36
A special course by IFP Training for PDVSA Gas Fields Reservoir Engineering & Development Fluids Characterization and Sampling Salvatore Zammito EP Fluids characterization & sampling © 2014 IFP Training

1 Fluids Characterization & Sampling

Embed Size (px)

Citation preview

Page 1: 1 Fluids Characterization & Sampling

A special course by IFP Training for PDVSA

Gas Fields Reservoir Engineering & DevelopmentFluids Characterization and SamplingSalvatore Zammito

EP ‐ Fluids characterization & sampling

©2014 ‐IFP

 Training

Page 2: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Fluids classification

EP ‐ Fluids characterization & sampling 3

©2014 ‐IFP

 Training

Pressure

Temperature

Tres, Pres

Critical point

Tc

p2

p1

Separator

C

Dry gas

EP ‐ Fluids characterization & sampling 4

Page 3: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Dry gas

Dry gas is virtually puremethane

The two‐phase envelope issmall and lies below reservoirconditions and to the left ofsurface condition

The fluid is theoretically gasboth in the reservoir and atthe surface

EP ‐ Fluids characterization & sampling 5

©2014 ‐IFP

 Training

Wet gas

The composition of a wet gas containsstill fewer heavy molecules. Since, thephase diagram covers a much smallertemperature range; the pressuredepletion path in the reservoir does notenter the two‐phase region

The composition of a wet gas containsstill fewer heavy molecules

Since, the phase diagram covers a muchsmaller temperature range; the pressuredepletion path in the reservoir does notenter the two‐phase region

The reservoir fluid is gas throughout thelife of the reservoir

However, separator conditions lie withinthe two‐phase envelope, indicating thatsome liquid will condense at the surface

EP ‐ Fluids characterization & sampling 6

Page 4: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Pressure

Temperature

Tres, PresCritical point

Tc

p2

p1

Separator

C

Wet gas

EP ‐ Fluids characterization & sampling 7

©2014 ‐IFP

 Training

Wet gas

The composition of a wet gas containsstill fewer heavy molecules. Since, thephase diagram covers a much smallertemperature range; the pressuredepletion path in the reservoir does notenter the two‐phase region

The composition of a wet gas containsstill fewer heavy molecules

Since, the phase diagram covers a muchsmaller temperature range; the pressuredepletion path in the reservoir does notenter the two‐phase region

The reservoir fluid is gas throughout thelife of the reservoir

However, separator conditions lie withinthe two‐phase envelope, indicating thatsome liquid will condense at the surface

EP ‐ Fluids characterization & sampling 8

Page 5: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Dry gas

Dry gas is virtually puremethane

The two‐phase envelope issmall and lies below reservoirconditions and to the left ofsurface condition

The fluid is theoretically gasboth in the reservoir and atthe surface

EP ‐ Fluids characterization & sampling 9

©2014 ‐IFP

 Training

Condensate gas

Retrograde gases have even fewerheavy molecules than volatile oils

The critical point shifts to left anddownward in the phase diagram and thecritical temperature is usually less thanreservoir temperature

Retrograde condensate appears in thereservoir pore spaces at pressure belowthe dew point pressure. Throughoutmost of the reservoir, since the amountof liquid in the pore space is usually lessthan critical oil saturation the effectivepermeability to this condensate is zeroand little is produced

Along line 2 to 3, the condensate buildsup at first and then revaporizes at thelower pressures

This behavior is typical for constantcomposition expansion type application

At reservoir conditions can we see re‐evaporation?

EP ‐ Fluids characterization & sampling 10

Page 6: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Condensate gas

Retrograde gases have even fewer heavymolecules than volatile oils

The critical point shifts to left anddownward in the phase diagram and thecritical temperature is usually less thanreservoir temperature

Retrograde condensate appears in thereservoir pore spaces at pressure belowthe dew point pressure. Throughoutmost of the reservoir, since the amountof liquid in the pore space is usually lessthan critical oil saturation the effectivepermeability to this condensate is zeroand little is produced

Along line 2 to 3, the condensate buildsup at first and then revaporizes at thelower pressures

This behavior is typical for constantcomposition expansion type application

At reservoir conditions can we see re‐evaporation?

