25
1 Quantum physics Quantum physics (quantum theory, quantum (quantum theory, quantum mechanics) mechanics) Part 3

1 Quantum physics (quantum theory, quantum mechanics) Part 3

Embed Size (px)

Citation preview

Page 1: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

1

Quantum physicsQuantum physics(quantum theory, quantum (quantum theory, quantum

mechanics)mechanics)Part 3

Page 2: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

2

Summary of 2Summary of 2ndnd lecture lecture

classical physics explanation of black-body radiation failed

Planck’s ad-hoc assumption of “energy quanta” of energy Equantum = h, modifying Wien’s radiation law,

leads to a radiation spectrum which agrees with experiment.

old generally accepted principle of “natura non facit saltus” violated

Opens path to further developments

Page 3: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

3

OutlineOutline Introduction spin of the electron

Stern-Gerlach experiment spin hypothesis (Goudsmit, Uhlenbeck) spin states, superposition,…

cathode rays and electronst models of the atom Summary

Page 4: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

4

normale Zeeman-EffectH-Atom im äußeren Magnetfeld B

e

r IA

L

n

z-Achse

B

H-AtomH-Atom

B 0

3-D Drehsymmetrie im Raum

B 0

1-D Drehsymmetrie um z-Achse

partielle Symmetriebrechung

Störpotential ( klassisch ):

e-Bahnbewegung magnetisches Moment eμ

2

rπ2v

e

rπA

eνeI

nAIAIμ

nrveμ 21

e

LμnvrmprLem2

eee

Bahndrehimpuls:

BLBLBμV zm2e

m2e

e ee

Störpotential:

Page 5: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

5

BLV zm2e

eKlassisches Störpotential:

LV zm2Be

e LV zm2

Be

eQuantenmechanisch:

Störungsrechnung 1. Ordnung BmLEδee m2

e

mnzm2

Bemn

m

Aufhebung der m-Entartung BμmEδEδ Bmmn BμmEδEδ Bmmn

Bohrsches Magneton: 124

eB TJ1027,9

m2

B

eI

L

r

z

Experimentelle Beobachtung: B 0 B 0

2p

1s m 0

m 0m 1

m 1

E

1Δm 0Δm 1Δm

Spektrallinien spalten auf! Problem: Theorie wird quantitativ

nur schlecht bestätigt!

Page 6: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

6

B 0 B 0

2p

1s m 0

m 0m 1

m 1

E

1Δm 0Δm 1Δm

eI

L

r

zB

Beobachtung des Photons in -Richtung

m 0: existiert nicht ( keine Dipolstrahlung entlang der Schwingungsachse )

m 1: Photonen sind rechts / links zirkular polarisiert

B

Beobachtung des Photons senkrecht zur -RichtungB

m 0: Photonen sind linear polarisiert in -RichtungB

m 1: Photonen sind linear polarisiert senkrecht zur -RichtungB

Drehimpulserhaltung wird vom Photon übernommenmΔLΔ z

m 1: e-Kreisschwingung -StrahlungB

m 0: e-Schwingung ∥ -StrahlungB

Page 7: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

7

B 0 B 0

2p

1s m 0

m 0m 1

m 1

E

1Δm 0Δm 1Δm

eI

L

r

zB

Drehimpulserhaltung wird vom Photon übernommenmΔLΔ z

m 1: e-Kreisschwingung -StrahlungB

m 0: e-Schwingung ∥ -StrahlungB

Experimenteller Befund: Strahlungsübergänge mit m 1 finden nicht statt, bzw. sind stark unterdrückt ( höhere Multipolübergänge mit mehreren Photonen ).

Folgerung: Photonen tragen einen Eigendrehimpuls ( Spin ) von . 1

Theorie hierzu: Zeitabhängige Störungstheorie; Quantenfeldtheorie

Bemerkung: Spin ist rein quantenmechanisches Konzept. Es gibt kein klassisches Analogon.

Page 8: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

8

4.3. Relativistische Korrekturen

• Elektron-Geschwindigkeit abhängig von ℓ Aufhebung der ℓ-Entartung

• Orientierung von nicht relevant m-Entartung bleibt erhalten

relativistische Massenzunahme

L

Störung ( klassisch ):

2e

2242ekin cmcpcmE

2ecm

p2e cm1cm 22

e

2

2cm

p81

cm

p21

22e

2

22e

2

1

23

e

22

e

2

cm8

pm2p

0kinE

23

e

22

cm8

pV

ΔV 2

cm8 23e

4 ΔV 2

cm8 23e

4Störoperator ( quantenmechanisch )

ip

Störungsrechnung 1. Ordnung mit Wasserstoff-Wellenfunktion ( s. Lehrbücher )

1

n4

3

n

αZEEδV

21

22

nnmn

1

n4

3

n

αZEEδV

21

22

nnmn

137

1107,297353

cεπ4

eα 3

0

2

Sommerfeldsche Feinstrukturkonstante

Page 9: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

9

1

n4

3

n

αZEEδV

21

22

nnmn

1

n4

3

n

αZEEδV

21

22

nnmn

137

1107,297353

cεπ4

eα 3

0

2

Sommerfeldsche Feinstrukturkonstante

2

2

n n

ZRyE

1

n4

3

n

Zα1

n

ZRyE

21

22

2

2

n

1

n4

3

n

Zα1

n

ZRyE

21

22

2

2

n

Beispiel: Z 1 ( Wasserstoff )

1

01λ1

401

cm05,1δ

eV103,1Eδ

eV101Eδ

eV104Eδ5

12

502

nicht mehr entartet!

