93
1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

Embed Size (px)

Citation preview

Page 1: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

1

Chapter 17Macroeconomic Policies and Long-Term Growth

© Pierre-Richard Agénor and Peter J. Montiel

Page 2: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

2

Wide dispersion of output growth rates across countries. Table 17.1: growth performance of developing

countries. Traditional neoclassical approaches: incapable of

explaining the wide disparities in the pace of economic growth across countries.

“New growth” literature: existence of “endogenous” mechanisms that foster economic growth, and new roles for public policy.

Page 3: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

3

The Neoclassical Growth Model. Externalities and Increasing Returns. Human Capital, Knowledge, and Growth. Effects on Financial Intermediation. Inflation Stabilization and Growth. Government size and Growth. Commercial Openness and Growth. Exchange-Rate Unification and Growth.

Page 4: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

The Neoclassical Growth Model

Page 5: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

5

Solow (1956) and Swan (1956): neoclassical growth model.

Assumptions: Production function: aggregate, constant-returns-to-

scale, and combines labor and capital in the production of composite good.

Savings: fixed fraction of output. Technology improves at exogenous rate.

Cobb-Douglas production function:

Y = AKL1-, 0 < < 1,

Y: total output; K: capital stock; A: level of technology;

L: workers employed in the production process.

(1)

Page 6: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

6

Output per worker, y = Y/L, is given by

y = Ak,

k: capital-labor ratio. Capital accumulation is given by

k = sy - (n + )k, 0 < s, < 1,

s: propensity to save;

n > 0: exogenous rate of population growth;

: rate of depreciation of physical capital. (2) incorporates equilibrium condition of goods market

or, equivalently, equality between investment I and saving, I = sy.

.(2)

Page 7: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

7

Suppose that A is constant over time. Substituting (1) in (2) and dividing both sides of the

resulting expression by k yields growth rate of capital-labor stock:

gk k/k = sAk-1 - (n + ),

from which the rate of growth of output per worker can be derived as

gy y/y = kAk-1/Ak = gk.

Figure 17.1: behavior of capital stock per worker. Horizontal line at n + : depreciation line.

.(3)

. .

Page 8: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

8

Figure 17.1Capital Accumulation in The Solow-Swan Growth Model

k

n+E

A

sAk

B

k p

0k r

0

gkr

gkp

1/(1-k = (sA/n+~

Page 9: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

9

Curve sAk-1: savings curve. Savings curve is downward-sloping due to assumption

of decreasing marginal returns to capital. As implied by (3), gk is the difference between the two

curves. Point of intersection of the two curves: steady-state

value of k. If technology grows at a constant rate, steady-state

values of output per effective worker and capital/effective labor ratio are constant; proportional to the rate of technological change.

Although s has no effect on growth rate per capita in the long run, it affects level of per capita income in steady state.

Page 10: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

10

Model implies that countries with similar production technologies, and comparable saving and population growth rates should converge to similar steady-state levels of per capita income.

Figure 17.1: “poor” country starts with capital stock of k0 has higher initial growth rate than “rich” country starting with k0.

Poor country grows faster during the transition. But, if both countries possess the same level of A, s, ,

n, they will both converge to the same steady-state level of the capital stock, k.

Convergence occurs because each increment to capital stock generates large additions to output when capital stock is initially small with diminishing marginal returns to capital.

p

r

~

Page 11: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

11

“Sources-of-growth” approach: empirical methodology to analyze determinants of changes in output.

It uses aggregate production function to decompose growth into “contributions” from different sources plus residual.

Residual: “technical progress,” or more adequately growth in total factor productivity.

Assume: production function is y = Af(k, n).

Page 12: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

12

In terms of percentage changes:

g y/y = (A/A) + Afk(k/y) + Afn(n/y)

= gA + kgk + ngn,

h = fhh/y (for h = k, n): elasticity of output with respect to input h;

gA: rate of growth of total factor productivity and is derived as a residual.

Under conditions of competitive equilibrium, factors are paid their marginal products: k (n) is equal to share of capital (labor) income in total output.

In the presence of constant returns to scale, sum of all share coefficients must be equal to unity.

.

.. . .