EP ‐ Fluids characterization & sampling 11

©2014 ‐IFP

 Training

Oil classification

API Definition

°API =

where d is the specific gravity of stock tank oil: relative to water at 60°F (15.6°C)

Condensate or very light oils:  d < 0.80 (above 45°API)Light oil: 0.80 < d < 0.86 (33 to 45°API)Medium oils: 0.86 < d < 0.92 (22 to 33°API)Heavy oils: 0.92 < d < 1 (lower than 22°API)

131.5        d

141.5

EP ‐ Fluids characterization & sampling 12

Page 7: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Petroleum fluids classification

Basic data characterizing well liquid effluent 

1. Production data

• API gravity

• Gas oil ratio− GOR < 500 m3/m3 Oil

− 500 < GOR < 1000 m3/m3 Oil or gas condensate

− GOR > 1000 m3/m3 Gas condensate

− GOR > 15000 m3/m3 Wet gas

2. Chemical composition    

EP ‐ Fluids characterization & sampling 13

©2014 ‐IFP

 Training

Fluids classification

Separator Density Composition

Well test GOR of STO C1 C2 C3 C4 C5 C6+

(Sm 3/m 3) (kg/m 3)

Heavy oil < 10 > 900 3 4 5 8 80

Standard oil <  500 800 ‐ 900 45 4 4 3 2 42

Critical fluid #  700 750 ‐ 850 55 10 8 5 6 16

Gas condensate 700 ‐ 800 700 ‐ 800 75 8 5 2 2 8

Wet gas > 15000 700 ‐ 800 90 4 3 1 1 1

Dry gas infinite 95 3 1 1

(mole %)

EP ‐ Fluids characterization & sampling 14

Page 8: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Gas properties

EP ‐ Fluids characterization & sampling 15

©2014 ‐IFP

 Training

UNDERSATURATED OIL RESERVOIRS

GAS- CONDENSATE RESERVOIRS

SINGLE PHASE

GAS RESERVOIRS

Phase envelope

EP ‐ Fluids characterization & sampling 16

Page 9: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Phase envelopes for various fluids

EP ‐ Fluids characterization & sampling 17

©2014 ‐IFP

 Training

Van der Waals EOS:

p =RT

(V‐b)

a

V2

Peng‐Robinson EOS:

p =RT

(V‐b)

V(V+b)+b(V‐b)

Constants a and b are calculated based on the gas molar composition:

a =  0.45724 R2Tc2/pc        and       b = 0.07780 R Tc/pc α = α (TR, pR)

Equations of state

EP ‐ Fluids characterization & sampling 18

Page 10: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

p = pressure

V = volume

n = number of moles

R = gas constant (R = 8.314 kJ kgmole ‐1 K‐1 or 10.73 psia ft3 lbmole ‐1 R‐1 )

T = absolute temperature

z = compressibility factor

• Negligible molecular volume

• Negligible molecular attraction/repelling forces

pV = nRT

Ideal gas:

Real gas:

pV = znRT

Gas equation of state

EP ‐ Fluids characterization & sampling 19

©2014 ‐IFP

 Training

Function of:

gas composition

pressure

temperature

Ideal gas:  z = 1

Real gas, S.C.:  z = 1

Real gas, R.C.:  z = 0.8 ‐ 0.9

IDEAL GAS

z

p

T

z = 1

p = 1 atm

Gas compressibility factor

EP ‐ Fluids characterization & sampling 20

Page 11: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

z

p

T=Tr

rnnn RTnzVp

scscscsc RTnzVp

r

sc

sc

n

sc

nn T

T

V

V

p

pz

For a generic pressure condition (n)

and reservoir temperature Tr: 

nzRTpV

EOS for real gas: 

z Determination

EP ‐ Fluids characterization & sampling 21

©2014 ‐IFP

 Training

For one molecular species:

• Reduced pressure

Critical pressurepr =

Absolute pressure

• Reduced temperature

Tr =Absolute temperature

Critical temperature

Natural gas, in the same pseudo‐reduced pressure and pseudo‐reducedtemperature conditions, present the same volumetric behavior and thus the same zvalue

