36
1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

1

Linear View Synthesis Using a Dimensionality Gap Light Field Prior

Anat Levin and Fredo Durand

Weizmann Institute of Science & MIT CSAIL

Page 2: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

22Light fields

Light field: the set of rays emitted from a scene in all possible directions

Page 3: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

33Light fields

Novel view rendering

(Animation by Marc Levoy)

Page 4: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

44Light fields

Novel view rendering

(Animation by Marc Levoy)

Page 5: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

55Light fields

Novel view rendering Synthetic refocusing

(Animation by Marc Levoy)

Page 6: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

66

u

v

4D light field

The set of light rays hitting the camera aperture plane is 4D:

• Ray hitting point- 2D

• Ray orientation- 2D

(In general: a 7D plenoptic space, including time and wavelength dimensions)

Page 7: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

77Light field acquisition schemes and priors

Very different approaches to light field acquisition and manipulations exist in the literature.

The inherent difference between them is a different prior model on the light field space

Page 8: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

88Light field acquisition schemes and priors

• 4D:

The light field is smooth, but involves 4 degrees of freedom

-Capture: 4D data (e.g. camera array)

-Inference: linear

Page 9: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

99

• 4D:

-Capture: 4D data (e.g. camera array)

-Inference: linear

• 2D:

For Lambertian scenes all rays emerging from one point have same color. If depth is known, only 2 degrees of freedom

-Capture: 2D data (e.g. stereo camera)

-Inference: non linear depth estimation

Light field acquisition schemes and priors

Page 10: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

1010In this talk: 3D light field prior

• 4D:

-Capture: 4D data (e.g. camera array

-Inference: linear

• 2D:-Capture: 2D data (e.g. stereo camera)

-Inference: non linear depth estimation

• 3D:

Depth is a 1D variable, hence the union of images at any depth covers no more than a 3D subset. Show that in the frequency domain there is only a 3D manifold of non zero entries.

-Capture: 3D data (e.g. focal stack)

-Inference: linear

uvy

x

Page 11: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

1111Outline

• Linear view synthesis from a focal stack sequence

• The 3D light field prior

• Frequency derivation of synthesis algorithm

• Other applications of the 3D prior

Page 12: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

1212Linear view synthesis with 3D prior

Output: Novel viewpoints (4D data)

2D Images x 2D set of novel viewpoints

Linear image processing

Input: Focal stack (3D data)

1D set of 2D images focused at different depth

Page 13: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

1313Linear view synthesis algorithm

Average shifted images

Shift focal stack images by disparity

of desired view

Depth invariant deconvolution

1 2 3

No depth estimation!

Page 14: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

1414

Shift invariant convolution~ focus sweep camera

Average shifted images

Ideal pinhole image

Depth invariant blur kernel

Inspiration: The focus sweep camera Hausler 72, Nagahara et al. 08

Captures a single image, average over all focus depths during exposure, provides

EDOF image from a single view

Page 15: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

1515Linear view synthesis results

Video animation here

Page 16: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

1616Disclaimers

• Novel viewpoints limited to the aperture area

• Convolution model breaks at occlusion boundaries

• Assume scene is Lambertian- in practice holds within the narrow range of angles of the aperture

Page 17: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

1717Outline

• Linear view synthesis from a focal stack sequence

• The 3D light field prior

• Frequency derivation of synthesis algorithm

• Other applications of the 3D prior

Page 18: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

18

y

xu

v

u

vy

x

• The set of light rays hitting the lens is 4D (x,y,u,v)

4D light field

Page 19: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

(?,?,u0,0)

19

y

xu

v

u

v

y

x

• The set of light rays hitting the lens is 4D (x,y,u,v)

4D light field

Page 20: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

(?,?,0,v0)

20

y

xu

v

u

v

y

x

• The set of light rays hitting the lens is 4D (x,y,u,v)

4D light field

Page 21: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

21

y

xu

v

u

vy

x

• The set of light rays hitting the lens is 4D (x,y,u,v)

