano-ed materials with emerging applications, Angew. Chem. Int. Ed. 518987921.

    mi, V. Haddadi-Asl, L. Ahmadian-Alam, H. Roghani-Mamaqani, M.Kalajahi, Effect of nanoclay on styrene and butyl acrylate AGET ATRP inulsion: Study of nucleation type, kinetics, and polymerization control,em. Kinet. 45 (2013) 221235.jaszewski, H. Dong, W. Jakubowski, J. Pietrasik, A. Kusumo, Graftingrfaces for Everyone: ARGET ATRP in the presence of air, Langmuir 235284531.bowski, K. Min, K. Matyjaszewski, Activators regenerated by electron

    for atom transfer radical polymerization of styrene, Macromolecules6) 3945.wart, J.K. Oh, K. Matyjaszewski, ATRP in the design of functional mate-

    biomedical applications, Prog. Polym. Sci. 37 (2012) 1837.ci, D. Bontempo, N. Tiso, M. Diociaiuti, L. Mannina, D. Capitani,tom transfer radical polymerization of potassium 3-sulfopropyl

    rylate: direct synthesis of amphiphilic block copolymers with methylrylate, Macromolecules 37 (2004) 44644473.hac, E. Cloutet, D. Taton, A. Defeux, R. Borsali, H. Cramail, Blocker micelles as nanoreactors for single-site polymerization catalysts,. Sci. Part A: Polym. Chem. 47 (2009) 197209.ng, K. Matyjaszewski, Controlled/living radical polymerization. Halo-m transfer radical polymerization promoted by a Cu(I)/Cu(II) redox, Macromolecules 28 (1995) 79017910.

    M.L. Coote, A. Gennaro, K. Matyjaszewski, Ab initio evaluation of thedynamic and electrochemical properties of alkyl halides and radicalsir mechanistic implications for atom transfer radical polymerization,hem. Soc. 130 (2008) 1276212774.jaszewski, Atom transfer radical polymerization (ATRP): current sta-

    future perspectives, Macromolecules 45 (2012) 40154039., S. Maclaughlin, S. Zhu, Surface modication of active metals throughansfer radical polymerization grafting of acrylics, Appl. Surf. Sci. 2548026809.. Qu, C. Sun, C. Ji, C. Wang, L. Ying, et al., Novel ionic liquids as reaction

    for ATRP of acrylonitrile in the absence of any ligand, Polymer 494243427..W. Lee, S.K. Noh, W.S. Lyoo, Pyridylphosphine ligands for iron-basedansfer radical polymerization of methyl methacrylate and styrene,r 48 (2007) 47044714., X.L. Zhu, J. Zhu, Z.P. Cheng, Iron-mediated atom transfer radical poly-ion of styrene with tris(3,6-dioxaheptyl) amine as a ligand, J. Polym.

    A: Polym. Sci. 44 (2006) 483489., N. Arulsamy, J. Sun, M. Radosz, Y. Shen, N.V. Tsarevsky, et al., J. Am.oc. 128 (2006) 1627716285., W. Huang, D. Zhang, F. Gong, C. Liu, Y. Yang, et al., Studies on thement of branching in ATRP of styrene and acrylonitrile in the presenceylbenzene, Polymer 49 (2008) 41014108.

    Z. Shen, S. Zhang, Y. Li, G. Lu, X. Huang, Synthesis and characteriza-eruorocyclobutyl aryl ether-based amphiphilic diblock copolymer,

    r 49 (2008) 45344540. X. Lu, Y. Lu, Stereospecic preparation of polyacrylamide with lowpersity by ATRP in the presence of Lewis acid, Polymer 49 (2008)776.g, K. Zhang, Y. Chen, ATRP of 3-(triethoxysilyl)propyl methacrylateparation of stable gelable block copolymers, Eur. Polym. J. 44 (2008)841.g, Z. Cheng, Z. Zhang, D. Xu, X. Zhu, Fe(III)-catalyzed AGET ATRPne using triphenyl phosphine as ligand, Polym. Bull. 64 (2010)4.. Wan, J. Xu, S. Cheng, P. Fang, Reverse atom transfer radical emulsionrization of styrene and butyl acrylate catalyzed by iron complexes,lym. Tech. 32 (2013) 21364.e, L.F. Zhang, J. Miao, Z.P. Cheng, X.L. Zhu, Facile iron-mediated AGETr water-soluble poly(ethylene glycol) monomethyl ether methacry-ater, Macromol. Rapid Commun. 33 (2012) 10671073.L. Zhang, X. Jiang, C. Tian, X. Zhao, Q. Ke, et al., Facile iron-d dispersant-free suspension polymerization of methyl methacrylateerse ATRP in water, Macromol. Rapid Commun. 34 (2013)754., K. Matyjaszewski, ATRP of MMA catalyzed by FeIIBr2 in the presencete anions, Macromolecules 44 (2011) 12261228., Y. Zhang, B. Parker, K. Matyjaszewski, ATRP of MMA with ppm levelsatalyst, Macromolecules 44 (2011) 40224025., X. Luo, B. Li, H. Song, S. Xu, B. Wang, A new ruthenium complexnz[f]indenyl ligand for living radical polymerization, Eur. Polym. J. 442643270.

    ki[34] Q

    cap

    [35] YskP

    [36] Micsy

    [37] Yow6

    [38] F.alco

    [39] Xic3

    [40] Wm

    [41] WOm

    [42] J.-Trp7

    [43] GGlapan

    [44] Yac1

    [45] Kd

    [46] Com

    [47] Yen2

    [48] Hla

    [49] S.li

    [50] Dja(2

    [51] KwM

    [52] CmM

    [53] DK

    [54] YmM

    [55] L.sian

    [56] Mo(2

    [57] Rman

    [58] Gsum

    [59] Ad2

    [60] NanP, and characterization, Macromolecules 40 (2007) 18031815., H. Sun, X. Pang, Q. Shen, A neutral Ni(II) acetylide-mediated radi-merization of methyl methacrylate using the atom transfer radicalrization method, Eur. Polym. J. 40 (2004) 97102.bachii, S.Y. Kochev, L.M. Bronstein, I.B. Blagodatskikh, P.M. Valet-m transfer radical polymerization with Ti(III) halides and alkoxides,Bull. 50 (2003) 271278.i, T. Terashima, M. Sawamoto, Transition metal-catalyzed living rad-ymerization: toward perfection in catalysis and precision polymeris, Chem. Rev. 109 (2009) 49635050.ni, M. Kamigaito, M. Sawamoto, Living radical polymerization-substituted styrenes and synthesis of styrene-based copolymersenium and iron complex catalysts, Macromolecules 33 (2000)751.lbach, D.M. Haddleton, R. Poli, Controlled radical polymerization ofrylates and styrene using a half-sandwich molybdenum(III) complexing diazadiene ligands, Eur. Polym. J. 39 (2003) 20992105.Y. Zhuang, X. Zhao, M. Zhang, S. Xu, B. Wang, Controlled/living rad-ymerization of styrene catalyzed by cobaltocene, Polymer 49 (2008)461.aunecker, Y. Itami, K. Matyjaszewski, Osmium-mediated radical poly-ion, Macromolecules 38 (2005) 94029404.aunecker, W.C. Brown, B.C. Morelli, W. Tang, R. Poli, K. Matyjaszewski,f activity in Cu-, Ru-, and Os-mediated radical polymerization, Macro-les 40 (2007) 85768585.ang, K. Matyjaszewski, Living/controlled radical polymerization.on-metal-catalyzed atom transfer radical polymerization in thee of a conventional radical initiator, Macromolecules 28 (1995)573.izarro, M. Jeria-Orell, O.G. Marambio, A.F. Olea, D.T. Valdes, K.E.r, Synthesis of functional poly(styrene)-block-(methyl methacry-thacrylic acid) by homogeneous reverse atom transfer radicalrization: spherical nanoparticles, thermal behavior, self-aggregation,rphological properties, J, Appl. Polym. Sci. 129 (2013) 20762085.. Dong, J. Xu, G. Ni, Emulsion copolymerization of styrene and butyl

    by reverse atom transfer radical polymerization, J. Appl. Polym. Sci.12) 11521158.