Page 13: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

13

With Cobb-Douglas production technology as in (1), assuming that factors of production are paid their marginal products implies that k = 1-n, and labor's share corresponds to the parameter .

Even though hypotheses of constant-returns-to-scale production function and competitive factor markets are restrictive, there are studies based on the model.

Chenery (1986): Studies based on sources-of-growth methodology in

the 1960s and 1970s. Average capital share is about 40%, which indicates

that production function exhibits diminishing marginal returns to capital.

Page 14: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

14

Growth in capital stock had limited effect on output growth.

Average contribution of the residual was less than in developed countries.

Most countries had high growth rate of labor input. Estimates of capital share vary across countries,

ranging from 26% for Honduras to more than 60% for Singapore.

Effect of capital accumulation on growth varies across countries.

Contribution of total factor productivity to growth also varied across countries.

Elías (1992): Growth process of Argentina, Brazil, Chile, Colombia,

Mexico, Peru, and Venezuela during 1940-85.

Page 15: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

15

He considers different kinds of labor and capital inputs, and defines gross and quality component for each of them.

For labor: gross component is arithmetic sum of employment across characteristics.

For capital: it is arithmetic sum of different categories of capital.

Quality component captures changes in composition of factors of production.

Output growth averaged 5.3% for the group as a whole. Quality of labor rose on average by 1.4%, and quantity

of labor by 2%. Quality of capital fell by 0.4%, its quantity grew at 4%. Given average labor share of 40%, labor contributed

1.3% to average growth rate.

Page 16: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

16

Capital's contribution was 2.5%. Technological progress was therefore 1.5% of rate of

growth. Thus, capital made the highest contribution to output

growth (47%) because of its quantity and its share. Quality of labor played more important role in growth of

labor input.

Table 17.2: Decomposition of trend or potential output growth for

developing countries during the 1970s and 1980s. Contribution of capital to potential output growth was the

most important. Total factor productivity accounted for about the same

share as labor in its contribution to growth.

Page 17: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

17

Differences across regions: total factor productivity accounts for negligible share of growth in Africa and

the Middle East, provides substantial contribution to growth in Asia.

Limitations of neoclassical growth model: Capital assumed to exhibit diminishing marginal returns. This prevents it from providing an explanation

for the wide variations across countries in either per capita income or growth rates, and

for the fact that poor countries do not grow faster than rich ones (Figure 17.2).

It is assumed that output growth is independent of saving rate and is determined only by demographic factors and technological progress rate.

Page 18: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

18Source: World Bank.

Ave

rage

ra

te o

f G

NP

gro

wth

pe

r ca

pita

(1

97

1-9

5)

GNP per capita relative to US GNP per capita In 1970 (in U.S. dollars)

Figure 17.2Average Rate of Growth Per Capita and

Proportion of GNP Per Capita to US GNP Per Capita

0 0.05 0.1 0.15 0.2 0.25 0.3

-0.1

-0.05

0

0.05

0.1

0

-0.1

Page 19: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

19

Since population growth and technological change are assumed exogenous, the model does not explain the mechanisms that generate steady-

state growth, not allow evaluation of mechanisms through which

government policies can influence growth process. Assumption that rate of growth of output is independent

of saving rate is at variance with the evidence; high-growth developing countries have higher saving rates.

New growth literature addresses these limitations by proposing variety of channels through which steady-state growth arises endogenously.

Page 20: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

Externalities and Increasing Returns

Page 21: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

21

Two approaches were followed to relax assumption of diminishing returns to capital:

First approach views all production inputs as some form of reproducible capital, including physical capital, human capital (Lucas, 1988) or “state of knowledge” (Romer, 1986).

Simple growth model along these lines: AK model proposed by Rebelo (1991).

It results from setting = 0 in (1):

y = Ak,

where k = K/L as before, but K includes both physical and human capital.

Page 22: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

22

Thus, production function is linear and exhibits constant returns to scale, but does not yield diminishing returns to capital.

Using the capital accumulation (2), steady-state growth rate of capital stock per worker:

gk = sA - (n + ).

Steady-state growth rate per capita:

gy = sA - (n + ).

Growth rate is, for sA > n+, positive (and constant over time) and level of income per capita rises without bound.

