25
Design and proof of concept of a continuous pressurized multistage fluidized bed unit for deep removal of sour gas using adsorption Rick T. Driessen , Benno Knaken, Tim Buzink, Daan A.F. Jacobs, Juraj Hrstka, Derk W.F. Brilman Sustainable Process Technology, University of Twente, Enschede (The Netherlands) [email protected] 29 May 2019

1 Design and proof of concept of a continuous pressurized

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

1

Design and proof of concept of a continuous pressurized multistage fluidized bed unit for deep removal of sour gas using adsorptionRick T. Driessen, Benno Knaken, Tim Buzink, Daan A.F. Jacobs, Juraj Hrstka,

Derk W.F. Brilman

Sustainable Process Technology, University of Twente, Enschede (The Netherlands)[email protected]

29 May 2019

2

v

Agenda

Introduction Results andproof of concept

ConclusionsPilot plant design

Background and goals

3

v

Disadvantages of fixed bed adsorption

Ineffective use of sorbent Slow heat transfer

0

1

0 1

C/C i

n

z/L

fixed bed adsorber

T

Only this part of thebed is active

4

v

Continuous adsorption process

Product gas

Gas + impurities

Impurities + purge gas

Purge gas

Adsorber(low T)

Desorber(high T)

solid

sor

bent

Driessen et al., Ind. Eng. Chem. Res., 57, 3866-3875 (2018)

5

v

Continuous adsorption process

Product gas

Gas + impurities

Impurities + purge gas

Purge gas

Adsorber(low T)

Desorber(high T)

solid

sor

bent

Driessen et al., Ind. Eng. Chem. Res., 57, 3866-3875 (2018)

Heat transfer

Effective use of sorbent

6

v

Continuous pressure swing

AdsorberElevated pressure

HP/LP lock

DesorberLow pressure

LP/HP lock

Feed gas + Adsorbates

Adsorbates + Purge gas

Sorbent circulation

Purge gas

Product gas

7

v

Continuous pressure swing

CaseCO2 and H2S removal from natural gas using supported amine sorbents

GoalShow that continuous PSA in a MSFB is technically possible for sour gas removal from natural gas.

AdsorberElevated pressure

HP/LP lock

DesorberLow pressure

LP/HP lock

Feed gas + Adsorbates

Adsorbates + Purge gas

Sorbent circulation

Purge gas

Product gas

7.0 m

8

v

Rotary valve

Back pressureregulator

Riser

N2

Buffer

LP/HP lock

Buffer

Adsorber

to HP/LP lock

Cyclone

N2/CO2

to analyser

Design of pilot plant1 bara

10 bara

10 bara

1 bara

1/10 bara

30 - 60 °C

Top section

9

v

Rotary valve

Back pressureregulator

Riser

N2

Buffer

LP/HP lock

Buffer

Adsorber

to HP/LP lock

Cyclone

N2/CO2

to analyser

Design of pilot plant1 bara

10 bara

10 bara

1 bara

1/10 bara

30 - 60 °C

PI-1

V-2

V-1A

V-1B

V-3

V-4A

V-4B

PCVN2

LP/HP lock

Top section

10

v

Rotary valve

Back pressureregulator

Riser

N2

Buffer

LP/HP lock

Buffer

Adsorber

to HP/LP lock

Cyclone

N2/CO2

to analyser

Design of pilot plant1 bara

10 bara

10 bara

1 bara

1/10 bara

30 - 60 °C

Top section

11

v

Rotary valve

Back pressureregulator

Riser

N2

Buffer

LP/HP lock

Buffer

Adsorber

to HP/LP lock

Cyclone

N2/CO2

to analyser

Design of pilot plant1 bara

10 bara

10 bara

1 bara

1/10 bara

30 - 60 °C

3 stage MSFB(50 mm ID)

Top section

12

v

Rotary valve

Rotary valve

Riser

From adsorber

HP/LP lock

Buffer

Desorber

N2

Design of pilot plant

1 bara

10/1 bara

1 bara

100 °C

Bottom section

13

v

Rotary valve

Rotary valve

Riser

From adsorber

HP/LP lock

Buffer

Desorber

N2

Design of pilot plant

1 bara

10/1 bara

1 bara

100 °C

Bottom section

7 stage MSFB(200 mm ID)