    K. Matyjaszewski, Atom transfer radical polymerization in aqueoused media, Cent. Eur. J. Chem. 7 (2009) 657674.ng, Q.L. Fu, X.X. Bai, S.J. Liu, L. Shen, W.Q. Fan, et al., Facile synthesisni surface-active ATRP initiator and its use in soap-free AGET ATRPulsion polymerization, Chem. Pap. (2013) 6733667341., K. Matyjaszewski, ARGET ATRP of methyl methacrylate in the pres-

    nitrogen-based ligands as reducing agents, Polym. Int. 58 (2009)7., K. Matyjaszewski, ARGET ATRP of 2-(dimethylamino)etyl methacry-n intrinsic reducing agent, Macromolecules 41 (2008) 68686870.go, Y. Nakamura, Recent progress in the use of photoirradiation indical polymerization, Polymer 54 (2013) 981994.olewicz, A.J.D. Magenau, S.E. Averick, A. Simakova, H. He, K. Maty-ki, ICAR ATRP with ppm Cu catalyst in water, Macromolecules 4544614468.umoto, Y. Wang, K. Matyjaszewski, Iron-based ICAR ATRP of styrenem amounts of FeIIIBr3 and 1,1-azobis(cyclohexanecarbonitrile), ACSett. 1 (2012) 599602.ras, D.R. Dhooge, M.-F. Reyniers, G.B. Marin, Computer-aided opti-n of conditions for fast and controlled ICAR ATRP of n-butyl acrylate,ol. Theory Simul. 22 (2013) 136149.ooge, D. Konkolewicz, M.-F. Reyniers, G.B. Marin, K. Matyjaszewski,modeling of ICAR ATRP, Macromol. Theory Simul. 21 (2012) 5269., R. Nicolay, K. Matyjaszewski, Concurrent ATRP/RAFT of styrene and

    methacrylate with dithioesters catalyzed by copper(I) complexes,olecules 41 (2008) 66026604.er, W. Jakubowski, W. Tang, K. Matyjaszewski, Successful chain exten-polyacrylate and polystyrene macroinitiators with methacrylates inET and ICAR ATRP, Macromolecules 40 (2007) 64646472.an, Z. Xue, D. He, S.K. Noh, W.S. Lyoo, Comparative study of a variety

    systems with high oxidation state metal catalyst system, Polymer 516974.lay, Y. Kwak, K. Matyjaszewski, A green route to well-dened high-lar-weight (co)polymers using ARGET ATRP with alkyl pseudohalidesper catalysis, Angew. Chem. 122 (2010) 551554., H. Chen, R. Qu, W. Chunhua, N. Ji, Synthesis of polystyrene via-initiated ARGET ATRP, and use of the resin in mercury removal afteration, J. Hazard. Mater. 186 (2011) 614621.ta, M. Zhong, W. Li, A.M. Elsen, K. Matyjaszewski, Tuning dispersity in

    copolymers using ARGET ATRP, Macromol. Chem. Phys. 213 (2012)668., M.F. Cunningham, R.A. Hutchinson, ARGET ATRP of methacrylatesylates with stoichiometric ratios of ligand to copper, Macromol. Chem.9 (2008) 17971805.

  • P. Krl, P. Chmielarz / Progress in Organic Coatings 77 (2014) 913948 943

    [61] R. Casolari, F. Felluga, V. Frenna, F. Ghel, U.M. Pagnoni, A.F. Parsons, et al., Agreen way to -lactams through a copper catalyzed ARGET-ATRC in ethanoland in the presence of ascorbic acid, Tetrahedron 67 (2011) 408416.

    [62] N. Rocha, P.V. Mendonc a, J.P. Mendes, P.N. Simes, A.V. Popov, T.Guliashvili, et al., Facile synthesis of well-dened telechelic alkyne-terminatransitio

    [63] Y. Fu, Ginitiated

    [64] Y. Gnanpolyme(2004) 3

    [65] Z. Hu, Xwith poreducin

    [66] W. JakuimproveATRP, M

    [67] G.O. OkDNA de

    [68] K. Matyradical p59675

    [69] A.J.D. Mically m8184.

    [70] Q. Lou, Dtion (ATChem. 1

    [71] N. BortControlical gen11391

    [72] B. Li, B.transferbrush g17081

    [73] K. Matyto appli

    [74] V. PercSienkowmetal-cand vin14156

    [75] E. Turapoly(N-58425

    [76] N.H. Ngsingle eelectron12351

    [77] X. Jiangsynergis47 (200

    [78] E. Turana low mtransfer(2011) 5

    [79] N.H. Ngcient rorganic55775

    [80] E. TuraisopropReact. F

    [81] X. Jiangof methJ. Polym

    [82] E. Turanchain tr

    [83] W. Gu, comple(2013) 3

    [84] L. Fan, Hhair ker5662.

    [85] Q. Zhanmediatewith Me

    [86] X.-J. ShiControlylmethyLangmu

    [87] S. Demimer brpolyme

    [88] K. Matyjaszewski, N.V. Tsarevsky, W.A. Braunecker, H. Dong, J. Huang, W.Jakubowski, et al., Role of Cu0 in controlled/living radical polymerization,Macromolecules 40 (2007) 77957806.

    [89] Y. Wang, M. Zhong, W. Zhu, C.-H. Peng, Y. Zhang, D. Konkolewicz, et al.,Reversible-deactivation radical polymerization in the presence of metal-c coppacrom.-H. Peeactivctivati. Konkeversipper.acrom. Zhoneactivinetic . Anasker, editionized a.F. Gaethodolecu. Gao, d the

    Polananchioss-liockm. Nicoansferolyme. Konk.B. Maolymeudy oS. Shedsorpt119

    S. Shenthes978

    .-I. Leelar bru. Pareide/mfects, .A. VorbornlymeSurepolym

    . Matypolym010) 7. Matrepare628

    A. Ben degryaluro. Hadjctures006) 1

    Krl, r pol

    olyure007) 9. Vermethacator, J

    Nayaphip

    olyurelym.

    Krl, sing teerizat

    Shariegradaginee

    Krl, nthes. Vermrminated polystyrene in polar media using ATRP with mixed Fe/Cun metal catalyst, Macromol. Chem. Phys. 214 (2013) 7684.. Li, H. Yu, Y. Liu, Hydrophobic modication of wood via surface-

    ARGET ATRP of MMA, Appl. Surf. Sci. 258 (2012) 25292533.ou, G. Hizal, Effect of phenol and derivatives on atom transfer radicalrization in the presence of air, J. Polym. Sci. Part A: Polym. Chem. 4251359.. Shen, H. Qiu, G. Lai, J. Wu, W. Li, AGET ATRP of methyl methacrylately(ethylene glycol) (PEG) as solvent and TMEDA as both ligand andg agent, Eur. Polym. J. 45 (2009) 23132318.bowski, B. Kirci-Denizli, R.R. Gil, K. Matyjaszewski, Polystyrene withd chain-end functionality and higher molecular weight by ARGETacromol. Chem. Phys. 209 (2008) 3239.elo, L. He, Cu(0) as the reaction additive in purge-free ATRP-assistedtection, Biosens. Bioelectron. 23 (2007) 588592.jaszewski, S. Coca, S.G. Gaynor, M. Wei, B.E. Woodworth, Controlledolymerization in the presence of oxygen, Macromolecules 31 (1998)

    969.agenau, N.C. Strandwitz, A. Gennaro, K. Matyjaszewski, Electrochem-ediated atom transfer radical polymerization, Science 332 (2011)

    .A. Shipp, Recent developments in atom transfer radical polymeriza-RP): methods to reduce metal catalyst concentrations, Chem. Phys.3 (2012) 32573261.olamei, A.A. Isse, A.J.D. Magenau, A. Gennaro, K. Matyjaszewski,led aqueous atom transfer radical polymerization with electrochem-eration of the active catalyst, Angew. Chem. Int. Ed. 50 (2011)11394.

    Yu, W.T.S. Huck, W. Liu, F. Zhou, Electrochemically mediated atom radical polymerization on nonconducting substrates: controlledrowth through catalyst diffusion, J. Am. Chem. Soc. 135 (2013)710.jaszewski, Atom transfer radical polymerization: from mechanismscations, Isr. J. Chem. 52 (2012) 206220.ec, T. Guliashvili, J.S. Ladislaw, A. Wistrand, A. Stjerndal, M.J.ska, et al., Ultrafast synthesis of ultrahigh molar mass polymers by

    atalyzed living radical polymerization of acrylates, methacrylates,yl chloride mediated by SET at 25 C, J. Am. Chem. Soc. 128 (2006)14165.n, T. Caykara, Kinetic analysis of surface-initiated SET-LRP ofisopropylacrylamide), J. Polym. Sci. Part A: Polym. Chem. 48 (2010)847.uyen, B.M. Rosen, V. Percec, Improving the initiation efciency in thelectron transfer living radical polymerization of methyl acrylate withic chain-end mimics, J. Polym. Sci. Part A: Polym. Chem. 49 (2011)247., S. Fleischmann, N.H. Nguyen, B.M. Rosen, V. Percec, Cooperative andtic solvent effects in SET-LRP of MA, J. Polym. Sci. Part A: Polym. Chem.9) 55915605., A. Zeng, T. Caykara, Synthesis of poly(N-isopropylacrylamide) witholecular weight and a low polydispersity index by single-electron