Page 23: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

23

Implication of AK model: Increase in saving rate raises growth rate per capita. Poor nations whose production process has the

same technological sophistication as other nations grow at the same rate as rich countries, regardless of initial level of income.

Thus it does not predict convergence even if countries

share the same technology; are characterized by the same pattern of saving.

Rebelo (1991): Implications of considering separately the production

of consumption goods, physical capital, and human capital goods.

Page 24: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

24

Endogenous steady-state growth obtains if “core” of capital goods is produced

according to a constant-returns-to-scale technology;

without nonreproducible factors. Second approach: introducing spillover effects or

externalities in growth process. Externalities: if one firm doubles its inputs, productivity

of inputs of other firms will also increase. Introducing spillover effects relaxes assumption of

diminishing returns to capital. Mostly externalities take the form of general

technological knowledge that is available to all firms, which use it to develop new methods of production.

Page 25: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

25

Exceptions. Lucas (1988): externalities take the form of public

learning, which increases the stock of human capital and affects productivity of all factors.

Barro (1990): externalities associated with public investment.

Externalities is associated with increasing returns to scale in production function.

But, important implication of models exhibiting spillover effects and externalities is that sustained growth does not result from the existence of external effects, rather result from assumption of constant returns to

scale in all production inputs. Rebelo (1991): increasing returns are neither necessary

nor sufficient to generate endogenous growth.

Page 26: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

Human Capital, Knowledge, and Growth

Page 27: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

27

The Production of Human Capital. The Production of Knowledge.

Page 28: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

28

The Production of Human Capital One of the sources of externalities: accumulation of

human capital and its effect on productivity of the economy.

Lucas (1988): Spillover effects of human capital accumulation. Individual workers are more productive, if other

workers have more human capital. Simplified version of Lucas' model is examined here. Human capital is accumulated through explicit

“production”: part of individuals' working time devoted to accumulation of skills.

Let k denote physical capital per worker and h human capital per worker (“knowledge” capital).

Page 29: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

29

Production process:

y = Ak[uh]1-, 0 < u < 1,

u: fraction of time that individuals devote to producing goods.

Growth of physical capital depends on saving rate. Growth rate of human capital depends on time devoted

to its production:

h/h = (1-u), > 0.

Long-run growth rate of both capital and output per worker is (1-u).

.

Page 30: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

30

Rate of human capital growth, and ratio of physical to human capital converges to a constant.

In the long run, income is proportional to the economy's initial stock of human capital.

Saving rate has no effect on growth rate.

Implication of the model: Under purely competitive equilibrium there will be

underinvestment in human capital since private agents do not take into account external benefits of human capital accumulation.

Equilibrium growth rate is thus smaller than optimal growth rate.

Growth would be higher with more investment in human capital.

Page 31: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

31

Thus government policies are necessary to increase the equilibrium growth rate.

Page 32: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

32

The Production of Knowledge Romer (1986): source of externality is stock of

knowledge. Knowledge is produced by individuals. But since newly produced knowledge can be partially

and temporarily kept secret, production of goods and services depends on both private knowledge, and aggregate stock of knowledge.

Since individuals only partially reap rewards to production of knowledge, market equilibrium results in underinvestment in knowledge accumulation.

Page 33: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

33

Romer (1990): Explains endogenously decision to invest in

technological change; uses a model based on distinction between research

sector and rest of the economy; firms cannot appropriate all the benefits of knowledge

production; tax and subsidy can be used to raise rate of growth.

Simplified version of Romer's (1990) model is presented here.

Two production sectors: goods-producing sector uses physical capital,

knowledge and labor in the production process; knowledge-producing sector (same inputs are used).

Page 34: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

34

L (K): fraction of labor force (capital) is used in the knowledge-producing sector.

1–L (1-K): fraction of labor (capital) in the goods-producing sector.

A: total stock of knowledge that can be used in both production activities.

Assuming Cobb-Douglas technology, output in goods-producing sector:

Y = [(1-K)K][A(1-L)L]1- 0 < <1.

Constant returns to both capital and labor.