Law of Corresponding States

z Factor

EP ‐ Fluids characterization & sampling 22

Page 12: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

For n‐ component gas

• Pseudo‐critical pressure

• Pseudo‐critical temperature

Molar fraction yi =Mol ith‐ component

Moltot

ppc =

n

1ii,ci py

Tpc =

n

1ii,ci Ty

z Factor

EP ‐ Fluids characterization & sampling 23

©2014 ‐IFP

 Training

Pseudo‐reduced pressure

Pseudo‐reduced temperature

ppr =Absolute pressure

Pseudo-critical pressure

p

ppc

=

Tpr =Absolute temperature

Pseudo-critical temperature

T

Tpc

=

z Factor

EP ‐ Fluids characterization & sampling 24

Page 13: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Gas: determination of Tpc and Ppc

EP ‐ Fluids characterization & sampling 25

©2014 ‐IFP

 Training

EP ‐ Fluids characterization & sampling 26

Page 14: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Z Calculation

Exercise

Calculate the Z factor of a gacondensate

dg= 0.7  Pres= 450 b    Tres= 150 °C

EP ‐ Fluids characterization & sampling 27

©2014 ‐IFP

 Training

Volume of free gas at reservoir conditions in m3 (or bbl) occupied by 1 m3 (or 1 scf) of the same gas measured at standard conditions

Bg =V(p,T)

Vsc

Bg =zpsc

pTsc

T

Bg

p

Bg =nzRT

p

psc

nzscRTscBg ranges between:

0.002 m3/sm3 (0.0004 rb/scf)  0.05 m3/sm3 (0.009 rb/scf)

Gas Formation Volume Factor (FVF)

EP ‐ Fluids characterization & sampling 28

Page 15: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

ρg =Mp

zRT

M

V=

ρair = 1.225 kg/m3

ρairG =

ρg

SC

Mair = 28.96

Mair

G =Mg

ρg(p,T) =ρg,sc

Bg

Gas density and gas gravity

EP ‐ Fluids characterization & sampling 29

©2014 ‐IFP

 Training

cg 1

p

dpVcg =

dV1‐

cg

p

cg = 2÷4 10-4 psi-1

cg = 1.5÷3.5 10-2 MPa-1

Gas compressibility

EP ‐ Fluids characterization & sampling 30

Page 16: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

cg =1

p

RT

pM

RT

M

dp

d

Substituting in

dp

dc

1

Ideal gas

EP ‐ Fluids characterization & sampling 31

©2014 ‐IFP

 Training

dz

dp‐

1

pcg =

1

z

zRT

pM

For constant temperature:

dp

dz

zRT

pM

zRT

M

dp

d2

1

dp

dz

z

p

zRT

M

dp

d1

Substituting in

dp

dz

z

p

zRT

M

pM

zRTc 1

dp

dc

1

Real gas

EP ‐ Fluids characterization & sampling 32

Page 17: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

In dimensionless terms:

prpcprpcg dpp

dz

zppc

11

prprgpcr dp

dz

zpcpc

11

Pseudo‐reduced pressurep

ppr ppc

=

Real gas

EP ‐ Fluids characterization & sampling 33

©2014 ‐IFP

 Training

EP ‐ Fluids characterization & sampling 34

Page 18: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

μg = 0.01 ÷ 0.02 cP (mPa s)

mg

p

T

Gas viscosity

EP ‐ Fluids characterization & sampling 35

©2014 ‐IFP

 Training

Assuming

• Porous medium saturated by a single fluid

• No interactions between matrix and fluid

• Laminar flow

dpkμ

q

A=

dzdL

+( )dLg ρ

pp+dp

dL

XY

ZL

Generalized Darcy’s law

EP ‐ Fluids characterization & sampling 36

Page 19: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

The permeability is an intrinsic property of the porous medium,independent from the flowing liquid. It indicates how easily fluidscan flow through the rock

k permeability [L2]

1 μm2 = 10‐12 m2

1 Darcy = 0.987 10‐12 m2  1 μm2

Absolute permeability

EP ‐ Fluids characterization & sampling 37

©2014 ‐IFP

 Training

pm =p1+p2

2pmkg =

bkL 1 +( )

PER

MEA

BILITY

KL

1pm

Propane

Ethane

Methane

Klinkemberg effect

For increasing molecular weight, gases exhibit a behavior whichtends to that of liquids because – all other conditions being the same– the kinetic energy is smaller