    living radical polymerization, J. Polym. Sci. Part A: Polym. Chem. 491165123.uyen, B.M. Rosen, X. Jiang, S. Fleischmann, V. Percec, New ef-eaction media for SET-LRP produced from binary mixtures of

    solvents and H2O, J. Polym. Sci. Part A: Polym. Chem. 47 (2009)590.n, T. Caykara, A facile route to end-functionalized poly(N-ylacrylamide) brushes synthesized by surface-initiated SET-LRP,unct. Polym. 71 (2011) 10891095., B.M. Rosen, V. Percec, Mimicking, nascent Cu(0) mediated SET-LRPyl acrylate in DMSO leads to complete conversion in several minutes,. Sci. Part A: Polym. Chem. 48 (2010) 403409., T. Caykara, SETLRP of N-isopropylacrylamide in the presence ofansfer agent, J. Polym. Sci. Part A: Polym. Chem. 49 (2011) 28182822.Z. Jia, N.P. Truong, I. Prasadam, Y. Xiao, et al., Release of siRNA withte gene silencing and cell death in cancer cells, Biomacromolecules 143863389.. Chen, S. Wei, F. Cao, Protein-polymer hybrid oil-absorbing gel usingatin as macroinitiator by SET-LRP, React. Funct. Polym. 75 (2014)

    g, P. Wilson, Z. Li, R. McHale, J. Godfrey, A. Anastasaki, Aqueous copper-d living polymerization: exploiting rapid disproportionation of CuBr6TREN, J. Am. Chem. Soc. 135 (2013) 73557363., G.-J. Chen, Y.-W. Wang, L. Yuan, Q. Zhang, D.M. Haddleton, et al.,

    the wettability of poly(N-isopropylacrylamide-co-1-adamantan-1-l acrylate) modied surfaces: the more ada, the bigger impact?ir 29 (2013) 1418814195.rci, S. Kinali-Demirci, T. Caykara, Stimuli-responsive diblock copoly-ushes via vombination of click chemistry and living radicalrization, J. Polym. Sci. Part A: Polym. Chem. 51 (2013) 26772685.

    liM

    [90] CdA

    [91] DRcoM

    [92] MdK

    [93] Ataadm

    [94] Hmm

    [95] Han

    [96] P.brcrSt

    [97] Rtrp

    [98] DGpst

    [99] S.A19

    [100] S.sy75

    [101] Hu

    [102] Boxef

    [103] MnPo

    [104] I. co

    [105] Kco(2

    [106] Kp27

    [107] S.ofh

    [108] Nte(2

    [109] P.eap(2

    [110] Hmti

    [111] S.ampPo

    [112] P.um

    [113] S.den

    [114] P.sy

    [115] Hteer. Comproportionationdisproportionation equilibria and kinetics,olecules 46 (2013) 37933802.ng, M. Zhong, Y. Wang, Y. Kwak, Y. Zhang, W. Zhu, et al., Reversible-ation radical polymerization in the presence of metallic copper.on of alkyl halides by Cu0, Macromolecules 46 (2013) 38033815.olewicz, Y. Wang, M. Zhong, P. Krys, A.A. Isse, A. Gennaro, et al.,

    ble-deactivation radical polymerization in the presence of metallic A critical assessment of the SARA ATRP and SET-LRP mechanisms,olecules 46 (2013) 87498772.g, Y. Wang, P. Krys, D. Konkolewicz, K. Matyjaszewski, Reversible-

    ation radical polymerization in the presence of metallic copper.simulation, Macromolecules 46 (2013) 38163827.tasaki, C. Waldron, P. Wilson, C. Boyer, P.B. Zetterlund, M.R. Whit-t al., High molecular weight block copolymers by sequential monomer

    via Cu(0)-mediated living radical polymerization (SET-LRP): an opti-pproach, ACS Macro. Lett. 2 (2013) 896900.o, K. Matyjaszewski, Synthesis of star polymers by a new core-rst: sequential polymerization of cross-linker and monomer, Macro-les 41 (2008) 11181125.K. Matyjaszewski, Synthesis of star polymers by a combination of ATRP

    click coupling method, Macromolecules 39 (2006) 49604965.owski, J.K. Jeszka, W. Li, K. Matyjaszewski, Effect of dilution onng and gelation in living copolymerization of monomer and divinylnker: modeling using dynamic lattice liquid model (DLL) and Flory-ayer (FS) model, Polymer 52 (2011) 50925101.lay, K. Matyjaszewski, Synthesis of cyclic (co)polymers by atom

    radical cross-coupling and ring expansion by nitroxide-mediatedrization, Macromolecules 44 (2011) 240247.olewicz, S. Sosnowski, D.R. Dhooge, R. Szymanski, M.-F. Reyniers,rin, et al., Origin of the difference between branching in acrylatesrization under controlled and free radical conditions: A computationalf competitive processes, Macromolecules 44 (2011) 83618373.iko, F.C. Sun, A. Randall, D. Shirvanyants, M. Rubinstein, H. Lee,ion-induced scission of carbon-carbon bonds, Nature 440 (2006)4.iko, B.S. Sumerlin, K. Matyjaszewski, Cylindrical molecular brushes:is, characterization, and properties, Prog. Polym. Sci. 33 (2008)5., J. Pietrasik, S.S. Sheiko, K. Matyjaszewski, Stimuli-responsive molec-shes, Prog. Polym. Sci. 35 (2010) 2444.des, R. van Grieken, A. Carrero, J. Moreno, A. Moral, Chromiumetallocene binary catalysts for bimodal polyethylene: hydrogenChem. Eng. J. 213 (2012) 6269.anegas, R. Quijada, G.B. Galland, Syndiotactic poly(propene-co-ene): synthesis and properties at low norbornene incorporation,r 51 (2010) 46274631.z, M.J. Caballero, B. Coto, Composition effects on ethylene/propyleneers studied by GPC-MALS and GPC-IR, Eur. Polym. J. 46 (2010) 4249.jaszewski, M.J. Ziegler, S.V. Arehart, D. Greszta, T. Pakula, Gradienters by atom transfer radical copolymerization, J. Phys. Org. Chem. 1375786.

    yjaszewski, N.V. Tsarevsky, Nanostructured functional materialsd by atom transfer radical polymerization, Nat. Chem. 1 (2009)8.cherif, N.R. Washburn, K. Matyjaszewski, Synthesis by AGET ATRPadable nanogel precursors for in situ formation of nanostructurednic acid hydrogel, Biomacromolecules 10 (2009) 24992507.ichristidis, H. Iatrou, M. Pitsikalis, J. Mays, Macromolecular archi-

    by living and controlled/living polymerization, Prog. Polym. Sci. 310681132.Synthesis methods, chemical structures and phase structures of lin-yurethanes. Properties and applications of linear polyurethanes inthane elastomers, copolymers and ionomers, Prog. Mater. Sci. 52151015.a, K. Tharanikkarasu, Atom transfer radical polymerization of methylrylate using telechelic tribromo terminated polyurethane macroini-. Macromol. Sci. Part A: Pure Appl. Chem. 47 (2010) 407415.k, H. Verma, K. Tharanikkarasu, Synthesis and characterization ofhilic and hydrophobic ABA-type tri-block copolymers using telechelicthane as atom transfer radical polymerization macroinitiator, Coll.Sci. 288 (2010) 181188.P. Chmielarz, Synthesis of poly(urethane-methacrylate) copolymerstraphenylethane-urethane macroinitiator through controlled poly-ion ARGET ATRP method, Polimery 49 (2014) 203216.fpoor, R. Labow, S.P.J. Santerre, Synthesis and characterization ofble polar hydrophobic ionic polyurethane scaffolds for vascular tissuering applications, Biomacromolecules 10 (2009) 27292739.P. Chmielarz, Controlled radical polymerization (CRP) methods in theis of polyurethane copolymers, Polimery 56 (2011) 530540.a, K. Tharanikkarasu, Novel telechelic 2-methyl-2-bromopropionateted polyurethane macroinitiator for the synthesis of ABA type

  • 944 P. Krl, P. Chmielarz / Progress in Organic Coatings 77 (2014) 913948

    tri-block copolymers through atom transfer radical polymerization of methylmethacrylate, Polym. J. 40 (2008) 867874.