(9)

Page 35: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

35

Production of new knowledge (changes in A) is determined by generalized Cobb-Douglas form:

A = B(KK)(LL)A, B > 0, 0, , 0,

B: shift parameter. There is either diminishing returns in production of new

ideas or increasing returns, depending on , , and . can be equal to unity, or strictly greater or smaller than

unity. Assuming s is constant and there is no depreciation of

capital stock, then

K = sY, 0 < s < 1.

.

(10)

.(11)

Page 36: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

36

Population growth is exogenous:

L = nL, n 0.

Begin analyzing te model by substituting (9) in (11):

K = KKA1-L1-, K s(1-K)(1-L)1-.

Dividing both sides of this expression by K:

gK (K/K) = K{AL/K}1-.

Its rate of change:

gK = (1-)(gA + n - gK).

.

.

.(14)

.

Page 37: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

37

gK is rising (falling) if gA+n-gK is positive (negative), and remains constant if gA+n = gK.

Curve KK in Figure 17.3: combinations of gA and gK for which gK is constant over time.

Slope of KK is unity; above (below) KK, gK is falling (rising).

Dividing both sides of (10) by A:

gA A/A = AKLA-1, A B.

This implies that

gA = gK + n + (-1)gA.

.

.

K L

(15)

Page 38: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

38

Figure 17.3Dynamics of Capital and Knowledge: Case I--+ < 1

gK

0

n

-n/

K

K

A

A

E

gA

gK

~

gA

~

Source: Romer (1994, p. 107).

Page 39: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

39

gA is increasing (falling) if right-hand side of (15) is positive (negative), and constant if it is zero.

Curve AA in Figure 17.3: combinations of gA and gK for which gA is constant over time.

Slope of AA is (1-)/, which is ambiguous in sign. Figure assumes that < 1, so that the slope is positive. Above (below) AA, gA is rising (falling). (9) exhibits constant returns to scale in K and A. Thus whether there are on net increasing, decreasing,

or constant returns to scale to A and K depends on whether (10) exhibits constant returns to scale.

This equation can be rewritten as

A = KA(qL), q B.K L

.

Page 40: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

40

Degree of returns to scale to A and K in production of new knowledge is + .

Consider the three separate cases, depending on whether + is less, equal, or greater than unity.

If + < 1: (1-)/ is greater than unity and AA is steeper than KK. This case is illustrated in Figure 17.3. Regardless of initial values of gA and gK, they converge

to equilibrium point E. Equilibrium values gA and gK are obtained by setting gA

= gK = 0 in (14) and (15), and are given by

gA = n, gK = n + gA.

~ ~ ..

+ 1 – (+)

~ ~ ~

Page 41: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

41

From (9), aggregate output and output per worker are growing at rates given by

gY = gK + (1-)(n + gA) = gK,

gY/L = gK – n = gA.

Thus, economy's growth rate is endogenous: increasing function of n and is zero if n is zero.

L,K and s have no effect on growth rate.

If + > 1: AA and KK diverge (Figure 17.4). Regardless of economy's initial position, it enters the

region between two curves.

