32
1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

Embed Size (px)

Citation preview

Page 1: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

1

ENE 429Antenna and Transmission lines Theory

Lecture 2 Uniform plane waves

Page 2: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

2

Review Wave equations

Time-Harmonics equations

where

22

2

������������������������������������������ E EE

t t2

22

������������������������������������������ H HH

t t

2 2 0 ����������������������������

s sE E

2 2 0 ����������������������������

s sH H

( ) j j

Page 3: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

3

Time-harmonic wave equationsor

where

This term is called propagation constant or we can write

= +j

where = attenuation constant (Np/m) = phase constant (rad/m)

2 2 0 ����������������������������

s sH H

( ) j j

Page 4: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

4

Transverse ElectroMagnetic wave (TEM)

http://www.edumedia.fr/a185_l2-transverse-electromagnetic-wave.html

Page 5: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

5

Solutions of Helmholtz equations The instantaneous forms of the solutions

The phasor forms of the solutions

0 0cos( ) cos( )

��������������z z

x xE E e t z a E e t z a

0 0cos( ) cos( )z z

y yH H e t z a H e t z a ��������������

0 0

z j z z j zs x xE E e e a E e e a

��������������

0 0

z j z z j zs y yH H e e a H e e a

��������������

incident wave reflected wave

Page 6: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

6

Attenuation constant

Attenuation constant determines the penetration of the wave into a medium

Attenuation constant are different for different applications

The penetration depth or skin depth, is the distance z that causes to reduce to

z = 1

z = 1/ =

E��������������

10E e

Page 7: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

7

Good conductor

1 1

f

At high operation frequency, skin depth decreases

A magnetic material is not suitable for signal carrier

A high conductivity material has low skin depth

Page 8: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

8

Currents in conductor

To understand a concept of sheet resistance

1L LR

A wt

1 LR

t w Rsheet () Lw

1sheetR

t sheet resistance

from

At high frequency, it will be adapted to skin effect resistance

Page 9: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

9

Currents in conductor

0

0

zx x

zx x

E E e

J E e

Therefore the current that flows through the slab at t is

;xI J dS ds dydz

Page 10: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

10

Currents in conductor

;xI J dS ds dydz

00 0

wz

xz y

I E e dydz

0

0

zxw E e

0 .xI w E A

From

Jx or current density decreases as the slab gets thicker

Page 11: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

11

Currents in conductor

0xV E L

0

0

1xskin

x

E LV L LR R

I w E w w

For distance L in x-direction

For finite thickness,

R is called skin resistanceRskin is called skin-effect resistance

0 00 0

(1 )t w

z tx x

z y

I E e dydz w E e

/

1

(1 )skin tRe

Page 12: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

12

Currents in conductor

Current is confined within a skin depth of the coaxial cable

Page 13: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

13

Ex1 A steel pipe is constructed of a material for which r = 180 and = 4106 S/m. The two radii are 5 and 7 mm, and the length is 75 m. If the total current I(t) carried by the pipe is 8cost A, where = 1200 rad/s, find:

a) The skin depth

b) The skin resistance

Page 14: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

14

c) The dc resistance

Page 15: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

15

The Poynting theorem and power transmission

2 21 1( )

2 2E H d S J E dV E dV H dV

t t

����������������������������������������������������������������������

Poynting theorem

Total power leavingthe surface

Joule’s lawfor instantaneouspower dissipated per volume (dissi-pated by heat)

Rate of change of energy storedIn the fields

2W/mS E H ������������������������������������������

Instantaneous poynting vector

Page 16: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

16

Example of Poynting theorem in DC case

2 21 1( )