14

v

Results

Bos et al., Chem. Eng. J., doi:10.1016/j.cej.2018.11.072 (2018)

Murphree tray efficiency‘Extent to equilibrium’

Definition of tray efficiency

15

v

1 2 3

Stage

0.0

0.2

0.4

0.6

0.8

1.0

Etr

ayG

[-]

S = 1.02 kg/(mR2 s)

S = 1.53 kg/(mR2 s)

S = 2.04 kg/(mR2 s)

S = 3.06 kg/(mR2 s)

Inlet 1 2 3

Stage

10 0

10 2

10 4

Con

cent

ratio

n C

O2

[mol

ppm

]

S = 1.02 kg/(mR2 s)

S = 1.53 kg/(mR2 s)

S = 2.04 kg/(mR2 s)

S = 3.06 kg/(mR2 s)

3.5 mol ppm specification

1 2 3

Stage

20

30

40

50

60

70

Tem

pera

ture

[° C

]

S = 1.02 kg/(mR2 s)

S = 1.53 kg/(mR2 s)

S = 2.04 kg/(mR2 s)

S = 3.06 kg/(mR2 s)

ResultsVarying solid flux

Parameters• P = 10 bara• cin = 20 000 mol ppm• u0 = 0.084 m/s• H = 130 mm

16

v

1 2 3

Stage

0.0

0.2

0.4

0.6

0.8

1.0

Etr

ayG

[-]

S = 1.02 kg/(mR2 s)

S = 1.53 kg/(mR2 s)

S = 2.04 kg/(mR2 s)

S = 3.06 kg/(mR2 s)

Inlet 1 2 3

Stage

10 0

10 2

10 4

Con

cent

ratio

n C

O2

[mol

ppm

]

S = 1.02 kg/(mR2 s)

S = 1.53 kg/(mR2 s)

S = 2.04 kg/(mR2 s)

S = 3.06 kg/(mR2 s)

3.5 mol ppm specification

1 2 3

Stage

20

30

40

50

60

70

Tem

pera

ture

[° C

]

S = 1.02 kg/(mR2 s)

S = 1.53 kg/(mR2 s)

S = 2.04 kg/(mR2 s)

S = 3.06 kg/(mR2 s)

ResultsVarying solid flux

Parameters• P = 10 bara• cin = 20 000 mol ppm• u0 = 0.084 m/s• H = 130 mm

From 20 000 ppm to <10 ppmin 0.5 s

Concentrations lower by orders of magnitude

17

v

1 2 3

Stage

0.0

0.2

0.4

0.6

0.8

1.0

Etr

ayG

[-]

S = 1.02 kg/(mR2 s)

S = 1.53 kg/(mR2 s)

S = 2.04 kg/(mR2 s)

S = 3.06 kg/(mR2 s)

Inlet 1 2 3

Stage

10 0

10 2

10 4

Con

cent

ratio

n C

O2

[mol

ppm

]

S = 1.02 kg/(mR2 s)

S = 1.53 kg/(mR2 s)

S = 2.04 kg/(mR2 s)

S = 3.06 kg/(mR2 s)

3.5 mol ppm specification

1 2 3

Stage

20

30

40

50

60

70

Tem

pera

ture

[° C

]

S = 1.02 kg/(mR2 s)

S = 1.53 kg/(mR2 s)

S = 2.04 kg/(mR2 s)

S = 3.06 kg/(mR2 s)

ResultsVarying solid flux

Parameters• P = 10 bara• cin = 20 000 mol ppm• u0 = 0.084 m/s• H = 130 mm

From 20 000 ppm to <10 ppmin 0.5 s

Equilibrium is almost reached

Temperature increase dueto increased sorbent flow

from desorber

Concentrations lower by orders of magnitude

18

v

ResultsEffect of diverter on top stage

19

v

ResultsEffect of diverter on top stage

Diverter

20

v

ResultsEffect of diverter on top stage

Diverter

Inlet 1 2 3

Stage

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

Con

cent

ratio

n C

O2

[mol

ppm

]

