100
1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

Embed Size (px)

Citation preview

Page 1: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

1

Dr. Joan Heller Brown

BIOM 255

2012

CNS Neurotransmitters

Page 2: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

2

Gross anatomy of the human brain

Page 3: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

3

Page 4: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

4

Anatomy of a neuron

Page 5: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

5Figure 1.

Page 6: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

6

Page 7: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters
Page 8: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

8

• Peripheral Nervous System (PNS)– Autonomic division : neuron to smooth

muscle, cardiac muscle and gland– Somatic division : neuron to skeletal

muscle

• Central Nervous System ( CNS)– neuron to neuron

Page 9: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

9

Sites of CNS drug action

Page 10: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

10

Page 11: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

Multiple sites of CNS drug action

• Conduction• Synthesis and storage• Release and reuptake• Degradation• Receptors, pre-and post-synaptic• Ion channels• Second messengers

Page 12: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

12

Page 13: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

13

CNS neurotransmitters

Page 14: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

14

Table 1. Classes of CNS Transmitters

Neurotransmitter % of Synapses

BrainConcentration

Function Primary Receptor Class

MonoaminesCatecholamines: DA, NE, EPIIndoleamines: serotonin (5-HT)

2-5 nmol/mg protein(low)

Slow change in excitability (secs)

GPCRs

Acetylcholine (ACh) 5-10 nmol/mg protein(low)

Slow change in excitability (secs)

GPCRs

Amino acidsInhibitory: GABA, glycine

Excitatory: Glutamate, aspartate

15-20

75-80

μmol/mg protein(high)

μmol/mg protein(high)

Rapid inhibition (msecs)

Rapid excitation (msecs)

Ion channels

Ion channels

Page 15: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters
Page 16: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

16

Table 1. Classes of CNS Transmitters

Neurotransmitter % of Synapses

BrainConcentration

Function Primary Receptor Class

MonoaminesCatecholamines: DA, NE, EPIIndoleamines: serotonin (5-HT)

2-5 nmol/mg protein(low)

Slow change in excitability (secs)

GPCRs

Acetylcholine (ACh) 5-10 nmol/mg protein(low)

Slow change in excitability (secs)

GPCRs

Amino acidsInhibitory: GABA, glycine

Excitatory: Glutamate, aspartate

15-20

75-80

μmol/mg protein(high)

μmol/mg protein(high)

Rapid inhibition (msecs)

Rapid excitation (msecs)

Ion channels

Ion channels

Page 17: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

17

Classes of Receptors

• GPCR=7 transmembrane spanning = metabotropic

• Ligand gated ion channel=ionotropic

Page 18: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

18

Most neurotransmitters can activate multiple receptor

subtypes and receptor classes

Page 19: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

19

Table 2. Major Neurotransmitter Receptors in the CNS

Neurotransmitter Receptor Subtypes G Protein-Coupled (G) vs. Ligand-Gated Ion Channel (LG)

DA D1

D2

D3

D4

D5

GGGGG

NE/EPI α1

α2

β1

β2

β3

GGGGG

5-HT 5-HT1A

5-HT1B

5-HT1D

5-HT2A

5-HT2B

5-HT2C

5-HT3

5-HT4

GGGGGG

LGG

ACh Muscarinic M1

Muscarinic M2

Muscarinic M3

Muscarinic M4

Nicotinic

GGGG

LG

Glutamate NMDAAMPAKainate

Metabotropic

LGLGLGG

GABA AB

LGG

Page 20: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

20

Page 21: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

21

Neurotransmitter regulation of ion channels affects membrane potential and action potential

generation (firing)

Page 22: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

22

Page 23: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

Principles of CNS Drug action

• Selectivity for the targeted pathway – Receptor subtypes– Allosteric sites on receptors – Presynaptic and postsynaptic actions– Partial/inverse agonist (activity dependent)

• Plasticity reveals adaptive changes in drug response– Pharmacokinetic: drug metabolism– Pharmacodynamic: cellular

Page 24: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

24

Monoamine Neurotransmitters

Page 25: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

Neurotransmitter Cell Bodies Terminals

Norepinephrine (NE) Locus coeruleusLateral tegmental area

Very widespread: cerebral cortex, thalamus, cerebellum, brainstem nuclei, spinal cordBasal forebrain, thalamus, hypothalamus, brainstem, spinal cord

Epinephrine (EPI) Small, discrete nuclei in medulla

Thalamus, brainstem, spinal cord

Dopamine (DA) Substantia nigra (pars compacta)Ventral tegmental areaArcuate nucleus