    [116] P. Krl, P. Chmielarz, B. Krl, K. Pielichowska, Comparison of hydrolyticresistance of polyurethanes and poly(urethane-methacrylate) copolymers interms of their use as polymer coatings into contact with the physiologicalliquid, P

    [117] U. CPolyestedensati212 (20

    [118] D. BozuJrme,late) hyLangmu

    [119] Y. Zhouvia surfaJ. 138 (2

    [120] X. Gao,formingassemb83038

    [121] X. Fan, grafted ylene gl

    [122] C. RodrBrynda,ing polypolyme(2012) 5

    [123] F. Hu, Kticles PEBiomac

    [124] V. StadPEGMAhydroph

    [125] K. Glineterial anBioconj

    [126] F. Teixesis of pfor the63664

    [127] X.-S. Shchloridemer formembr

    [128] Y. Wanmicro/nronmen

    [129] X. Li, M.surfacesactivity

    [130] Z. Wu, Hvinylpyatom tr

    [131] R. Chenfer radimethac

    [132] P. Yang,on orga113 (20

    [133] G. Gunktriglycefrom bl(2013) 7

    [134] T. RiedeHouskahuman muir 29

    [135] C. Sugnabrush-m

    [136] N.-J. LinSurfacehydrophtance, L

    [137] T.-W. Crelease cally ind(2013) 9

    [138] Q. Shi, J.sulfoneblendin5059.

    [139] F.J. Xu, branes 23 (200

    [140] Y. Sui, Z. Wang, X. Gao, C. Gao, Antifouling PVDF ultraltration membranesincorporating PVDF-g-PHEMA additive via atom transfer radical graft poly-merizations, J. Membr. Sci. 413414 (2012) 3847.

    [141] F.J. Xu, S.P. Zhong, L.Y.L. Yung, Y.W. Tong, E.T. Kang, K.G. Neoh, Collagen-coupled poly(2-hydroxyethyl methacrylate)Si(111) hybrid surfaces for cell

    mob. Li, J. Zanoarrppl. M. Zhanuman . Li, J.J.lane in

    Ren, Zlls gute) br. Zhanlin G yers fsonan. Berndlar weiocida. Tu, ties oly(di6137C. Ngo

    al., Mlock co.-S. Liuembrd pla.J. Yang and4 (201. Murareadirface

    . Quinabilitychitec.-W. Yon frotifou

    . Hu, rganicilities,. Rodrachmaterfac1236. Berndon wit. Lazoolystyried c. Zhao

    f polyeycol) 011)

    Yuanupledeir an. Mund antnts in.A. Quutes t

    Rn, Ibricat

    a com. Basraftingerizatr the olecu. Senaer bruiomac.-I. Jeosemblock co.I. Jeoanopaes. 29 ol. J. Chem. Tech (2014), in press.hatterjee, X. Wang, S.K. Jewrajka, M.D. Soucek,r/poly(meth)acrylate block copolymers by combined polycon-

    on/ATRP: characterization and properties, Macromol. Chem. Phys.11) 18791890.kova, C. Pagnoulle, M.C. De Pauw-Gillet, N. Ruth, R. Jrme, C.

    Imparting antifouling properties of poly(2-hydroxyethyl methacry-drogels by grafting poly(oligoethylene glycol methyl ether acrylate),ir 24 (2008) 66496658., S. Wang, B. Ding, Z. Yang, Modication of magnetite nanoparticlesce-initiated atom transfer radical polymerization (ATRP), Chem. Eng.008) 578585.

    W. Feng, S. Zhu, H. Sheardown, J.L. Brash, A facile method of nanoscale patterns on poly(ethylene glycol)-based surfaces by self-ly of randomly grafted block copolymer brushes, Langmuir 24 (2008)308.L. Lin, P.B. Messersmith, Cell fouling resistance of polymer brushesfrom Ti substrates by surface-initiated polymerization: effect of eth-ycol side chain length, Biomacromolecules 7 (2006) 24432448.iguez-Emmenegger, E. Hasan, O. Pop-Georgievski, M. Houska, E.

    A. Bologna Alles, Controlled/living surface-initiated ATRP of antifoul-mer brushes from gold in PBS and blood sera as a model study forr modications in complex biological media, Macromol. Biosci. 1225532..G. Neoh, L. Cen, E.-T. Kang, Cellular response to magnetic nanopar-Gylated via surface-initiated atom transfer radical polymerization,

    romolecules 7 (2006) 809816.ler, R. Kirmse, M. Beyer, F. Breitling, T. Ludwig, F.R. Bischoff,/MMA copolymer graftings: generation, protein resistance, and aobic domain, Langmuir 24 (2008) 81518157.l, A.M. Jonas, T. Jouenne, J. Leprince, L. Galas, W.T.S. Huck, Antibac-d antifouling polymer brushes incorporating antimicrobial peptide,

    ug. Chem. 20 (2009) 7177.ira Jr., A.M. Popa, S. Guimond, D. Hegemann, R.M. Rossi, Synthe-oly(oligo(ethylene glycol)methacrylate)-functionalized membranesrmally controlled drug delivery, J. Appl. Polym. Sci. 129 (2013)3.ao, J.-H. Li, Q. Zhou, J. Miao, Q.-Q. Zhang, Amphiphilic poly(vinyl)-g-poly[poly(ethylene glycol) methylether methacrylate] copoly-

    the surface hydrophilicity modication of poly(vinylidene uoride)ane, J. Appl. Polym. Sci. 129 (2013) 24722478.g, F. Zhou, X. Liu, L. Yuan, D. Li, Y. Wang, et al., Aptamer-modiedanostructured surfaces: efcient capture of ramos cells in serum envi-t, ACS Appl. Mater. Interfaces 5 (2013) 38163823.

    Wang, L. Wang, X. Shi, Y. Xu, B. Song, et al., Block copolymer modied for conjugation of biomacromolecules with control of quantity and, Langmuir 29 (2013) 11221128.. Chen, X. Liu, Y. Zhang, D. Li, H. Huang, Protein adsorption on poly(N-rrolidone)-modied silicon surfaces prepared by surface-initiatedansfer radical polymerization, Langmuir 25 (2009) 29002906., W. Feng, S. Zhu, G. Botton, B. Ong, Y. Wu, Surface-initiated atom trans-cal polymerization of polyhedral oligomeric silsesquioxane (POSS)rylate from at silicon wafer, Polymer 47 (2006) 11191123.

    W. Yang, Surface chemoselective phototransformation of CH bondsnic polymeric materials and related high-tech applications, Chem. Rev.13) 55475594.el, W.T.S. Huck, Cooperative adsorption of lipoprotein phospholipids,rides, and cholesteryl esters are a key factor in nonspecic adsorptionood plasma to antifouling polymer surfaces, J Am. Chem. Soc. 1350477052.l, Z. Riedelova-Reicheltova, P. Majek, C. Rodriguez-Emmenegger, M., J.E. Dyr, et al., Complete identication of proteins responsible forblood plasma fouling on poly(ethylene glycol)-based surfaces, Lang-

    (2013) 33883397.ux, L. Lavanant, H.-A. Klok, Aqueous fabrication of pH-gated, polymer-odied alumina hybrid membranes, Langmuir 29 (2013) 73257333., H.-S. Yang, Y. Chang, K.-L. Tung, W.-H. Chen, H.-W. Cheng, et al.,

    self-assembled PEGylation of uoro-based PVDF membranes viaobic-driven copolymer anchoring for ultra-stable biofouling resis-

    angmuir 29 (2013) 1018310193.huo, T.-C. Wei, Y. Chang, Y.-L. Liu, Electrically driven biofoulingof a poly(tetrauoroethylene) membrane modied with an electri-uced reversibly cross-linked polymer, ACS Appl. Mater. Interfaces 59189925.-Q. Meng, R.-S. Xu, X.-L. Du, Y.-F. Zhang, Synthesis of hydrophilic poly-

    membranes having antifouling and boron adsorption properties viag with an amphiphilic graft glycopolymer, J. Membr. Sci. 444 (2013)

    J.P. Zhao, E.T. Kang, K.G. Neoh, J. Li, Functionalization of nylon mem-via surface-initiated atom-transfer radical polymerization, Langmuir7) 85858592.

    im[142] Y

    nA

    [143] Yh

    [144] Ysi

    [145] T.cela

    [146] Yulare

    [147] Eub

    [148] Qerp3

    [149] T.etb

    [150] Pman

    [151] Win1

    [152] DSpsu

    [153] Rstar

    [154] Wrian

    [155] Rob

    [156] CBin6

    [157] Eti

    [158] Dpva

    [159] Wogl(2

    [160] S.coth

    [161] Aanta

    [162] Mro

    [163] T.luat

    [164] J.SGmfom

    [165] WmB

    [166] Yasb

    [167] YnRilization, Tissue Eng. 11 (2005) 17361748.hang, W. Liu, D. Li, L. Fang, H. Sun, et al., Hierarchical polymer brushays: a versatile way to prepare multiscale patterns of proteins, ACSater. Interfaces 5 (2013) 21262132.g, R.G. Carbonell, O.J. Rojas, Bioactive cellulose nanobrils for specicIgG binding, Biomacromolecules 14 (2013) 41614168.