~ ~ ~ ~

~~~

Page 42: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

42

Figure 17.4Dynamics of Capital and Knowledge: Case II--+ > 1

gK

0

n

-n/

K

K

A

A

gA

Source: Romer (1994, p. 108).

Page 43: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

43

Once this occurs, growth rates of A and K increase without bound.

There cannot be steady-state growth.

If + = 1: (1-)/ is equal to unity and AA and KK have the same

slope. If n is positive, KK lies above AA:

upper panel of Figure 17.5; there is no steady-state level of growth.

If n = 0, AA and KK are identical: lower panel of Figure 17.5; regardless of initial position of the economy,

balanced growth path is reached; this path is unique;

Page 44: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

44

Figure 17.5aDynamics of Capital and Knowledge: Case II--+ = 1

gK

0

n

-n/

K

K

A

A

gA

Source: Romer (1994, p. 109).

Page 45: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

45

Figure 17.5bDynamics of Capital and Knowledge: Case II--+ = 1

gA

gK

AA and KK

Source: Romer (1994, p. 109).

Page 46: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

46

economy's growth rate on that path depends on all the parameters of the model including s.

Existence of knowledge-producing sector may explain positive correlation between s and rate of economic growth (Figure 17.6).

Page 47: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

47Source: World Bank.

Ave

rag

e ra

te o

f G

NP

gro

wth

pe

r ca

pita

Gross Domestic Saving as a proportion of GDP

Figure 17.6Saving Ratio and Output Growth Per Capita

(1971-95)

-10 0 10 20 30 40 50 60

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0

Page 48: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

Effects of Financial Intermediation

Page 49: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

49

Introduce financial factor, following Pagano (1993), to assume that 1- of saving is “lost” as a result of financial disintermediation activities:

sy = I, 0 < < 1.

Assuming that production technology is constant returns to scale to capital, steady-state growth rate per capita:

g = sA - .

How financial development affects economic growth: raise s; raise A (marginal productivity of the capital stock); increase in (“conduit” effect).

Page 50: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

50

Effects on the Saving Rate. Effects on the Accumulation of Capital. The “Conduit” Effect, Financial Repression, and Growth. Financial Development and Growth: Empirical

Evidence.

Page 51: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

51

Effects on the Saving Rate Early development literature: existence of positive effect

of financial development on s. New growth literature: direction of this effect is not

consistent. Jappelli and Pagano (1994):

development of financial markets offers households possibility of diversifying their portfolios and increases their borrowing options;

this affects proportion of agents subject to liquidity constraints, which may affect s.

Financial development also reduces overall level of interest rates;

Page 52: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

52

modifies structure of interest rates by reducing spread between rate paid by borrowers and that paid to lenders.

In each case effect on s is ambiguous. Ambiguous effect of financial intermediation on s may

be compounded when all partial effects associated with financial development are taken into account.

Bencivenga and Smith (1991): direct effect of banking activities may be reduction in s.

But, if positive effect of financial development on productivity of capital and efficiency of investment is taken into account, net effect on growth may be positive.

Page 53: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

53

Effects on the Allocation of Capital

Figure 17.7: investment and output growth are positively correlated in developing countries.

Role of financial intermediaries: facilitate efficient allocation of resources to investment projects that provide the highest marginal return to capital.

Financial intermediation increases average productivity of capital A in two ways: by collecting, processing, and evaluating relevant

information on alternative investment projects; by inducing entrepreneurs, through their risk-sharing

function, to invest in riskier but more productive technologies.

Page 54: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

54

Ave

rage

rat

e o

f GN

P g

row

th p

er c

apita

Gross Domestic Investment as a proportion of GDP

Figure 17.7Investment and Output Growth Per Capita

(1971-95)

5 10 15 20 25 30 35 40

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0

Source: World Bank.

Page 55: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

55

Greenwood and Jovanovich (1990): Link between informational role of financial

intermediation and productivity growth. Capital may be invested in safe, low-yield technology or

risky, high-yield one. Return to risky technology is affected by

aggregate shock; project-specific shock.

Financial intermediaries with their large portfolios can identify the aggregate productivity shock; and induce their customers to select technology that is

most appropriate for current shock.

Page 56: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

56

Efficient allocation of resources channeled through financial intermediaries raises productivity of capital and thus growth rate of the economy.

Pagano (1993): Another function of financial intermediation: it enables

entrepreneurs to pool risks. “Insurance” function: financial intermediaries allow

investors to share uninsurable and diversifiable risk from rates of return differences on alternative assets.

Risk sharing affects saving and investment decisions.

Liquidity: In the absence of banks, households can guard against

idiosyncratic liquidity shocks by investing in productive assets that can be liquidated.

Page 57: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