without diverterwith diverter

3.5 mol ppm specification

1 2 3

Stage

20

30

40

50

60

70

Tem

pera

ture

[° C

]

without diverterwith diverter

1 2 3

Stage

0.0

0.2

0.4

0.6

0.8

1.0

Etr

ayG

[-]

without diverterwith diverter

Parameters• P = 10 bara• cin = 20 000 mol ppm• u0 = 0.084 m/s• H = 130 mm

Sorbent bypassing without diverter is significant

21

v

Inlet 1 2 3

Stage

10 0

10 2

10 4

Con

cent

ratio

n C

O2

[mol

ppm

]

cin

= 37.300 mol ppm

cin

= 24.100 mol ppm

cin

= 10.600 mol ppm

cin

= 4.800 mol ppm

3.5 mol ppm specification

1 2 3

Stage

20

30

40

50

60

70

Tem

pera

ture

[° C

]

cin

= 37.300 mol ppm

cin

= 24.100 mol ppm

cin

= 10.600 mol ppm

cin

= 4.800 mol ppm

1 2 3

Stage

0.0

0.2

0.4

0.6

0.8

1.0

Etr

ayG

[-]

cin

= 37.300 mol ppm

cin

= 24.100 mol ppm

cin

= 10.600 mol ppm

cin

= 4.800 mol ppm

ResultsVarying inlet concentration

Parameters• P = 10 bara• u0 = 0.084 m/s• S = 2.04 kg/(mR

2 s)• H = 130 mm

22

v

Inlet 1 2 3

Stage

10 0

10 2

10 4

Con

cent

ratio

n C

O2

[mol

ppm

]

cin

= 37.300 mol ppm

cin

= 24.100 mol ppm

cin

= 10.600 mol ppm

cin

= 4.800 mol ppm

3.5 mol ppm specification

1 2 3

Stage

20

30

40

50

60

70

Tem

pera

ture

[° C

]

cin

= 37.300 mol ppm

cin

= 24.100 mol ppm

cin

= 10.600 mol ppm

cin

= 4.800 mol ppm

1 2 3

Stage

0.0

0.2

0.4

0.6

0.8

1.0

Etr

ayG

[-]

cin

= 37.300 mol ppm

cin

= 24.100 mol ppm

cin

= 10.600 mol ppm

cin

= 4.800 mol ppm

ResultsVarying inlet concentration

Parameters• P = 10 bara• u0 = 0.084 m/s• S = 2.04 kg/(mR

2 s)• H = 130 mm

Pressurized MSFB technologyis also suitable for high

concentrations

H2S specification (<3.5 ppm) can be reached

23

v

Inlet 1 2 3

Stage

10 0

10 2

10 4

Con

cent

ratio

n C

O2

[mol

ppm

]

cin

= 37.300 mol ppm

cin

= 24.100 mol ppm

cin

= 10.600 mol ppm

cin

= 4.800 mol ppm

3.5 mol ppm specification

1 2 3

Stage

20

30

40

50

60

70

Tem

pera

ture

[° C

]

cin

= 37.300 mol ppm

cin

= 24.100 mol ppm

cin

= 10.600 mol ppm

cin

= 4.800 mol ppm

1 2 3

Stage

0.0

0.2

0.4

0.6

0.8

1.0

Etr

ayG

[-]

cin

= 37.300 mol ppm

cin

= 24.100 mol ppm

cin

= 10.600 mol ppm

cin

= 4.800 mol ppm

ResultsVarying inlet concentration

Parameters• P = 10 bara• u0 = 0.084 m/s• S = 2.04 kg/(mR

2 s)• H = 130 mm

Tray efficiencies remain high: >90%

Pressurized MSFB technologyis also suitable for high

concentrations

H2S specification (<3.5 ppm) can be reached

Temperature increase dueto exothermic adsorption

24

CompactA pressurized MSFB provides small adsorption equipment.

Conclusions

PossibleContinuous PSA is technically possible and demonstrated.

FastDeep removal is possible: 40 000 ppm to <10 ppm in <2 s.

EfficientEquilibrium is almost reached at every stage.

25

[email protected]@Beltman Architects - photographer Dirk Verwoerd