EP ‐ Fluids characterization & sampling 38

Page 20: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

ko

kwkeff

kg

water

oil

gas

0 < S  1

0  keff kabs

Effective permeability

When a second or third phase is introduced, the resultingpermeability to each phase is called “effective”

It represents the conductivity of each phase at a specificsaturation

It provides an extension of Darcy’s law to presence andmovement of more than a single fluid within the pore space

The fluids interfere with each other, and individual effectivepermeability of each phase as well as their sum is lower thanabsolute permeability

EP ‐ Fluids characterization & sampling 39

©2014 ‐IFP

 Training

dpkg

μg

qg A= ( )dr

Oil

Water

Gas

mw

dpkwqw A= ( )dr

dpko

mo

qo A= ( )dr

Multiphase flow

EP ‐ Fluids characterization & sampling 40

Page 21: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

WATER SATURATION

RE

LA

TIV

E P

ER

ME

AB

ILIT

Y

Relative permeability: gas‐water system

EP ‐ Fluids characterization & sampling 41

©2014 ‐IFP

 Training

Page 22: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Oil and gas behavior between the 

reservoir and the surface

EP ‐ Fluids characterization & sampling 43

©2014 ‐IFP

 Training

Black‐Oil  model

Definitions:

VGF

VHF

VGHS

VHS

VGS

BoVHFVHS

BgVGFVGS

RsVGHSVHS

T , PF F

T , Ps s

EP ‐ Fluids characterization & sampling 44

Page 23: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

VGF

VHF

VGHS

VHS

BoV

VBg

V

V

RsV

VRv

V

V

HF

HS

GF

GS

GHS

HS

HGS

GS

'

T PF F,

T Ps s,

VGS

VHGS

Extended  Black‐Oil  model

EP ‐ Fluids characterization & sampling 45

Definitions:

©2014 ‐IFP

 Training

VGF

VHF

BoV

VBg

V

V

RsV

VRv

V

V

HF

HS

GF

GS

GHS

HS

HGS

GS

'

T PF F,

T Ps s,

VGS

VHGS

Gas Condensate  model

EP ‐ Fluids characterization & sampling 46

Definitions:

Page 24: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Vgres

Bg = Vgstd

Pres x Vres = Z x R x Tres

Pstd x Vstd = 1 x R x Tstd

Pstd

Bg = Tstd

x Z x Tres

Pres

Field Units

Pstd = 14.7 psia Tstd = 520 ° R Bg = 0.028269 xZ x T

Pvol/vol

Metric Units

Pstd = 1.01325 barsa Tstd = 288 ° K Bg = 0.00352 xZ x T

Pvol/vol

SI Units

Pstd = 101325 Pa (a) Tstd = 288 ° K Bg = 351.8 xZ x T

Pvol/vol

Vol of 1 mole of gas at std conditions {1 atm, 288 K (15°C)} : 23.63 dm3

° R

psia

° K

bars a

Pa

° K

Eg = 1 / Bg

Vol of 1 mole of gas at normal conditions {1 atm, 273 K (0°C)} : 22.414 dm3

460 +60°F(T st.)

273+15(Tst)

Main gas properties

EP ‐ Fluids characterization & sampling 47

©2014 ‐IFP

 Training

Main gas properties

Definitions for gas

Gas Specific Gravity

(air =1) = gas/air = Mwgas/Mwair

=  Mwgas /28.978

Gas density

gas = Mwgas/Vair(molar) = Mwgas/ 23.645

Vair(1 mole of air) = 23.645

gas = * 1.225 kg/m³

Air density

Mwair = 28.9784

air =28.9784/23.645 =1.225 kg/m³

EP ‐ Fluids characterization & sampling 48

Page 25: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Reservoir fluid sampling

Sampling objectives

Bottom hole sampling 

Surface sampling

EP ‐ Fluids characterization & sampling 49

©2014 ‐IFP

 Training

Sampling objectives

The objective is to obtain a sample of fluid that is identical(representative) to the reservoir fluid

Those samples are needed to

• Determine the fluid type

• Estimate Hydrocarbons in place and reserves

• Measure or estimate the fluid characteristics that will be used todesign the production facilities or used in numerical models topredict reservoir performance