2 2E H d S J E dV E dV H dV

t t

����������������������������������������������������������������������

Rate of change of energy storedIn the fields = 0

Page 17: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

17

Example of Poynting theorem in DC case

2 z

IJ a

a

��������������

By using Ohm’s law,

From

2 z

J IE a

a ��������������

��������������

2 2

2 20 0 0( )

a LId d dz

a

2 22

1 LI I R

a

Page 18: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

18

Example of Poynting theorem in DC case

E H d S������������������������������������������

From Ampère’s circuital law,

Verify with

H dl I����������������������������

2 aH I ��������������

2

IH a

a

��������������

Page 19: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

19

Example of Poynting theorem in DC case

2

2 32

IS d S a d dz

a

����������������������������

2

2 2 32 2z

I I IS E H a a a

aa a

������������������������������������������

2 222

2 3 20 02

LI a I Ld dz I R

a a

Total power

W

Page 20: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

20

Uniform plane wave (UPW) power transmission Time-averaged power density

1Re( )

2avgP E H

������������������������������������������

amount of power WavgP P d S����������������������������

for lossless case, 00

12

��������������j z j zx

avg x yx

EP E e a e a

201

2x

avg zE

P a ��������������

W/m2

W/m2

Page 21: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

21

Uniform plane wave (UPW) power transmission

0

z j z jxxE E e e e a

��������������

intrinsic impedance for lossy medium nje

0

1 1 z j z jz xxH a E a E e e e a

����������������������������

0 njz j z jxy

Ee e e e a

for lossy medium, we can write

Page 22: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

22

Uniform plane wave (UPW) power transmission

2

201Re

2jzx

zE

e e a

from1

Re( )2

avgP E H

������������������������������������������

2

201cos

2zx

zE

e a

W/m2

Question: Have you ever wondered why aluminum foil is not allowed inthe microwave oven?

Page 23: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

23

Polarization

UPW is characterized by its propagation direction and frequency.

Its attenuation and phase are determined by medium’s parameters.

Polarization determines the orientation of the electric field in a fixed spatial plane orthogonal to the direction of the propagation.

Page 24: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

24

Linear polarization

Consider in free space,

0( , ) cos( ) xE z t E t z a

��������������E��������������

At plane z = 0, a tip of field traces straight line segment called “linearly polarized wave” E

��������������

Page 25: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

25

A pair of linearly polarized wave also produces linear polarization

Linear polarization

0 0( , ) cos( ) cos( )x yx yE z t E t z a E t z a

��������������

At z = 0 plane

At t = 0, both linearly polarized wavesHave their maximum values

0 0(0,0) x yx xE E a E a

��������������(0, ) 0

4t

E ��������������

0 0(0, ) cos( ) cos( )x yx yE t E t a E t a

��������������

Page 26: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

26

More generalized of two linearly poloraized waves,

Linear polarization occurs when two linearly polarized waves are

More generalized linear polarization

0 0( , ) cos( ) cos( )x yx x y yE z t E t z a E t z a

��������������

in phase 0y x

out of phase 180y x

Page 27: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

27

Super position of two linearly polarized waves that

If x = 0 and y = 45, we have

Elliptically polarized wave

0 180y x or

0 0(0, ) cos( ) cos( )

4x yx yE t E t a E t a

��������������

Page 28: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

28

occurs when Exo and Eyo are equal and

Right hand circularly polarized (RHCP) wave

Left hand circularly polarized (LHCP) wave

Circularly polarized wave

90y x

0 0(0, ) cos( ) cos( )

2x yx yE t E t a E t a

��������������

0 0(0, ) cos( ) cos( )

2x yx yE t E t a E t a

��������������

90y x

90y x

Page 29: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

29

Phasor forms:

for RHCP,

for LHCP,

Circularly polarized wave

0 0( 0) yx

jjx yx yE z E e a E e a

��������������from

0( 0) ( )x yxE z E a ja

��������������

0( 0) ( )x yxE z E a ja

��������������

Note: There are also RHEP and LHEP

Page 30: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

30

Ex2 Given

,determine the polarization of this wave

( , ) 3cos( 30 ) 8cos( 90 )x yE z t t z a t z a ��������������

Page 31: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

31

Ex3 The electric field of a uniform plane wave in free space is given by , determine

50100( ) j ys z xE a ja e

��������������

a) f

b) The magnetic field intensity sH��������������

Page 32: 1 ENE 429 Antenna and Transmission lines Theory Lecture 2 Uniform plane waves

32

c)

d) Describe the polarization of the wave

S��������������