    Peterson, S.B. Jhaveri, K.R. Carter, Patterned polymer lms via reactivefusion-induced wrinkling, Langmuir 29 (2013) 46324639.. Mao, J. Guo, C. Gao, Directional migration of vascular smooth muscleided by a molecule weight gradient of poly(2-hydroxyethyl methacry-ushes, Langmuir 29 (2013) 63866395.g, N. Islam, R.G. Carbonell, O.J. Rojas, Specic binding of immunoglob-with bioactive short peptides supported on antifouling copolymeror detection in quartz crystal microgravimetry and surface plasmonce, Anal. Chem. 85 (2013) 11061113.t, S. Behnke, M. Ulbricht, Inuence of alkyl chain length and molec-

    ight on the surface functionalization via adsorption/entrapment withl cationic block copolymers, Eur. Polym. J. 47 (2011) 23792390.J.-C. Wang, R. Liu, J. He, Y. Zhang, S. Shen, Antifouling prop-of poly(dimethylsiloxane) surfaces modied with quaternizedmethylaminoethyl methacrylate), Coll. Surf. B: Biointer. 102 (2013)0., R. Kalinova, D. Cossement, E. Hennebert, R. Mincheva, R. Snyders,odication of the adhesive properties of silicone-based coatings bypolymers, Langmuir 30 (2014) 358368., Q. Chen, S.-S. Wu, J. Shen, S.-C. Lin, Surface modication of celluloseanes with zwitterionic polymers for resistance to protein adsorptiontelet adhesion, J. Membr. Sci. 350 (2010) 387394.g, T. Cai, Barnacle cement as surface Anchor for clicking of antifoul-

    antimicrobial polymer brushes on stainless steel, Biomacromolecules3) 20412051.kami, M. Kobayashi, T. Moriwaki, Y. Ikemoto, H. Jinnai, A. Takahara,ng and structuring of water on superhydrophilic polyelectrolyte brushs, Langmuir 29 (2013) 11481151.tana, M. Gosa, D. Janczewski, E. Kutnyanszky, G.J. Vancso, Enhanced

    of low fouling zwitterionic polymer brushes in seawater with diblockture, Langmuir 29 (2013) 1085910867.ue, H.-J. Li, T. Xiang, H. Qin, S.-D. Sun, C.-S. Zhao, Grafting of zwitte-m polysulfone membrane via surface-initiated ATRP with enhancedling property and biocompatibility, J. Membr. Sci. 446 (2013) 7991.G. Li, Y. Jiang, Y. Zhang, J.-J. Zou, L. Wang, Silverzwitterioninorganic nanocomposite with antimicrobial and antiadhesive capa-

    Langmuir 29 (2013) 37733779.iguez-Emmenegger, C.M. Preuss, B. Yameen, O. Pop-Georgievski, M.nn, J.O. Mueller, et al., Controlled cell adhesion on poly(dopamine)es photopatterned with non-fouling brushes, Adv. Mater. 25 (2013)127.t, M. Ulbricht, Synthesis of block copolymers for surface functionaliza-h stimuli-responsive macromolecules, Polymer 50 (2009) 51815191.s, S. Franzka, M. Ulbricht, Size-selective protein adsorption torene surfaces by self-assembled grafted poly(ethylene glycols) withhain lengths, Langmuir 21 (2005) 87748784., C. He, H. Wang, B. Su, S. Sun, Ch. Zhao, Improved antifouling propertythersulfone hollow ber membranes using additive of poly(ethylenemethyl ether-b-poly(styrene) copolymers, Ind. Eng. Chem. Res. 5032953303., D. Wan, B. Liang, S.O. Pehkonen, Y.P. Ting, K.G. Neoh, et al., Lysozyme-

    poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids andtifouling and antibacterial surfaces, Langmuir 27 (2011) 27612774.oz-Bonilla, A.M. van Herk, J.P.A. Heuts, Preparation of hairy particlesifouling lms using brush-type amphiphilic block copolymer surfac-

    emulsion polymerization, Macromolecules 43 (2010) 27212731.adir, M. Martin, P.T. Hammond, Clickable synthetic polypeptides o new highly adaptive biomaterials, Chem. Mater. 26 (2014) 461476.. Javakhishvili, K. Jankova, S. Hvilsted, S. Lee, Adsorption and aqueousing properties of charged and neutral amphiphilic diblock copolymerspliant, hydrophobic interface, Langmuir 29 (2013) 77827792.

    uki, L. Esser, P.B. Zetterlund, M.R. Whittaker, C. Boyer, T.P. Davis, of P(OEGA) onto magnetic nanoparticles using Cu(0) mediated poly-ion: Comparing grafting from and to approaches in the searchoptimal material design of nanoparticle MRI contrast agents, Macro-les 46 (2013) 60386047.ratne, L. Andruzzi, C.K. Ober, Self-assembled monolayers and poly-shes in biotechnology: current applications and future perspectives,romolecules 6 (2005) 24272448.ng, D.H. Kim, C.-W. Chung, J.J. Yoo, K.H. Choi, C.H. Kim, et al., Self-led nanoparticles of hyaluronic acid/poly(dl-lactide-co-glycolide)polymer, Coll. Surf. B: Biointer. 90 (2012) 2835.

    ng, K.C. Choi, C.E. Song, Doxorubicin release from core-shell typerticles of poly(dl-lactide-co-glycolide)-grafted dextran, Arch. Pharm.(2006) 712719.

  • P. Krl, P. Chmielarz / Progress in Organic Coatings 77 (2014) 913948 945

    [168] F. Zhou, D. Li, Z. Wu, B. Song, L. Yuan, H. Chen, Enhancing specic bind-ing of L929 broblasts: effects of multi-scale topography of GRGDY peptidemodied surfaces, Macromol. Biosci. 12 (2012) 13911400.

    [169] Q. Ye, F. Zhou, W. Liu, Bioinspired catecholic chemistry for surface modica-tion, Chem. Soc. Rev. 40 (2011) 42444258.

    [170] H. Lee, Schemist

    [171] K.-Y. Judopamiradical-

    [172] B.H. Kiminspiredteon, g

    [173] J.H. Chomers fo37943

    [174] F.J. Xu, transfer

    [175] F. Zhangnium susurface 90779

    [176] G. Gao,dathu, Ainuencantimic

    [177] G. Gao, compatpolyme(2011) 3

    [178] S.B. Leemanentradical p

    [179] J. HuanNonleacnumber(2008) 6

    [180] H. Murleachingbacteria

    [181] J. Huangrial polyBiomac

    [182] J.M. Thopoly[2-(blendin(2007) 1

    [183] F. Guo-Dmicrobpolyme

    [184] B.R. Coagraftingof prote

    [185] B. Li, B. initiated(2012) 5

    [186] B. Li, B. surface-Commu

    [187] M. RamHuck, Sbrushes33143

    [188] Z. Chenpermanpolyme

    [189] G.Q. Zhacal polyability,

    [190] Y. Wanof copoland ran

    [191] F. Yao, Gfunctionatom tr

    [192] C.H. Alabiomed

    [193] H.-N. Leature ph43 (201

    [194] B. ChenadhesioBiomate

    [195] P.N. WaImproveJ. Biome

    [196] Z. Zhou, S. Zhu, D. Zhang, Grafting of thermo-responsive polymer inside meso-porous silica with large pore size using ATRP and investigation of its use indrug release, J. Mater. Chem. 17 (2007) 24282433.

    [197] A. Mizutani, A. Kikuchi, M. Yamato, H. Kanazawa, T. Okano, Preparation ofthermoresponsive polymer brush surfaces and their interaction with cells,iomate. Nagaeparaplica(2008. Nagacial preir in. Weanorodart d

    L. Yaoocompolym

    .-L. Lunetics919

    .J. Lohicellizopropiblock.J. LoodegrydroxyermoF. Lutdv. MaD. Jocpolym322

    A. Planing lutionte), MA. Plam

    al., Methacatter.. Wei,icellei. 34 (DimitosensteractJ. Xu,orespmperJ. Xu, Ssponsdical 004) 2. Yu, Lpped007) 2.D. Kuquenty of d20.