EP ‐ Fluids characterization & sampling 50

Page 26: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Pwf

Separatorgas

oil

Production tubing

Vo Reservoir : Pr, Tr

Psep. ‐ Tsep.Pt

EP ‐ Fluids characterization & sampling 51

©2014 ‐IFP

 Training

Bottom hole sampling 

This type of sampling is preferred since it guarantees the bestfluid representativity

Disadvantage: high cost

Various tools are used

• MDT (modular dynamic formation tester)

• SRS (single phase reservoir sampler)

• MFE (multiple flow evaluator)

• PCT (pressure controlled test system)

• APR (annulus pressure responsive tool)

EP ‐ Fluids characterization & sampling 52

Page 27: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Surface sampling

Oil and gas samples are collected from separator, at surface

These samples are recombined in the laboratory, based on themeasured gas/oil ratio, in order to make up a reservoir fluid asrepresentative as possible

EP ‐ Fluids characterization & sampling 53

©2014 ‐IFP

 Training

Surface sampling

Psep, Tsep

gas

GORsep = Qgas/Qoil

Psto, TstoGORsto

Tank oilambient conditions

Reservoir fluidPr, Tr

Gas sampling bottle

Oil sampling bottle

EP ‐ Fluids characterization & sampling 54

Page 28: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

PVT studies

EP ‐ Fluids characterization & sampling 55

©2014 ‐IFP

 Training

Constant Composition Expansion (Oil)

Differential Vaporization (Oil)

Separator test/Flash Liberation (Oil)

Constant Composition Expansion (Condensate Gas)

Constant Volume Depletion (Condensate Gas)

EP ‐ Fluids characterization & sampling 56

Page 29: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

PVT experiment: constant volume depletion for a 

condensate gas

Objective

• Simulation of reservoir production for condensate gas and volatile oil

Main properties derived from this experiment

• Liquid drop out curve

• Volumetric factor of the wellstream during depletion

• Wellstream composition during depletion

Remarks

• Be sure to have vapor and liquid at each step

• Problems imply negative calculated liquid compositions.

• Plot Ki(P) = Yi(P) / Xi(P)− All lines monotonic and smooth, No crossing, Ordered with volatilities

• Use the Hoffman‐Crump‐Hocott plot:− Log(KiP) is linear regarding B(1/Tbi‐1/T) with B=(log(Pci) –log(Pref)) / (1/Tbi‐1/Tci)

EP ‐ Fluids characterization & sampling 57

©2014 ‐IFP

 Training

Constant volume gas depletion

Gas

Oil

P1 = Psat P3

V sat

P2 < Psat

V 2

V 3

P3 < P2P2P2

V sat

Steps 0 1 2 3 1 2

Steps

0: Measure reference Volume Vsat à P1=Psat

1: Decrease P to P2<P1 lowering the piston, condensation occurs

2: Reset the cell volume to Vsat, pushing up the piston

3: Measure Oil and gas volumes

1: Decrease P to P3<P2, …

EP ‐ Fluids characterization & sampling 58

Page 30: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

PVT experiment: constant volume depletion for a gas 

condensate Objective

• Simulation of reservoir production

Main properties derived from this experiment

• Liquid drop out curve

• Volumetric factor of the wellstream during depletion

• Wellstream composition during depletion

P1 = Psat P3

V sat

P2 < Psat

V 2

V 3

P3 < P2P2P2

V sat

EP ‐ Fluids characterization & sampling 59

©2014 ‐IFP

 Training

PVT experiment: constant mass expansion for a gas 

condensate

Temperature

Pressure

T res.