Generell: Der kleine Wert der Feinstrukturkonstante rechtfertigt Störungsrechnung. α10 25

Ry

Eδ n O α10 25

Ry

Eδ n O ≲

Page 10: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

10

4.4. Der Spin des Elektrons

4.4.1. Das Stern-Gerlach-Experiment ( 1921 )

BN

S

Ag-Strahl

zz ezBB

inhomogen

Ofen

AgAg-DampfBlende

Glasscheibe

z

x

Ag-Strahl

N

S

Magnet

0

z0

Ag-

Dic

hte

B

0B↗B↗↗

Page 11: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

11

BN

S

Ag-Strahl

zz ezBB

inhomogen

z0

Ag-

Dic

hte

B

0B↗B↗↗

Erklärung: Ag-Atome haben magnetisches Moment zB

zzzzμBμF

μ

Problem: Grundzustand des Ag-Atoms ist s-Zustand 0μ pulsBahndrehim

Hypothese: ( Goudsmith, Uhlenbeck, 1925 )

Elektronen tragen einen Eigendrehimpuls bzw. Spin magnet. Moments

Bemerkung: Spin ist rein quantenmechanisches Konzept. Es gibt kein klassisches Analogon.

Quantenmechanischer Ansatz analog zum Bahndrehimpulsoperator:

s,,1s,sm,ms1sss SSz22

Page 12: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

12

BN

S

Ag-Strahl

zz ezBB

inhomogen

z0

Ag-

Dic

hte

B

0B↗B↗↗

s,,1s,sm,ms1sss SSz22

Bahndrehimpuls: Operator des magnetischen Moments Bahndrehimpulsoperator

Ansatz: Magnetisches Spinmoment des Elektrons sγμ S

sγμ S

gyromagnetisches Verhältnis1925 war bekannt ( Untersuchung von Mehrelektronen-Atomen ): Das magnetische

Moment des Ag-Atoms wird nur von einem Valenzelektron getragen. Die übrigen magnetischen Momente kompensieren sich ( abgeschlossene Schalen ).

Folge: Kraft im Magnetfeld zB

SzB

zzB

Szzzz

zγmsγμF

Page 13: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

13

BN

S

Ag-Strahl

zz ezBB

inhomogen

z0

Ag-

Dic

hte

B

0B↗B↗↗

s,,1s,sm,ms1sss SSz22

sγμ S

sγμ S

z

BSz

zγmF

Teilchen mit halbzahligem Spin heißen Fermionen.

Teilchen mit ganzzahligem Spin heißen Bosonen.

Teilchen mit halbzahligem Spin heißen Fermionen.

Teilchen mit ganzzahligem Spin heißen Bosonen.

Fazit: Beobachtung von zwei Stern-Gerlach-Peaks 2s 1 2

21

S21 ms Das Elektron ist ein Spin-½-

Teilchen.Das Elektron ist ein Spin-½-

Teilchen.

Page 14: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

14

Das Vektormodell des Elektronen-Spins:

z

x

y

Kugelradius 31ss 21

21

21

Sm

21

sm

s

21

s

s

21

z

2432

s

s

21

z

2432

s 21 s 21

Page 15: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

15

4.4.2. Der Einstein-de-Haas-Effekt ( 1915 )

Anwendung: Messung des gyromagnetischen Verhältnisses S des Elektronenspins.

Feldspule

Eisenzylinder

Torsionsfaden

Spiegel

z

Lichtquelle

Skala

Magnetfeld in Feldspule hinreichend groß, um Eisenzylinder bis zur

Sättigung zu magnetisieren.

Alle magnetischen Spinmomente sind voll in z-Richtung ausgerichtet.

Magnetfeld in Feldspule hinreichend groß, um Eisenzylinder bis zur

Sättigung zu magnetisieren.

Alle magnetischen Spinmomente sind voll in z-Richtung ausgerichtet.

Page 16: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

16

Comparison with Bohr model***Comparison with Bohr model***

, 1, 2,3,zL n n

20

0, Bohr radiusn

n ar a

Z

Angular momentum (about any axis) assumed to be quantized in units of Planck’s constant:

Electron otherwise moves according to classical mechanics and has a single well-defined orbit with radius

Energy quantized and determined solely by angular momentum:

Bohr model Quantum mechanics

2

2, Hartree

2n h h

ZE E E

n

, , ,zL m m l l

020

1 , Bohr radiusZ

ar n a

2

2, Hartree

2n h h

ZE E E

n

Angular momentum (about any axis) shown to be quantized in units of Planck’s constant:

Energy quantized, but is determined solely by principal quantum number, not by angular momentum:

