22
1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean Andrews (Hubble Fellow) Andrews et al. 2008 Burrows et al. 1996

1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

  • View
    215

  • Download
    1

Embed Size (px)

Citation preview

Page 1: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

1

Protoplanetary Disks: An Observer’s Perpsective

David J. Wilner (Harvard-Smithsonian CfA)

RAL 50th, November 13, 2008

Chunhua Qi

Meredith Hughes

Sean Andrews (Hubble Fellow)

Andrews et al. 2008Burrows et al. 1996

Page 2: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

2

Circumstellar Disks• integral part of star/planet

formation paradigm before disks spatially resolved– inevitable consequence of

gravity + ang. mom.

– Solar System fossil record

– preponderance of circumstantial evidence

• observational challenges

– bulk of disk mass is cold (and dark) H2, probed by minor constituents only

– Solar System scales small, difficult to image

Shu, Adams & Lizano, 1987 ARA&A

100 AU0.7” @ 140 pc

Page 3: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

3

Panchromatic Systems

Dullemond et al. 2007

x-ray uv optical mid/far-ir submm cmhot gas/accr. starlight warm… cool gas & dust

dust dominates the opacity, gas dominates the mass

Page 4: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

4

• optical shadows are beautiful but opaque mm emission

• Imm B(T)(1 - e-)d– 1 - e- where

dust emissivity

– Rayleigh-Jeans: B(T) T

• Lmm ∫ T Md

• typical Md 0.01 M

(wide range exists)

Disk Masses

Andrews & Williams 2007 (cf. Beckwith et al. 1990)

for > 300 systems in nearby Taurus and Oph clouds

Page 5: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

5

Disk Mass Distributions

“Minimum Mass Solar Nebula” Steady Irradiated Disk

~ r-1.5

Weidenschilling 1977 (also Hayashi 1981)

D’Alessio et al. 2001

~ r-1.0

csH (Shakura & Sunyaev 1973)

~ (dM/dt)/3(r1.5T)-1r-1

(r) ~ r -p

— Adams, Shu & Lada 1988

Page 6: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

6

flux limited sample: Oph (125 pc) and TWA (50 pc) regions

870 microns, 0.25” resolution, surface density structure to r < 20 AU

Submillimeter Array Survey

Page 7: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

7

SMA Survey (12 disks so far)

Oph TWA100 AU

Page 8: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

8

Surface Density Distributions• fit resolved submm data

and SED simultaneously– stellar properties

– dust properties (uniform)

– Dullemond RADMC code (temperature structure computed, not imposed)

Page 9: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

9

Surface Density Distributions

densities comparable to MMSN (extrapolation) + significant mass reservoir

good potential for planet formation (e.g. Inaba et al. 2003, Hubickyj et al. 2005)

r-1

Andrews et al., in prep

Page 10: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

10

• other two Oph disks… diminished emission inside r ~ 20-40 AU

growing sample of disks with large central holes

Evidence for Central Holes

J. Brown, Ph.D. thesis (see Pontoppidan et al. 2008)

Andrews et al., in prep

mechanism(s)?

Page 11: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

11

• CO: most abundant gas tracer of H2 (e.g.

Koerner et al. 1993, Mannings et al. 1997, Dutrey et al. 1997, Simon et al. 2000, …)

– low J lines collisionally excited, thermalized, optically thick (T r-0.5)

– confusion with ambient cloud is often a major problem

• many other (much weaker) species (e.g. Kastner et al. 1997, Dutrey et al. 1997, van Zadelhof et al. 2003, Thi et al.. 2004, …)

– rich chemistry: ion-molecule, deuteration, photo-, organics

– HCO+, DCO+, HCN, CN, DCN, CS, H2CO, CH3OH, …

Isella et al. 2007

Spectral Line EmissionSMA TW Hya CO 3-2

Hughes et al., in prep

(Qi et al. 2004, 2006)

SMA HD 163296 CO 3-2

Page 12: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

12

Velocity Fields

• Keplerian rotation – v r-0.5

• turbulence?– subsonic (if

present)

TW HyaSMA CO 3-2v = 44 m/s

Hughes et al., in prep

Page 13: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

13

Nebular Chemistry• D/H enhanced at low temps: H3

+ + HD H2D+ + H2 + E

• is pristine cometary material: “interstellar” or “nebular”?

• TW Hya: radial distributions of DCO+ and HCO+

– D/H ratio from 0.01 to 0.1 from r<30 to 90 AU

– in situ fractionation is important

Qi et al. 2008HCO+ 3-2 DCO+ 3-2

Page 14: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

14

Outer Edge Complexity

• power law models do not match observed extent of dust and CO emission – e.g. HD 163296: 200 AU (dust)

vs. 600 AU (CO)

– not limited sensitivity

– outer disk dust:gas ratio? dust opacity?

• accretion disk structure: exponential outer edge– reconciles dust and gas sizes

with same model

SMA 1.3/0.87 mmCO J=3-2

Hughes et al. 2008

Page 15: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

15

Disk Magnetic Fields• aligned dust grains

linear polarization– models: ~2% pol.

fraction 870 m (Cho & Lazarian 2007)

– tentative JCMT detections: toroidal field (Tamura et al. 1999)

• SMA polarimetry of HD 163296 – < 5x below model

– magnetic field geometry? grain alignment?

Hughes et al. in prep

Page 16: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

16

Concluding Remarks• observed disk properties are “protoplanetary”

– dust (Spectral Energy Distributions)

– gas (accretion, flaring, mm lines)

– sizes 10’s - 100’s AU (dust, mm lines)

– masses ~ 0.01 M (mm dust)

r -1 (mm dust)

– holes cleared by planets? (mm dust)

– kinematics Keplerian (mm lines)

• ALMA on the horizon: full operation 2013?– 10-100x sensitivity, resolution, image quality– global partnership to fund >$1B construction

– disks are a Key Science Goal

Page 17: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

17

END

Page 18: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

18

Evidence for Central Holes• GM Aur disk: diminished opacity for R < 24 AU

C. EspaillatCalvet et al. 2005

Hughes et al., in prep

Page 19: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

19

Transition Disk Models

• dynamical clearing by planet– planet interacts tidally with disk,

transfers angular momentum, opens gap, viscosity opposes (Papaloizou & Lin 1984, …)

• photoevaporation – accretion rate drops below mass

loss rate, open gap: “uv switch” (Clarke et al. 2001,…)

• demographics favor planets– large masses

– modest accretion rates

Najita et al. 2007

Page 20: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

20

• infrared excess

• 50% (90%) gone by 3 (5) Myr

• also gas accretion timescale

• 1-2 Myr T-Tauri stars

• Lmm ∫B(T)(1 - e-)d T

• <Md> 0.01 M

Disk Mass and Disk Dispersal

Andrews & Williams 2007 (cf. Beckwith et al. 1990)

Hernandez et al. 2007(cf. Haish et al. 2001)

Page 21: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

21

Disk Evolution: Multiple Paths?

B. Merin, Spitzer c2d team

primordialdisk

“cold” disk

“anemic” disk

debris disk

Page 22: 1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean

22

At the Limits of ALMA• hypothetical planet in TW Hya disk

model density distribution

simulated ALMA 900 GHz imageWolf & D’Angelo 2005

5 AU