    .-L. Luer mic012) 5.-N. YNIPAMlym. . Gaoibutiorface

    .-C. Chphy: 013) 5. Yu, J. rfaceater. IJ.T. Reorespr efc79.Texterpolymmeth74..M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surfacery for multifunctional coatings, Science 318 (2007) 426430., T. Lee, S. Lee, S.B. Park, J.-K. Lee, Bioinspired polymerization ofne to generate melanin-like nanoparticles having an excellent free-scavenging property, Biomacromolecules 12 (2011) 625632., D.H. Lee, J.Y. Kim, D.O. Shin, H.Y. Jeong, S. Hong, et al., Mussel-

    block copolymer lithography for low surface energy materials ofraphene, and gold, Adv. Mater. 23 (2011) 56185622., K. Shanmuganathan, C.J. Ellison, Bioinspired catecholic copoly-r antifouling surface coatings, ACS Appl. Mater. Interfaces 5 (2013)802.K.G. Neoh, E.T. Kang, Bioactive surfaces and biomaterials via atom

    radical polymerization, Prog. Polym. Sci. 34 (2009) 719761., Z.L. Shi, P.H. Chua, E.T. Kang, K.G. Neoh, Functionalization of tita-rfaces via controlled living radical polymerization: from antibacterialto surface for osteoblast adhesion, Ind. Eng. Chem. Res. 46 (2007)086.

    K. Yu, J. Kindrachuk, D.E. Brooks, R.E.W. Hancock, J.N. Kizhakke-ntibacterial surfaces based on polymer brushes: Investigation on thee of brush properties on antimicrobial peptide immobilization androbial activity, Biomacromolecules 12 (2011) 37153727.D. Lange, K. Hilpert, J. Kindrachuk, Y. Zou, J.T.J. Cheng, et al., The bio-ibility and biolm resistance of implant coatings based on hydrophilicr brushes conjugated with antimicrobial peptides, Biomaterials 328993909.

    , R.R. Koepsel, S.W. Morley, K. Matyjaszewski, Y. Sun, A.J. Russell, Per-, nonleaching antibacterial surfaces. 1. Synthesis by atom transferolymerization, Biomacromolecules 5 (2004) 877882.

    g, R.R. Koepsel, H. Murata, W. Wu, S.B. Lee, T. Kowalewski, et al.,hing antibacterial glass surfaces via grafting onto: the effect of the

    of quaternary ammonium groups on biocidal activity, Langmuir 247856795.

    ata, R.R. Koepsel, K. Matyjaszewski, A.J. Russell, Permanent, non- antibacterial surfaces 2: how high density cationic surfaces killl cells, Biomaterials 28 (2007) 48704879., H. Murata, R.R. Koepsel, A.J. Russell, K. Matyjaszewski, Antibacte-propylene via surface-initiated atom transfer radical polymerization,romolecules 8 (2007) 13961399.massin, S. Lenoir, J. Riga, R. Jrme, C. Detrembleur, Grafting oftert-butylamino)ethyl methacrylate] onto polypropylene by reactiveg and antibacterial activity of the copolymer, Biomacromolecules 81711177.ong, Y. Fang, L. Zhigang, L. Xinsong, Solvent-resistant antibacterialers of self-quaternized block copolymers from atom transfer radical

    rization and electrospinning, J. Mater. Chem. 18 (2008) 859867.d, Y. Lu, L. Meagher, A substrate-independent method for surface

    polymer layers by atom transfer radical polymerization: Reductionin adsorption, Acta Biomater. 8 (2012) 608618.Yu, W.T.S. Huck, F. Zhou, W. Liu, Electrochemically induced surface-

    atom transfer radical polymerization, Angew. Chem. Int. Ed. 510925095.Yu, F. Zhou, In situ AFM investigation of electrochemically inducedinitiated atom transfer radical polymerization, Macromol. Rapidn. 34 (2013) 246250.stedt, N. Cheng, O. Azzaroni, D. Mossialos, H.J. Mathieu, W.T.S.ynthesis and characterization of poly(3-sulfopropylmethacrylate)

    for potential antibacterial applications, Langmuir 23 (2007)321.g, X. Zhu, Z. Shi, K.G. Neoh, E.T. Kang, Polymer microspheres withent antibacterial surface from surface-initiated atom transfer radicalrization, Ind. Eng. Chem. Res. 44 (2005) 70987104.i, Z.L. Shi, E.T. Kang, K.G. Neoh, Surface-initiated atom transfer radi-merization on poly(vinylidene uoride) membrane for antibacterialMacromol. Biosci. 5 (2005) 974982.g, J. Xu, Y. Zhang, H. Yan, K. Liu, Antimicrobial, hemolytic activitiesymers with cationic and hydrophobic groups: a comparison of blockdom copolymers, Macromol. Biosci. 11 (2011) 14991504..-D. Fu, J. Zhao, E.-T. Kang, K.G. Neoh, Antibacterial effect of surface-alized polypropylene hollow ber membrane from surface-initiated

    ansfer radical polymerization, J. Membr. Sci. 319 (2008) 149157.rcon, S. Pennadam, C. Alexander, Stimuli responsive polymers forical applications, Chem. Soc. Rev. 34 (2005) 276285.e, N. Newell, Z. Bai, T.P. Lodge, Unusual lower critical solution temper-ase behavior of poly(ethylene oxide) in ionic liquids, Macromolecules0) 95229528., F.J. Xu, K.G. Neoh, E.T. Kang, W.N. Wang, et al., Engineering cell de-n dynamics on thermo-responsive poly(N-isopropylacrylamide), Actar. 4 (2008) 218229.hjudi, J.H. Oh, S.O. Salman, J.A. Seabold, D.C. Rodger, Y.C. Tai, et al.,ment of metal and tissue adhesion on surface-modied parylene C,d. Mater. Res. A 86 (2009) 206214.

    B[198] K

    Prap9

    [199] Kfath

    [200] Qnsm

    [201] Z.bico

    [202] Yki18

    [203] XMistr

    [204] Xbihth

    [205] J.-A

    [206] F.co24

    [207] F.Tusola

    [208] F.etmM

    [209] HmSc

    [210] I. min

    [211] F.mte

    [212] F.rera(2

    [213] Hca(2

    [214] Mseer9

    [215] Ym(2

    [216] WP(Po

    [217] Htrsu

    [218] Bra(2

    [219] QsuM

    [220] S.mfo70

    [221] J. co3-69rials 29 (2008) 20732081.se, J. Kobayashi, A. Kikuchi, Y. Akiyama, H. Kanazawa, T. Okano,tion of thermoresponsive cationic copolymer brush surfaces andtion of the surface to separation of biomolecules, Biomacromolecules) 13401347.se, J. Kobayashi, A. Kikuchi, Y. Akiyama, H. Kanazawa, T. Okano, Inter-operty modulation of thermoresponsive polymer brush surfaces andteraction with biomolecules, Langmuir 23 (2007) 94099415.i, J. Ji, J. Shen, Synthesis of near-infrared responsive gold/PNIPAAm core/shell nanohybrids via surface initiated ATRP forrug delivery, Macromol. Rapid Commun. 29 (2008) 645650., K.C. Tam, Temperature induced micellization and aggregation ofpatible poly (oligo(ethylene glycol)methyl ether methacrylate) blocker analogs in aqueous solutions, Polymer 53 (2012) 34463453.

    o, L.-L. Zhang, F. Xu, Synthesis, micellization and caffeine drug release of novel PBMA-b-PNIPAAm block polymer brushes, Chem. Eng. J.0 (2012) 431442., Y.-L. Wu, W.T.J. Seow, M.N.I. Norimzan, Z.-X. Zhang, F.-J. Xu, et al.,ation and phase transition behavior of thermosensitive poly(N-ylacrylamide)poly(3-caprolactone)poly(N-isopropylacrylamide)

    copolymers, Polymer 49 (2008) 50845094.h, Z.-X. Zhang, Y.-L. Wu, T.S. Lee, J. Li, Synthesis of noveladable thermoresponsive triblock copolymers based on poly[(R)-3-butyrate] and poly(N-isopropylacrylamide) and their formation of

    responsive micelles, Macromolecules 42 (2009) 194202.z, Thermo-switchable materials prepared using the OEGMA-platform,ter. 23 (2011) 22372243.hum, P.J. Roth, D. Kessler, P. Theato, Double thermoresponsive blockers featuring a biotin end group, Biomacromolecules 11 (2011)

    439.mper, M. Ruppel, A. Schmalz, O. Borisov, M. Ballauff, A.H.E. Muller,the thermoresponsive properties of weak polyelectrolytes: aqueouss of star-shaped and linear poly(N,N-dimethylaminoethyl methacry-acromolecules 40 (2007) 83618366.per, J.R. McKee, A. Laukkanen, A. Nykanen, A. Walther, J. Ruokolainen,

    iktoarm stars of poly(ethylene oxide) and poly(dimethylaminoethylrylate): manipulation of micellization by temperature and light, Soft

    5 (2009) 18121821. S.-X. Cheng, X.-Z. Zhang, R.-X. Zhuo, Thermo-sensitive polymerics based on poly(N-isopropylacrylamide) as drug carriers, Prog. Polym.2009) 893910.rov, B. Trzebicka, A.H.E. Muller, A. Dworak, C.B. Tsvetanov, Ther-itive water-soluble copolymers with doubly responsive reversiblying entities, Prog. Polym. Sci. 32 (2007) 12751343.