StriatumLimbic forebrain, cerebral cortexMedian eminence

Serotonin (5-HT) Raphe nuclei (median and dorsal), pons, medulla

Very widespread: cerebral cortex, thalamus, cerebellum, brainstem nuclei, spinal cord

Table 3. Localization of Monoamines in the Brain

Page 26: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

26

Catecholamines Indoleamines

Monoamine Biosynthesis

Page 27: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

Important monoamine metabolites formed in the CNS

• NE MAO, COMT MHPG (MOPEG)

• DA MAO, COMT HVA

• 5HT MAO 5HIAA

Page 28: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

28

Noradrenergic Pathways in the Brain

Locus ceruleus to cortical and subcortical sites

Page 29: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

29

Serotonergic Pathways in the Brain

Midline raphe nuclei to cortical and subcortical areas

Page 30: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

30

CNS functions regulated by NE

• Arousal

• Mood

• Blood pressure control

Page 31: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

31

CNS functions regulated by 5HT

• Sleep

• Mood

• Sexual function

• Appetite

Page 32: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

Figure 15-1, G&G

Page 33: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

33

Catecholamines

Monoamine Biosynthesis

Page 34: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

34

Page 35: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

35

Page 36: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

36

• Nigrostriatal (substantia nigra to striatum)

• Mesolimbic/mesocortical (ventral tegmental midbrain to n.accumbens, hippocampus, and cortex)

• Tuberoinfundibular (arcuate nucleus of hypothalamus to median eminence then anterior pituitary)

Major Dopaminergic (DA) pathways

Page 37: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

37

CNS functions regulated by DA

• Nigrostriatal (substantia nigra to striatum)

– extrapyramidal motor control

• Mesolimbic/mesocortical (ventral tegmental to n.accumbens, hippocampus, and cortex)

– emotion– cognition

• Tuberoinfundibular (arcuate nucleus of hypothalamus to median eminence then anterior pituitary)

– prolactin release

Page 38: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

38

Brain Amines and Disease States

• Biogenic amine theory of depression

• Dopaminergic theory of schizophrenia

• Dopaminergic involvement in Parkinson’s disease

Page 39: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters
Page 40: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

40

Brain Amines and Disease States

• Biogenic amine theory of depression

• Dopaminergic theory of schizophrenia

• Dopaminergic involvement in Parkinson’s disease

Page 41: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters
Page 42: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

42

Brain Amines and Disease States

• Biogenic amine theory of depression

• Dopaminergic theory of schizophrenia

• Dopaminergic involvement in Parkinson’s disease

Page 43: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters
Page 44: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

DA involvement in Parkinson’s disease (PD)

• Pathology of disease: DA neurons in nigrostriatal pathway degenerate

• Replacing DA is a therapeutic approach to treat PD

• Parkinson like symptoms are side effects of DA receptor blockade with antipsychotic drugs

• MPTP, a neurotoxin, destroys DA neurons and induces PD

Page 45: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

45

Page 46: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

46

ACh as a CNS neurotransmitter

• Memory (ChEI in Alzheimers disease) – Basal forebrain to cortex/hippocampus (A)

• Extrapyramidal motor responses (benztropine for Parkinsonian symptoms)– Striatum (B)

• Vestibular control (scopolamine patch for motion sickness)

Page 47: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

47

B

A

Cholinergic pathways in the CNS

Nucleus basalis to cortex (A) and interneurons in striatum ( B)

Page 48: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

48

Page 49: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

49

Page 50: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

50

Amino Acid Neurotransmitters

• Inhibitory – GABA and Glycine– Hyperpolarize = don’t fire

• Excitatory– Glutamate ( and Aspartate)– Depolarize = fire

Page 51: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

51

NH2 – CH – CH2 – CH2 - COOH

COOH

NH2 – CH2 – CH2 – CH2 - COOH

Glutamic acid decarboxylase (GAD)

Glutamate GABA

GABA Synthesis

Page 52: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

52

Page 53: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

53

Page 54: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

54

Location and CNS functions of GABA

• Nigrostriatal pathway– extrapyramidal motor responses

• Interneurons throughout the brain– inhibit excitability, stabilize membrane

potential, prevent repetitive firing

Page 55: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

55

Synaptic effects of GABAA receptor activation

Inhibitory transmitters (I) hyperpolarize the membrane.

The IPSP stabilizes against excitatory (E) depolarization and action potential generation

Page 56: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

56

The ionotropic GABAA

receptor

Page 57: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

57

Subunit composition of GABAA receptors

• Five subunits, each with four transmembrane domains (like nAChR)

• Most have two alpha (α),two beta (β), one gamma (γ) subunit

• α1 β2 γ2 is predominant in mammalian brain but there are different combinations in specific brain regions

Page 58: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

58Modified from nAChR, G and G 2011

Page 59: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters
Page 60: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

60

Pharmacology of the GABAA

receptor

Page 61: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

GABAA receptor pharmacology

• There are two GABA binding sites per receptor.

