11
1- 1 1- 1 heterogeneous electron transfer: Idealized actual: P= physisorbed impurity e -  e -  E applied  counter electrode Ox + n e - Red Ox Red e -  k o  k o  

1 Intro and Phase Potential

Embed Size (px)

Citation preview

Page 1: 1 Intro and Phase Potential

8/3/2019 1 Intro and Phase Potential

http://slidepdf.com/reader/full/1-intro-and-phase-potential 1/11

1- 11- 1 

heterogeneous electron transfer:Idealized

actual:

P= physisorbed impurity

e- 

e- 

Eapplied 

counter electrode

Ox + n e- Red

Ox

Red

e- 

k o 

k o 

Page 2: 1 Intro and Phase Potential

8/3/2019 1 Intro and Phase Potential

http://slidepdf.com/reader/full/1-intro-and-phase-potential 2/11

1- 21- 2 

Special Features of Electrochemistry

• analytical sensitivity (1 pamp = 10-17 moles/second)

• can make microscopic probes ( < 1 um)

• wide range of time scales ( ~50 nsec up)

•  large, tunable driving force

• direct interconversion of chemical and electrical energy(not a heat engine, not Carnot limited)

Page 3: 1 Intro and Phase Potential

8/3/2019 1 Intro and Phase Potential

http://slidepdf.com/reader/full/1-intro-and-phase-potential 3/11

1- 31- 3 

2 um

Ewing, Strein, Lau, Acc. Chem. Res. 1992, 25, 440

carbon microelectrodes

single-cell voltammogram,matching that of noradrenaline

amperometric response fromsingle adrenal chromaffin cell

Page 4: 1 Intro and Phase Potential

8/3/2019 1 Intro and Phase Potential

http://slidepdf.com/reader/full/1-intro-and-phase-potential 4/11

1- 41- 4 

Special Features of Electrochemistry

• analytical sensitivity (1 pamp = 10-17 moles/second)

• can make microscopic probes ( < 1 um)

• wide range of time scales ( ~50 nsec up) 

•  large, tunable driving force(Cl2, Na, F2 production, fast reactions, electrosynthesis) 

• direct interconversion of chemical and electrical energy(not a heat engine, not Carnot limited)

Page 5: 1 Intro and Phase Potential

8/3/2019 1 Intro and Phase Potential

http://slidepdf.com/reader/full/1-intro-and-phase-potential 5/11

1- 51- 5 

air  H2 

H2O(exhaust) 

e- load

polymer electrolyte membrane, catalysis, support,(all of the important stuff)

gas flow channels

recirculated fuel

(~ 200 amps, 0.5 volt)

heat, ~ 85 oC

Page 6: 1 Intro and Phase Potential

8/3/2019 1 Intro and Phase Potential

http://slidepdf.com/reader/full/1-intro-and-phase-potential 6/11

1- 61- 6 

Fuel cell powered bus, Ballard Power Systems, 1997

Page 7: 1 Intro and Phase Potential

8/3/2019 1 Intro and Phase Potential

http://slidepdf.com/reader/full/1-intro-and-phase-potential 7/111- 71- 7 

Ballard Fuel Cell + electric motor, 275 hp (205 kW)

Page 8: 1 Intro and Phase Potential

8/3/2019 1 Intro and Phase Potential

http://slidepdf.com/reader/full/1-intro-and-phase-potential 8/111- 81- 8 

Who cares about electrode kinetics?

• electrosynthesis(Al, Mg, NaOH, Cl2, etc)

• electrochemical energy

conversion (fuel cells,batteries, photocells)

• electroanalysis (glucose,

O2, K+,

pH, etc.)

• corrosion(almost everything) 

≈ $ 40 billion/yr of U.S. GDP

≈ $ 80-200 billion/yr in U.S.A.

Page 9: 1 Intro and Phase Potential

8/3/2019 1 Intro and Phase Potential

http://slidepdf.com/reader/full/1-intro-and-phase-potential 9/111- 91- 9 

The Big Issues:

1. Thermodynamics of electrochemical cells

(how does an electron affect free energy, etc.?)

2. Kinetics of electron transfer 

(what happens when an electron is a reagent?)

3. Mass transport

(things have to get to the electrode to react)

Page 10: 1 Intro and Phase Potential

8/3/2019 1 Intro and Phase Potential

http://slidepdf.com/reader/full/1-intro-and-phase-potential 10/111- 101- 10 

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

Ener gyr elativetovacuum,

eV

f(E)

Fermi distribution function

Cu, Ef = -4.65 V

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-0.1 0.1 0.3 0.5 0.7 0.9 1.1

Ener gyr elativetovacuum,

eV

f(E)

Fermi distribution function

Pt, Ef = -5.70 V

Cu and Pt, both 298 K

Page 11: 1 Intro and Phase Potential

8/3/2019 1 Intro and Phase Potential

http://slidepdf.com/reader/full/1-intro-and-phase-potential 11/111- 111- 11 

µ K + 

= µ K + 

o+ RT ln a + Fφ 

K +

K in+ 

K out+ 

φin 

φout 

K + permeable membrane

electrostatic potentialK + activity

µ K + 

a

a