P1 > Psat

P2 = Psat (retrograde)

P3

P4

P5

P6

P7< P sat  (normal)

C

P1 > Psat P6P2 = Psat P4P3 < Psat P5 P7

EP ‐ Fluids characterization & sampling 60

Page 31: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

CCE – Gas condensate

Gas condensateReservoir Temperature : 105°CBubble point pressure : 286.72 abs bar

CCE

Bo = (Vol Liq at P,T)/(Vol Liq tank at 1b, 15)CGRres = (Vol Liq(PT)/Bo)/(VolVap(PT)/B'g) (CGR of liquid of CCE)CGRvap = Vol Liq(1,15)/Vol Gas Export Std (CGR of vapor of CCE)

Pressure Liquid CGR res CGR vap Gas Z factor Gas FVF Bg Gas viscosity Liq viscosity Liquid FVF Tank liquid STD gasdrop out B'g (P,T) (P,T) Bo density Sp Gravity Z'

(abs bar) (% DPPV) (Sm3/Sm3) (Sm3/Sm3) (m3/Sm3) (m3/Sm3) (cP) (cP) (m3/Sm3) (kg/m3)300 0,00000 0,000335 0,9371 0,00437 0,00410 0,0306 0,0000 736,5542 0,66771 0,99955

286,72 0,00000 0,000000 0,000335 0,9234 0,00451 0,00423 0,0296 0,3958 1,50266 736,5513 0,66771 0,98497280 0,18990 0,000006 0,000330 0,9169 0,00458 0,00430 0,0290 0,3950 1,49726 734,8984 0,66767 0,97764260 0,72054 0,000022 0,000313 0,8992 0,00483 0,00454 0,0273 0,3897 1,48252 730,2538 0,69179 0,95741240 1,21693 0,000038 0,000297 0,8839 0,00514 0,00483 0,0255 0,3804 1,46926 726,0515 0,69163 0,93979220 1,69928 0,000053 0,000281 0,8716 0,00552 0,00520 0,0238 0,3688 1,45612 722,2864 0,69147 0,92519200 2,18046 0,000069 0,000265 0,8626 0,00600 0,00566 0,0221 0,3582 1,44088 718,9011 0,69130 0,91407180 2,65607 0,000085 0,000247 0,8576 0,00661 0,00625 0,0205 0,3525 1,42099 715,8132 0,69112 0,90694160 3,10163 0,000101 0,000230 0,8568 0,00742 0,00703 0,0190 0,3549 1,39472 712,9628 0,69095 0,90420140 3,48253 0,000117 0,000212 0,8604 0,00849 0,00807 0,0177 0,3679 1,36180 710,3388 0,69081 0,90609120 3,76650 0,000130 0,000197 0,8683 0,00998 0,00950 0,0165 0,3937 1,32326 707,9747 0,69073 0,91270100 3,92883 0,000140 0,000184 0,8803 0,01213 0,01155 0,0156 0,4355 1,28072 705,9404 0,69073 0,9240180 3,94906 0,000145 0,000176 0,8963 0,01542 0,01470 0,0148 0,4989 1,23578 704,3532 0,69082 0,9400260 3,79928 0,000145 0,000175 0,9160 0,02102 0,02003 0,0142 0,5957 1,18974 703,4348 0,69102 0,9608540 3,41620 0,000135 0,000184 0,9394 0,03239 0,03082 0,0137 0,7569 1,14332 703,7007 0,69129 0,9869720 2,61173 0,000108 0,000215 0,9668 0,06694 0,06384 0,0133 1,1156 1,09628 706,7299 0,69162 1,019991 0,76071 0,000033 0,000300 0,9981 1,39472 1,33172 0,0130 3,4851 1,03850 720,5066 0,69192 1,06264

EP ‐ Fluids characterization & sampling 61

©2014 ‐IFP

 Training

CVD gas condensate

CVD

Bo = (Vol Liq at P,T)/(Vol Liq tank at 1b, 15)CGRres = (Vol Liq(PT)/Bo)/(VolVap(PT)/B'g) (CGR of liquid of CCE)CGRvap = Vol Liq(1,15)/Vol Gas Export Std (CGR of vapor of CCE)

Pressure Liquid CGR res CGR vap Gas Z factor Gas FVF Bg Gas viscosity Liq viscosity Liquid FVF Tank liquid STD gasdrop out B'g (P,T) (P,T) Bo density Sp Gravity

(abs bar) (% DPPV) (Sm3/Sm3) (Sm3/Sm3) (m3/Sm3) (m3/Sm3) (cP) (cP) (m3/Sm3) (kg/m3) z'300 0,00000 0,000335 0,9371 0,00437 0,00410 0,0306 0,0000 736,5542 0,66771 0,99955