• Benzodiazepines and the newer hypnotic drugs bind to allosteric sites on the receptor to potentiate GABA mediated channel opening.

• Babiturates act at a distinct allosteric site to also potentiate GABA inhibition.

• These drugs act as CNS depressants

• Picrotoxin blocks the GABA-gated chloride channel

Page 62: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

62

Page 63: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters
Page 64: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

64

Page 65: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

GABAA receptor involvement in seizure disorders

• Loss of GABA-ergic transmission contributes to excessive excitability and impulse spread in epilepsy.

• Picrotoxin and bicuculline ( GABA receptor blocker) inhibit GABAA receptor function and are convulsants.

• BDZs and barbiturates increase GABAA receptor function and are anticonvulsants.

• Drugs that block GABA reuptake (GAT) and metabolism ( GABA-T) to increase available GABA are anticonvulsants

Page 66: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

66

Page 67: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

Glycine as an inhibitory CNS neurotransmitter

• Major role is in the spinal cord

• Glycine receptor is an ionotropic chloride channel analagous to the GABAA receptor.

• Strychnine, a competitive antagonist of glycine, removes spinal inhibition to skeletal muscle and induces a violent motor response.

Page 68: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

68

The metabotropic GABAB receptor

• These receptors are GPCRS

• Largely presynaptic, inhibit transmitter release

• Most important role is in the spinal cord

• Baclofen, an agonist at this receptor, is a muscle relaxant

Page 69: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

69

Glutamate as a CNS neurotransmitter

Page 70: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

Glutamate• Neurotransmitter at 75-80% of CNS

synapses

• Synthesized within the brain from – Glucose (via KREBS cycle/α-ketoglutarate)– Glutamine (from glial cells)

• Actions terminated by uptake through excitatory amino acid transporters (EAATs) in neurons and astrocytes

Page 71: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

71

NH2 – CH – CH2 – CH2 - COOH

COOH

Glutamate Synthesis

Glutamate

α-ketoglutarate

Glutamine (from glia)

transaminases

Page 72: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

72Figure 24.

Page 73: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

GluA1-4 GluK1-3 GluN1GluN2A-DGluN3A-B

mGlu1

mGlu5

SubunitsmGlu2

mGlu3

mGlu4

mGlu6-8GluK4-5

Glutamate Receptor Subtypes

GluR 1-4 GluR 5-7, KA1,2

NR1, NR2A-2D

Page 74: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

74

Ionotropic glutamate receptors: ligand gated

sodium channels

Page 75: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

Glutamate

Page 76: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

76Figure 20A.

Page 77: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

77

Pharmacology of NMDA

receptors

Page 78: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

78

NMDA receptor as a coincidence detector : requirement for membrane depolarization

Page 79: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

79

NMDA receptor uses glycine as a co-agonist

Page 80: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

80

NMDA receptor channel is blocked by phencyclidine (PCP)

Page 81: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

81

NMDA receptor is Ca++ permeable

Page 82: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

82

Calcium (Ca++) permeability of AMPA vs NMDA receptors

• It is the GluR2 subunit that makes most AMPA receptors Ca++ impermeant

• The GluR2 subunit contains one amino acid substitution : arginine (R) versus glutamine (Q) in all other GluRs

Page 83: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

RNA editing of GluR subunits

Page 84: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

84

Properties of NMDA Receptor

• Blocked at resting membrane potential (coincidence detector)

• Requires glycine binding

• Permeable to Ca++ as well as Na

Page 85: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

85

NMDA receptors involvement in disease

- seizure disorders - learning and memory

- neuronal cell death

Page 86: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

86

NMDA receptors in seizure disorders

Page 87: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

87

Page 88: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

88

NMDA receptors in long term potentiation

Page 89: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

89

Page 90: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

90

Page 91: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

91Figure 32.

Page 92: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

92

NMDA receptors in excitotoxic cell death

Page 93: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

93

Necrosis Apoptosis

Page 94: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

94

End of CNS NT lecture slides

Page 95: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

95

Extra stuff

Page 96: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

Drugs acting on serotonergic neurons

Page 97: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

Drugs acting on noradrenergic neurons

Page 98: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters

Drugs acting on serotonergic neurons

Page 99: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters
Page 100: 1 Dr. Joan Heller Brown BIOM 255 2012 CNS Neurotransmitters