57

Bencivenga and Smith (1991): banks increase productivity of investment by directing funds to illiquid, high-yield technology; reducing investment waste due to premature

liquidation.

Page 58: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

58

The “Conduit” Effect, Financial Repression, and Growth

Financial intermediation operates as a tax in transformation of saving into investment.

Financial intermediation thus has growth-deterring effect because intermediaries appropriate share of private saving.

Costs associated with financial intermediation represent payments that are received by intermediaries in return for their services.

In developing countries: Such absorption of resources results from explicit

and implicit taxation and by excessive regulations.

Page 59: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

59

This leads to higher costs and thus inefficient intermediation activities.

If financial system reforms reduce cost and inefficiencies associated with intermediation process, growth rate will increase.

Role of financial repression in growth models: In countries where collecting conventional taxes is

costly, governments choose to repress their financial systems to increase revenue.

Roubini and Sala-i-Martin (1995): inflation is viewed as proxy for financial repression.

Courakis (1984): constraints on bank portfolio choices may reduce volume and productivity of investment by reducing funds channeled to deposit-taking financial

intermediaries;

Page 60: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

60

causing less efficient distribution of any given volume of such funds.

Page 61: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

61

Financial Development and Growth: Empirical Evidence. Recent research has explored empirical relationship

between financial “deepening” and economic growth.

King and Levine (1993a, 1993b): Four alternative measures of financial depth:

ratio of liquid liabilities of financial system to GDP; share of total credit allocated by banks; share of total domestic credit received by private

sector; ratio of credit to private enterprises to GDP.

Contributions of such indicators in explaining long-term real GDP growth;

Page 62: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

62

share of investment in GDP; rate of growth of total factor productivity.

All of financial depth indicators are statistically significant with large positive effects on variable being explained.

This association did not reflect reverse causation from growth to financial indicators.

Evidence linking financial depth to long-term economic growth, both through incrementation of resource accumulation, and enhancement of productivity growth,

is strong in cross-country record.

Page 63: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

Inflation Stabilization and Growth

Page 64: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

64

High rates of inflation can be expected to reduce economic growth through variety of mechanisms which can influence both rate of capital accumulation; rate of growth of total factor productivity.

Fischer (1993): government which tolerates high inflation is one which has lost macroeconomic control, and this deters domestic investment in physical capital.

Other arguments: high inflation means unstable inflation and volatile relative prices; reduce information content of price signals; distort efficiency of resource allocation, affecting

growth of total factor productivity.

Page 65: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

65

Simplified version of De Gregorio’s model (1993) is presented here.

Assumptions: Closed economy consists of households, firms, and

government. Households hold no money but hold indexed bond

issued by government. Capital is only input in production process, which

takes place under constant returns to scale. Firms hold money because it reduces transactions

costs associated with purchases of new equipment. Capital mobility is precluded, so that domestic

investment must equal domestic saving. Inflation is exogenous.

Page 66: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

66

Representative household maximizes present value of utility stream

subject to flow budget constraint

b = (1 - )(y + rb) – c - ,

1/: elasticity of intertemporal substitution;

b: real stock of government indexed bonds;

0 < < 1: income tax rate;

r: real rate of return on bonds; y: total factor income;

: net lump-sum taxes paid by households.

c1-

1-

0e-tdt, 0 < <1,

.

(18)

(19)

Page 67: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

67

Maximization of (18) subject to (19) yields

c/c = [(1-)r - ].

Production exhibits constant returns to scale:

y = Ak.

Firms require money to purchase new capital goods. Cost of investing I units is thus equal to I[1+(m/I)],

where m is firms' real money holdings. < 0 and > 0: holding money reduces transactions

costs but entails diminishing returns.

.

Page 68: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

68

Representative firm maximizes present discounted value of its cash flow, net of opportunity cost of its holdings of money balances.

This opportunity cost is equal to (r + )m, where is inflation rate.

Thus firm maximizes:

subject to k = I.

0I – (r+)m – mAk -

mI

1 + ( ) e-rtdt,.

.

Page 69: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

69

Solution yields

-( ) = r + m = (r + )I, = 1/ < 0,

q/q = r – (A/q),

q = 1 + ( ) - ( ),

q: shadow price of capital.

mI

mI

mI

mI

.

(23): firm's demand for money. Since cash flows are not subject to direct taxation,

opportunity cost of holding money is sum of before-tax real interest rate plus inflation rate.

(23)

(24)

(25)

Page 70: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

70

(24): shadow price of capital is equal to present discounted value of marginal product of capital.

(25): q exceeds unity due to existence of transactions costs incurred in buying new unit of capital.

Substituting (23) in (25) yields