Electron wavefunction spread over all radii. Can show that the quantum mechanical expectation value of the quantity 1/r satisfies

Page 17: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

17

6.6 The remaining approximations6.6 The remaining approximations

This is still not an exact treatment of a real H atom, because we have made several approximations. We have neglected the motion of the nucleus. To fix this we

would need to replace me by the reduced mass μ (see slide 1). We have used a non-relativistic treatment of the electron and in

particular have neglected its spin (see §7). Including these effects gives rise to

o “fine structure” (from the interaction of the electron’s orbital motion with its spin), and

o “hyperfine structure” (from the interaction of the electron’s spin with the spin of the nucleus)

We have neglected the fact that the electromagnetic field acting between the nucleus and the electron is itself a quantum object. This leads to “quantum electrodynamic” corrections, and in particular to a small “Lamb shift” of the energy levels.

Page 18: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

18

7.1 Atoms in magnetic fields7.1 Atoms in magnetic fields

Interaction of classically orbiting electron with magnetic field:

v

Orbit behaves like a current loop:

2

Loop current= (- sign because charge )2

Magnetic moment current area

=2 2

where (the Bohr magneton).2

e Be

Be

eve

r

ev e Lr m vr

r m

e

m

In the presence of a magnetic field B, classical interaction energy is:

r

Corresponding quantum mechanical expression (to a good approximation) involves the angular momentum operator:

μ

Reading: Rae Chapter 6; B&J §6.8, B&M Chapter 8 (all go further than 2B22)

Page 19: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

19

Splitting of atomic energy levelsSplitting of atomic energy levels

Suppose field is in the z direction. The Hamiltonian operator is

0ˆ ˆ ˆB z

z

BH H L

We chose energy eigenfunctions of the original atom that are eigenfunctions of Lz so these same states are also eigenfunctions of the new H.

0 0ˆ ;

ˆ .

m m

z m m

H E

L m

Page 20: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

20

Splitting of atomic energy levels (2)Splitting of atomic energy levels (2)

0B

Predictions: should always get an odd number of levels. An s state (such as the ground state of hydrogen, n=1, l=0, m=0) should not be split.

(2l+1) states with same energy: m=-l,…+l

(Hence the name “magnetic quantum number” for m.)

0B

Page 21: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

21

7.2 The Stern-Gerlach experiment***7.2 The Stern-Gerlach experiment***

( ) F μ B

Study deflection of atoms in inhomogeneous magnetic field. Force on atoms is

Gerlach

N

S

Produce a beam of atoms with a single electron in an s state (e.g. hydrogen, sodium)

Results show two groups of atoms, deflected in opposite directions, with magnetic moments

B Consistent neither with classical physics (which would predict a continuous distribution of μ) nor with our quantum mechanics so far (which always predicts an odd number of groups, and just one for an s state).

Page 22: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

22

7.3 The concept of spin***7.3 The concept of spin***

Try to understand these results by analogy with what we know about the ordinary (“orbital”) angular momentum: must be due to some additional source of angular momentum that does not require motion of the electron. Known as “spin”.

Introduce new operators to represent spin, assumed to have same commutation relations as ordinary angular momentum:

Goudsmit Uhlenbeck

Corresponding eigenfunctions and eigenvalues:

Pauli

(will see in Y3 that these equations can be derived directly from the commutation relations)

Page 23: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

23

Spin quantum numbers for an electronSpin quantum numbers for an electron

0ˆˆ ˆ ˆ( )

2 (Dirac's relativistic theory)(beyond 2B22)

2.00231930437 (Quantum Electrodynamics)

BH H g

g

g

B L S

General interaction with magnetic field:

From the Stern-Gerlach experiment, we know that electron spin along a given axis has two possible values.

So, choose

But we also know from Stern-Gerlach that magnetic moments associated with the two possibilities are

B So, have

Spin angular momentum is twice as “effective” at producing magnetic moment as orbital angular momentum.

Page 24: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

24

A complete set of quantum numbersA complete set of quantum numbers

Hence the complete set of quantum numbers for the electron in the H atom is: n,l,m,s,ms.

Corresponding to a full wavefunction

Note that the spin functions χ do not depend on the electron coordinates r,θ,φ; they represent a purely internal degree of freedom.

H atom in magnetic field, with spin included:

Page 25: 1 Quantum physics (quantum theory, quantum mechanics) Part 3

25

7.4 Combining different angular 7.4 Combining different angular momentamomenta

1 12 2,

, ,j

j l l

m j j

So, an electron in an atom has two sources of angular momentum:

•Orbital angular momentum (arising from its motion through the atom)

•Spin angular momentum (an internal property of its own).

To think about the total angular momentum produced by combining the two, use the vector model once again:

Lx

Ly

Lz

Vector addition between orbital angular momentum L (of magnitude L) and spin S (of magnitude S): produces a resulting angular momentum vector J: quantum mechanics says its magnitude lies somewhere between |L-S| and L+S.(in integer steps).

L

S

L+S

|L-S|

For a single electron, corresponding `total angular momentum’ quantum numbers are

Determines length of resultant angular momentum vectorDetermines orientation

J L S

L

S