286,72 0,00000 0,00000 0,000335 0,9234 0,00451 0,00423 0,0296 0,3958 1,50266 736,5527 0,66771 0,98497280 0,18990 0,00001 0,000330 0,9169 0,00458 0,00430 0,0290 0,3950 1,49726 734,8984 0,66767 0,97764260 0,71165 0,00002 0,000313 0,8992 0,00483 0,00454 0,0273 0,3897 1,48251 730,2536 0,66752 0,95741240 1,17507 0,00004 0,000297 0,8839 0,00514 0,00483 0,0255 0,3807 1,46906 726,0471 0,66738 0,93979220 1,60059 0,00006 0,000281 0,8716 0,00552 0,00520 0,0238 0,3701 1,45531 722,2668 0,66722 0,92520200 1,99701 0,00008 0,000264 0,8628 0,00600 0,00566 0,0221 0,3617 1,43877 718,8485 0,66705 0,91411180 2,35475 0,00011 0,000246 0,8579 0,00661 0,00625 0,0205 0,3595 1,41694 715,7107 0,66687 0,90704160 2,65082 0,00015 0,000227 0,8572 0,00742 0,00703 0,0190 0,3669 1,38848 712,8026 0,66671 0,90436140 2,86316 0,00019 0,000209 0,8609 0,00850 0,00807 0,0177 0,3864 1,35365 710,1205 0,66659 0,90628120 2,98103 0,00023 0,000193 0,8689 0,00998 0,00950 0,0165 0,4201 1,31392 707,6961 0,66654 0,91288100 3,00630 0,00030 0,000180 0,8809 0,01213 0,01156 0,0156 0,4713 1,27121 705,5845 0,66662 0,9241380 2,94877 0,00038 0,000172 0,8966 0,01542 0,01471 0,0148 0,5448 1,22730 703,8681 0,66687 0,9400860 2,81934 0,00052 0,000171 0,9160 0,02102 0,02003 0,0142 0,6485 1,18359 702,6973 0,66736 0,9610140 2,62107 0,00076 0,000187 0,9387 0,03242 0,03080 0,0137 0,7978 1,14097 702,4529 0,66821 0,9880420 2,32134 0,00145 0,000250 0,9650 0,06735 0,03089 0,0133 1,0369 1,10000 704,6793 0,66965 1,026231 1,22196 0,01788 0,000944 0,9966 1,51858 0,03124 0,0122 2,3203 1,05053 733,4063 0,67168 1,157016

EP ‐ Fluids characterization & sampling 62

Page 32: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Liquid drop out

0,00000

0,50000

1,00000

1,50000

2,00000

2,50000

3,00000

3,50000

4,00000

4,50000

0 50 100 150 200 250 300 350

CCE

CVD

PRESSURE

Liquid drop out %

EP ‐ Fluids characterization & sampling 63

©2014 ‐IFP

 Training

CVD – Comparison Z and Z’

0,6000

0,7000

0,8000

0,9000

1,0000

1,1000

1,2000

0 50 100 150 200 250 300 350

Z CVD

Z' CVD

PRESSURE

Z factor

EP ‐ Fluids characterization & sampling 64

Page 33: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

PVT experiment: constant mass expansion

Fluide initialP = Pgis. (450 bar)

EP ‐ Fluids characterization & sampling 65

©2014 ‐IFP

 Training

P = Dew point press – 100 mbar358 bar

PVT experiment: constant mass expansion

EP ‐ Fluids characterization & sampling 66

Page 34: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

P = Dew point pressure – 3 bar5% liquid drop out

PVT experiment: constant mass expansion

EP ‐ Fluids characterization & sampling 67

©2014 ‐IFP

 Training

During  the depletion

PVT experiment: constant mass expansion

EP ‐ Fluids characterization & sampling 68

Page 35: 1 Fluids Characterization & Sampling

©2014 ‐IFP

 Training

Near the maximum liquid drop out

PVT experiment: constant mass expansion

EP ‐ Fluids characterization & sampling 69

©2014 ‐IFP

 Training

Maximum liquid drop out:41%   P = 205 bar

PVT experiment: constant mass expansion

EP ‐ Fluids characterization & sampling 70

Page 36: 1 Fluids Characterization & Sampling