    S.P. Zhong, L.Y.L. Yung, Y.W. Tong, E.-T. Kang, K.G. Neoh, Ther-onsive comb-shaped copolymer-Si(1 0 0) hybrids for acceleratedature-dependent cell detachment, Biomaterials 27 (2006) 12361245..P. Zhong, L.Y.L. Yung, E.T. Kang, K.G. Neoh, Surface-active and stimuli-ive polymer-Si(100) hybrids from surface-initiated atom transferpolymerization for control of cell adhesion, Biomacromolecules 53922403..H. Gan, X. Hu, Y.Y. Gan, A pH-sensitive double [60]fullerene-end-

    polymers via ATRP: Synthesis and aggregation behavior, Polymer 483122321.rkuri, T.M. Aminabhavi, Poly(vinyl alcohol) and poly(acrylic acid)ial interpenetrating network pH-sensitive microspheres for the deliv-iclofenac sodium to the intestine, J. Controlled Release 96 (2004)

    o, W. Yu, F. Xu, pH-responsive PMAA-b-PEG-b-PMAA triblock copoly-elles for prednisone drug release and release kinetics, Polym. Bull. 6997620.u, S.-X. Liu, H.-M. Wang, R. Tian, Synthesis and micellization of-co-HMAM)-b-PEO-b-P(NIPAM-co-HMAM) triblock copolymers, J.

    Res. 19 (2012) 99899995., J. Xiong, T. Cheng, J. Liu, L. Chu, J. Liu, et al., In vivo biodis-n of mixed shell micelles with tunable hydrophilic/hydrophobic, Biomacromolecules 14 (2013) 460467.oi, S. Choi, D.E. Leckband, Poly(N-isopropyl acrylamide) brush topog-dependence on grafting conditions and temperature, Langmuir 298415850.

    Cho, P. Shivapooja, L.K. Ista, G.P. Lopez, Nanopatterned smart polymers for controlled attachment, killing, and release of bacteria, ACS Appl.nterfaces 5 (2013) 92959304.zaei, M.Z. Nabid, H. Niknejad, A.A. Entezami, Folate-decorated ther-onsive micelles based on star-shaped amphiphilic block copolymersient intracellular release of anticancer drugs, Int. J. Pharm. 437 (2012)

    , V.A. Vasantha, R. Crombez, R. Maniglia, L. Slater, T. Mourey, Triblocker based on poly(propylene oxide) and poly(1-[11-acryloylundecyl]-

    yl-imidazolium bromide), Macromol. Rapid Commun. 33 (2012)

  • 946 P. Krl, P. Chmielarz / Progress in Organic Coatings 77 (2014) 913948

    [222] Y. Akiyama, A. Kikuchi, M. Yamato, T. Okano, Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for celladhesion/detachment control, Langmuir 20 (2004) 55065511.

    [223] E. Yancheva, D. Paneva, V. Maximova, L. Mespouille, P. Dubois, N.Manolova, et al., Polyelectrolyte complexes between (cross-linked) N-carboxymethacBiomac

    [224] Z.-Y. MRespontransferJ. Agric.

    [225] B.-Y. Zhof blockPolyme

    [226] J.C. Garresponsfor deli18331

    [227] E. BittrtemperSci. Part

    [228] X.J. LohAppl. Po

    [229] L. Ruiz, et al., via stim13013

    [230] Z. XionbehavioJ. Colloi

    [231] C. Di, XdenedPolym.

    [232] Q. Jin, Gdouble-(2010) 2

    [233] R.-S. Lestimuli-b-poly(p

    [234] R.E. RichEvaluatical polyBiomac

    [235] Y. Shaumethaceluting

    [236] A.M.M. advance58 (201

    [237] X.B. Zhstructurantisenciency,

    [238] S.R. Mmodic16151

    [239] T. Higasmethac52755

    [240] A.J.D. Mlene RAof poly80448

    [241] J. Sed, function

    [242] A. LewmethacBioconj

    [243] Y. Farhacoveredmanufa52454

    [244] R.R. ShaUsing ators pattransfer

    [245] B. Zhaomolecu

    [246] B. Lego,brushesMacrom

    [247] E. Yildirlms by

    [248] E. Turaisoprop

    atom transfer radical polymerization, J. Polym. Sci. Part A: Polym. Chem. 48(2010) 38803887.

    [249] N. Gurbuz, S. Demirci, S. Yavuz, T. Caykara, Synthesis of cationic N-[3-(Dimethylamino)propyl]methacrylamide brushes on silicon wafer viasurface-initiated RAFT polymerization, J. Polym. Sci. Part A: Polym. Chem.9 (201L. Hen002) . Gentce to . Kaulantol

    nginee. 423.. Pa

    oly(terizati002) . Yue, ree-dssue e.D. Esone su

    (2013S. Staethyl009) . Chanties oarboh. Parkr cart.M. Baydrogeotenti3244.J. JunerapyydrogeC. Benaded .E. Babistribuiomat. Kazmartmef hydr010),.-W. Cle an

    7065 Cumaucoseudy, J. ChatydrogeC. Leerical p. Gao, rylic

    elivery. Singhressind per

    . Myuterpeound . Cimer bri. Kuboation osslin.Y. Xioplica

    (2006Grodzolled . Pateosslinacroin. Jiangolyure010) . Pateoly(vin2773ethylchitosan and (quaternized) poly[2-(dimethylamino)ethylrylate]: Preparation, characterization, and antibacterial properties,romolecules 8 (2007) 976984.a, X. Jia, G.-X. Zhang, J.-M. Hu, X.-L. Zhang, Z.-Y. Liu, et al., pH-sive controlled-release fertilizer with water retention via atom

    radical polymerization of acrylic acid on mussel-inspired initiator, Food Chem. 61 (2013) 54745482.ang, W.-D. He, W.-T. Li, L.-Y. Li, K.-R. Zhang, H. Zhang, Preparation-brush PEG-b-P(NIPAM-g-DMAEMA) and its dual stimulus-response,r 51 (2010) 30393046.bern, A.S. Hoffman, P.S. Stayton, Injectable pH- and temperature-ive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymersvery of angiogenic growth factors, Biomacromolecules 11 (2010)839.ich, M. Kuntzsch, K.-J. Eichhorn, P. Uhlmann, Complex pH- andature-sensitive swelling behavior of mixed polymer brushes, J. Polym.

    B: Polym. Phys. 48 (2010) 16061615., Poly(DMAEMA-co-PPGMA): dual-responsive reversible micelles, J.lym. Sci. 127 (2013) 9921000.M.T. Garay, J.M. Laza, J.L. Vilas, J. Rodriguez-Hernandez, C. Labrugere,Reversible functionalization of nanostructured polymer surfacesuli-responsive interpolymer complexes, Eur. Polym. J. 49 (2013)

    8.g, B. Peng, X. Han, C. Peng, H. Liu, Y. Hu, Dual-stimuli responsivers of diblock polyampholyte PDMAEMA-b-PAA in aqueous solution,d Interface Sci. 356 (2011) 557565.. Jiang, R. Lui, J. Yin, Multistimuli responsive micelles based on well-

    amphiphilic comb poly(ether amine) (acPEA), J. Polym. Sci. Part A:Chem. 48 (2010) 34683475.. Liu, J. Ji, Micelles and reverse micelles with a photo and thermoresponsive block copolymer, J. Polym. Sci. Part A: Polym. Chem. 488552861.