q = 1 + [()] + (r + )() = q(r + ), q > 0.

(26): q is constant (at q) if is constant. From (24, real interest rate is:

r = A/q.

(26)~

~ ~

Page 71: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

71

Government budget constraint:

m + b = g - y - - m,

g: public expenditure, which is taken to be a constant

fraction of output. Assume b = 0, and government adjusts lump-sum taxes

to maintain fiscal equilibrium. Aggregate resource constraint of the economy:

y = c + 1 + ( ) I + g.

..

.

mI

Page 72: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

72

Consumption, output, capital, and real money balances grow at constant rate in the steady state:

g = [(1-)r - ].

Model has no transitional dynamics; that is, economy grows continuously at rate given by (30).

This model generates an inverse relationship between output growth and due to negative effect of inflation on profitability of investment. Higher raises “effective” price of capital goods,

which incorporates opportunity cost of holding money to facilitate purchases of capital goods.

~ (30)

Page 73: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

73

Increase in transactions costs raises shadow value of installed capital, dampens investment, and reduces growth rate.

Barro (1997): Cross-country evidence on relationship between

inflation and growth. Data set consists of 100 countries, with annual

observations on macroeconomic data during 1960-90. Three periods: 1965-75, 1976-85, and 1986-90. Other things equal, 10% increase in reduces long-run

growth by about 0.025% per year. It is level of , rather than its variability, that affects

growth adversely. Results are robust with respect to exclusion of few high-

inflation outliers.

Page 74: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

74

Interesting aspect of Barro's work: introduction of some novel instruments for inflation.

Barro uses prior colonial history: these are uncorrelated with innovations in recent growth experience, but correlated with long-term inflation performance.

Using these as instruments for leaves previous results in place.

Transition from high to low may not be associated with contemporaneous acceleration in economic growth.

Favorable growth effects from disinflation materialize with a lag, so that growth may slow during transition, and perhaps for some time thereafter.

Page 75: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

75

Bruno and Easterly (1998): Evidence about growth effects of transition from high to

low . Methodology:

compiling a sample of countries that had experienced successful stabilization over 1961-92; and

comparing their growth rates relative to world average before, during, and after, their inflationary episodes.

Growth fell by an average of 2.8% during high-inflation episode, but rose by an average of 3.8% during successful stabilization.

This pattern was repeated for growth of total factor productivity.

But investment ratio did not rise above world average.

Page 76: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

76

Conclusion: growth accelerates during and just after stabilization when initial level of inflation is high.

Inflation stabilization component of market-oriented reform policies should be growth-enhancing.

Page 77: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

Government Size and Growth

Page 78: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

78

Inflation stabilization implies the need for reduction of fiscal deficits that can be reduced by decreasing expenditures or increasing revenues.

Difference between two approaches: resulting size of government sector.

Both level and composition of government expenditures may matter for long-term growth: Holding fiscal deficit constant, larger government

expenditures imply need for additional revenues. But such revenues would be raised through

distortionary taxation. This would reduce rate of growth through adverse

effects on efficiency of resource allocation. Some government expenditure may be productive.

Page 79: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

79

Expenditures on health and education may be interpreted as investments in human capital.

Other expenditures may represent investment in “social capital” in form of institutions that safeguard property rights.

Barro (1991): Examines coefficients of government spending

variables when other long-term growth determinants are controlled for in the regression.

Government expenditures are disaggregated into government investment; government consumption excluding spending on

defense and education;

Page 80: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

80

spending on defense and education separately; spending on transfer payments.

Government consumption net of defense and education and transfers may affect growth adversely through distortionary effects of taxation.

Government investment and defense and education spending add to productive resources and thus would have ambiguous effects on growth.

Empirical results are mixed: Government investment has positive and statistically

significant partial correlation with growth. Government consumption net of defense and

education is negative and significant.

Page 81: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

81

Neither education nor defense spending is related to long-run growth.

Spending on transfers is positively related to growth, but Barro interprets this as reverse causation.

Barro (1997) confirms negative effect of government consumption on long-term growth.

However, interpretation of these results remains open to question, due to potential for reverse causation.

To identify separate effect of government size on economic growth appropriate instrument is required.

Such instruments have not been easy to find. Thus, interpretation of negative partial correlation

between government consumption and growth remains ambiguous.

Page 82: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

Commercial Openness and Growth