4D light field

Page 22: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

22

uv

• The set of light rays hitting the lens is 4D

• Study the 4D Fourier domain L( , , , )x y u v(x,y,u,v)

4D light field spectrum

4D Fourier Transform

y

xu

v

y

x

Page 23: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

4D Fourier Transform

23

uv

L( , , , )x y u v• The set of light rays hitting the lens is 4D

• Study the 4D Fourier domain

(x,y,u,v)

L( ,0,?,?)

uv

0x

y

xu

v

y

x

4D light field spectrum

Page 24: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

24

y

xu

v uv

Frequency content only along 1D segments

4D Fourier Transform

y

x

4D light field spectrum

Page 25: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

4D light field spectrum

Scene

4D Light field spectrum

Energy portion away from focal segments

Page 26: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

26The slicing theorem

2D focused images at varying depths

y

xu

v

4D Fourier Transform

2D Fourier Transform

uvy

x

Page 27: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

y

27The dimensionality gap

y

xu

v uvuv

4D Fourier Transformnear

far

depth color coding

uv

x

Light field spectrum: 4DImage spectrum: 2DDepth: 1D → Dimensionality gap

(Ng 05, Levin et al. 09)

Only the 3D manifold corresponding to physical focusing distance is useful

3D

Page 28: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

28

uvGaussian prior: assigns non zero variance only to 3D set of entries on the focal segments

• Gaussian=> inference simple and linear

• Focal stack directly samples the manifold with non zero variance

y

x

3D Gaussian light field prior

Page 29: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

29Outline

• Linear view synthesis from a focal stack sequence

• The 3D light field prior

• Frequency derivation of synthesis algorithm

• Other applications of the 3D prior

Page 30: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

30

y

x

uv

View synthesis in the frequency domain4D spectrum of constant depth

scene

Spectra of focal stack images

1

Average focal stack spectra Spectra of

correct depthSample density

Deconvolution

(frequency domain)

Page 31: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

31Outline

• Linear view synthesis from a focal stack sequence

• The 3D light field prior

• Frequency derivation of synthesis algorithm

• Other applications of the 3D prior

Page 32: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

32Prior to infer light field from partial samples

In many other light field acquisition schemes we capture only a partial information on the light field- limited resolution, aliasing and each.

However, we capture linear measurements

On the other hand, we have a Gaussian prior, and we know the light field actually occupies only a low dimensional manifold of the 4D space.

Use the prior to “invert the rank deficient projection” and interpolate the measurements to get a light field with higher resolution, less aliasing.

Page 33: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

33Improved viewpoints sample

4D Light field acquisition systems sample a 2D set of view points

• Can we do with sparser sample and 3D Gaussian prior for interpolation?

• How many samples needed? What is the right spacing?

• Shall we distribute samples on a grid? Better arrangement?

Grid: Standard sampling pattern

Circle: Sampling pattern with improved reconstruction

using 3D prior

Page 34: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

34Superesolution of plenoptic camera

measurements

Plenoptic camera measurements are aliased

Replicas off the focal segments are high frequencies which we can re-bin and restore high frequency information

Page 35: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

35Superesolution of plenoptic camera

measurements

Bicubic interpolation

Our result: applies for all depths simultaneously, no depth estimation

Lumsdaine and Georgiev: applies for a single known depth

Page 36: 1 Linear View Synthesis Using a Dimensionality Gap Light Field Prior Anat Levin and Fredo Durand Weizmann Institute of Science & MIT CSAIL

36Summary

• Light field acquisition and synthesis strongly depends on light field prior

Existing priors:

• Linear view synthesis from the focal stack

• Other applications of 3D prior:

- viewpoints sample pattern

- depth invariant superesolution of plenoptic camera data

4D prior: capture- 4D data (e.g. camera array), inference- linear

2D prior: capture- 2D data (e.g. stereo), inference- non linear

Our new prior:

3D prior: capture- 3D data (e.g. focal stuck), inference linear