    e, W.-H. Chen, Y.-T. Huang, Synthesis and characterization of dualresponsive block copolymers based on poly(N-isopropylacrylamide)-seudoamino acid), Polymer 51 (2010) 59425951.ard, M. Schwarz, S. Ranade, A.K. Chan, K. Matyjaszewski, B. Sumerlin,

    ion of acrylate-based block copolymers prepared by atom transfer rad-merization as matrices for maclitaxel delivery from coronary stents,

    romolecules 6 (2005) 34103418.lov, R. Okner, Y. Levi, N. Tal, V. Gutkin, D. Mandler, et al., Poly(methylrylate) grafting onto stainless steel surfaces: Application to drug-stents, ACS Appl. Mater. Interfaces 1 (2009) 25192528.Jani, D. Losic, N.H. Voelcker, Nanoporous anodic aluminium oxide:s in surface engineering and emerging applications, Prog. Mater. Sci.3) 636704.ao, F. Pan, Z.Q. Zhang, C. Grant, Y.H. Ma, S.P. Armes, Nano-e of polyplexes formed between cationic diblock copolymer andse oligodeoxynucleotide and its inuence on cell transfection ef-Biomacromolecules 8 (2007) 34933502.eyers, M.W. Grinstaff, Biocompatible and bioactive surfaceations for prolonged in vivo efcacy, Chem. Rev. 112 (2012)632.hihara, D. Feng, R. Faust, Synthesis of poly(isobutylene-block-methylrylate) by a novel coupling approach, Macromolecules 39 (2006)279.agenau, N. Martinez-Castro, D.A. Savin, R.F. Storey, Polyisobuty-FT CTA by a click chemistry site transformation approach: synthesis(isobutylene-b-N-isopropylacrylamide), Macromolecules 42 (2009)051.J. Saiz-Poseu, F. Busqu, D. Ruiz-Molina, Catechol-based biomimetical materials, Adv. Mater. 25 (2013) 653701.is, Y. Tang, S. Brocchini, J.-W. Choi, A. Godwin, Poly(2-ryloyloxyethyl phosphorylcholine) for protein conjugation,ug. Chem. 19 (2008) 21442155.tnia, A. Tan, A. Motiwala, B.G. Cousins, A.M. Seifalian, Evolution of

    stents in the contemporary era: clinical application, materials andcturing strategies using nanotechnology, Biotechnol. Adv. 31 (2013)2.h, D. Mecerreyes, M. Husemann, I. Ress, N.L. Abbott, C.J. Hawker, et al.,tom transfer radical polymerization to amplify monolayers of initia-terned by microcontact printing into polymer brushes for pattern, Macromolecules 33 (2000) 597605., W.J. Brittain, Polymer brushes: surface-immobilized macro-

    les, Prog. Polym. Sci. 25 (2000) 677710. W.G. Skene, S. Glasson, Swelling study of responsive polyelectrolyte

    grafted from mica substrates: effect of pH, salt, and grafting density,olecules 43 (2010) 43844393.im, E. Turan, T. Caykara, Construction of myoglobin imprinted polymer

    grafting from silicon surface, J. Mater. Chem. 22 (2012) 636642.n, T. Caykara, Construction of hydroxyl-terminated poly(N-ylacrylamide) brushes on silicon wafer via surface-initiated

    4[250] L.

    (2[251] R

    fa[252] G

    TrEp

    [253] J.Hpte(2

    [254] Zthti

    [255] Mb9

    [256] S.m(2

    [257] CerC

    [258] Hfo

    [259] Bhp4

    [260] Hthh

    [261] L.lo

    [262] DdB

    [263] Kpo(2

    [264] Hab5

    [265] S.glst

    [266] Kh

    [267] S.to

    [268] Xacd

    [269] Bdan

    [270] Dinw

    [271] Dfo

    [272] Mizcr

    [273] Xap6

    [274] J. tr

    [275] Acrm

    [276] Gp(2

    [277] Ap71) 423431.ch, J.M. Polak, Third-generation biomedical materials, Science 295

    10141017.sch, H.G. Borner, Designing three-dimensional materials at the inter-biology, Adv. Polym. Sci. 140 (2011) 163193., M. Amiji, Polymeric gene delivery systems, in: M.J. Yaszemski, D.J.o, K.U. Lewandrowski, V. Hasirci, D.E. Altobelli, D.L. Wise (Eds.), Tissuering and Novel Delivery Systems, Marcel Dekker Inc., New York, 2004,

    rk, Y.H. Bae, Hydrogels based on poly(ethylene oxide) andtramethylene oxide) or poly(dimethyl siloxane): synthesis, charac-on, in vitro protein adsorption and platelet adhesion, Biomaterials 2317971808.F. Wen, S. Gao, M.Y. Ang, P.K. Pallathadka, L. Liu, et al., Preparation ofimensional interconnected macroporous cellulosic hydrogels for softngineering, Biomaterials 31 (2010) 81418152.te, D. Eglin, Hydrogels in calcium phosphate moldable and injectablebstitutes: sticky excipients or advanced 3-D carriers? Acta Biomater.) 54215430.lling, S.O. Akintoye, S.B. Nicoll, Development of photocrosslinkedcellulose hydrogels for soft tissue reconstruction, Acta Biomater. 519111918.g, N. Peng, M. He, Y. Teramoto, Y. Nishio, L. Zhang, Fabrication and prop-f chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials,ydr. Polym. 91 (2013) 713., B. Choi, J. Hu, M. Lee, Injectable chitosan hyaluronic acid hydrogelsilage tissue engineering, Acta Biomater. 9 (2013) 47794786.iley, R. Fei, D. Munoz-Pinto, M.S. Hahn, M.A. Grunlan, PDMSstarPEGls prepared via solvent-induced phase separation (SIPS) and their

    al utility as tissue engineering scaffolds, Acta Biomater. 8 (2012)333.g, M. Abou-Jaoude, B.E. Carbia, C. Plummer, A. Chauhan, Glaucoma

    by extended release of timolol from nanoparticle loaded silicone-l contact lenses, J. Controlled Release 165 (2013) 8289.gani, A. Chauhan, Extended delivery of an anionic drug by contact lenswith a cationic surfactant, Biomaterials 34 (2013) 28142821.cock, R.W. Hergenrother, D.A. Craig, F.D. Kolodgie, R. Virmani, In vivotion of particulate matter from coated angioplasty balloon catheters,erials 34 (2013) 31963205.ierska, R. Thompson, N. Morris, A. Long, T. Ciach, In vitro multicom-

    ntal bladder model for assessing blockage of urinary catheters: Effectogel coating on dynamics of proteus mirabilis growth, Urology 76

    515.e1520.hien, W.-B. Tsai, S. Jiang, Direct cell encapsulation in biodegrad-

    d functionalizable carboxybetaine hydrogels, Biomaterials 33 (2012)712.na, J. Simons, A. Liese, L. Hilterhaus, I. Smirnova, Immobilization of

    6-phosphate dehydrogenase in silica-based hydrogels: a comparative. Mol. Catal. B: Enzym. 8586 (2013) 220228.urvedi, K. Ganguly, M.K. Nadagouda, T.M. Aminabhavi, Polymericls for oral insulin delivery, J. Controlled Release 165 (2013) 129138., I.K. Kwon, K. Park, Hydrogels for delivery of bioactive agents: a his-erspective, Adv. Drug Deliv. Rev. 65 (2013) 1720.

    C. He, C. Xiao, X. Zhuang, X. Chen, Biodegradable pH-responsive poly-acid derivative hydrogels with tunable swelling behavior for oral

    of insulin, Polymer 54 (2013) 17861793., L. Pal, Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel woundgs for slow drug delivery: Mechanical, mucoadhesive, biocompatiblemeability properties, J. Mech. Behav. Biomed. Mater. 9 (2012) 921.ng, N. Farooqui, L.L. Zheng, W. Koh, S. Gupta, A. Bakri, et al., Bioactivenetrating polymer network hydrogels that support corneal epithelialhealing, J. Biomed. Mater. Res. A 90 (2009) 7081.n, E. Akbulut, G. Demirel, T. Caykara, Molecularly imprinted hydrogelsnogen recognition, React. Funct. Polym. 69 (2009) 655659., T. Matsuura, H. Morimoto, T. Uno, T. Itoh, Preparation and polymer-

    of a water-soluble, nonbonding crosslinking agent for a mechanicallyked hydrogel, J. Polym. Sci. Part A: Polym. Chem. 43 (2005) 50325040.ng, K.C. Tam, L.H. Gan, Polymeric nanostructures for drug deliverytions based on pluronic copolymer systems, J. Nanosci. Nanotechnol.) 26382650.inski, Preparation of functionalized polymers using living and con-polymerizations, J. React. Funct. Polym. 49 (2001) 154.l, K. Mequanint, Syntheses and characterization of physicallyked hydrogels from dithiocarbamate-derived polyurethaneiferter, J. Polym. Sci. Part A: Polym. Chem 46 (2008) 62726284., X. Tuo, D. Wang, J. Liu, Syntheses and self-assembly of novelthaneitaconic acid copolymer hydrogels, React. Funct. Polym. 70175181.l, K. Mequanint, Novel physically crosslinked polyurethane-block-yl pyrrolidone) hydrogel biomaterials, Macromol. Biosci. 7 (2007)7.

  • P. Krl, P. Chmielarz / Progress in Organic Coatings 77 (2014) 913948 947

    [278] K. Mequanint, A. Patel, D. Bezuidenhout, Synthesis, swelling behavior,and biocompatibility of novel physically cross-linked polyurethane-block-poly(glycerol methacrylate) hydrogels, Biomacromolecules 7 (2006)883891.

    [279] S.F.M. Van Dongan, H.-P.M. De Hoog, R.J.R.W. Peters, M. Nallani, R.J.M.Nolte, J62126

    [280] T. Terasthermothesis ocores vi(2007) 3

    [281] H. Gao, architecto gels,

    [282] A. Blenccontroll