Page 83: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

83

Under conditions of financial openness, increased commercial openness may reduce risk premium that external creditors require.

Under neoclassical assumptions, this may result in larger steady-state capital stock and thus more rapid accumulation-driven growth during transition.

Endogenous growth models: exporting and importing, by increasing economy's exposure to new technologies, facilitate their adoption; thus increase rate of growth of productivity.

Implication: trade liberalization, which promotes commercial openness, should induce increase in the level of income; increase in its rate of growth.

Page 84: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

84

Dollar (1992): Relevant definition of openness: one that combines

liberal trade regime with stable real exchange rate. To measure outward orientation of trade regime, he

uses deviations of Summers-Heston price levels from values predicted from regression of price levels on per capita GDP, and measure of population density.

Distorted trade regime would result in appreciated real exchange rate, and thus high price level.

Results: Asian developing countries had the most liberal trade

regimes. African countries are the least liberal.

Page 85: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

85

Latin American countries in between. Increased trade distortions and increased real

exchange rate variability have significant and large negative effects on economic growth.

Sachs and Warner (1995): Factors that determine whether countries with low

income per capita will achieve convergence. Two conditions are critical: preservation of private

property rights and commercial openness. Their methodology involves classification of countries

into two groups: those which safeguarded property rights and

maintained commercial openness (“qualifiers”), those which did not (“nonqualifiers”).

Page 86: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

86

Trade openness was defining characteristic of two groups, since almost all countries that failed to qualify on openness criterion also did so on political criterion.

Qualifiers grew more rapidly, and both political and trade variables had significant partial effects on growth.

No country which maintained substantially opened trade failed to grow by at least 2% per year during 1970-89.

Conclusion: safeguarding property rights and maintaining open trade regime are conducive to growth, and constitute sufficient conditions for attainment of

rapid economic growth.

Page 87: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

87

Frankel, Romer, and Cyrus (1996): Both of the previous studies leave open direction of

causality between growth and openness. They addressed this issue by using gravity model to

instrument for openness in cross-country growth equation.

They found strong positive correlation between exogenous component of openness and economic growth.

Page 88: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

Exchange-Rate Unification and Growth

Page 89: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

89

Restrictions on financial trades involves foreign exchange transactions.

Most common form involved capital account transactions in balance of payments.

Such restrictions have been intensified when domestic economic distortions have created incentives for residents to remove funds from the country.

Private agents have sought to circumvent restrictions by trading foreign exchange outside official markets.

This gives rise to parallel exchange market at which foreign exchange trades at substantial premium over its official value.

Effects of removal of restrictions: Removal of restrictions on capital inflows can generate

resources for investment.

Page 90: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

90

Removing restrictions on outflows may do so as well, by assuring foreign creditors that they will be able to

repatriate their funds when desired, and reassuring both domestic and foreign investors that

their capital will be less subject to taxation. Enhanced liquidity provided to domestic residents may

induce them to undertake less liquid but more productive investment projects.

Financial integration may affect growth indirectly by fostering deeper domestic financial markets, thus reinforcing growth benefits of financial deepening.

Evidence: Evidence on effects of easing of foreign exchange

restrictions on economic growth is of two types:

Page 91: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

91

Use of premium on foreign exchange in parallel markets as a proxy for capital-account restrictions in cross-country growth regressions.

Assessing whether international financial integration affects economic growth through indirect channel of promoting domestic financial depth.

Levine and Zervos (1996): Provided evidence of the first type. Used cross-country sample of 119 countries. In testing for effects of parallel market premium, they

investigated robustness of its role since large premium may reflect variety of policy distortions.

Result: premium had robust negative partial correlation with long-term growth.

Page 92: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

92

Implication: foreign exchange restrictions exerted independent negative effect on growth.

De Gregorio (1992): Provided evidence of the second type. Explained cross-country differences in measures of

financial depth on the basis of set of control variables (initial GDP per capita,

average rate of inflation, and measure of commercial openness), and

measures of degree of international financial integration.

Page 93: 1 Chapter 17 Macroeconomic Policies and Long-Term Growth © Pierre-Richard Agénor and Peter J. Montiel

93

Results: Three of his measures of international integration had

statistically significant partial correlation with measures of financial depth.

This is interpreted as evidence in support of indirect effect.

No evidence of direct effect of openness on growth is found.