1. Analog Electronics Tests .pdf

Embed Size (px)

Citation preview

  • 8/18/2019 1. Analog Electronics Tests .pdf

    1/294

    1

    Chapter 1

    “P-N” Diode

    1.

    1p

    Figure 1.1 shows the structure of a „p-n” junction. With „p” has been

    noted:

    ANp ≅  

    A

    DNn ≅  

    C

    Metallurgical junction

    Figure 1.1

    a.) the concentration of the acceptor atomsb.) the concentration of the donor atomsc.) the concentration of the electronsd.) the concentration of the holesCorrect answer d.)

    2.1p

    Figure 1.1 shows the structure of a „p-n” junction. With „n” has beennoted:

    ANp ≅  

    A

    DNn ≅  

    C

    Metallurgical junction

    Figure 1.1

    a.) the concentration of the acceptor atomsb.) the concentration of the donor atomsc.) the concentration of the electronsd.) the concentration of the holesCorrect answer c.)

    3.

    1p

    Figure 1.1 shows the structure of a „p-n” junction. With „ N  A” has

    been noted:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    2/294

    Analog Electronics - Tests

    2

    ANp ≅  

    A

    DNn ≅  

    C

    Metallurgical junction

    Figure 1.1

    a.) the concentration of the acceptor atomsb.) the concentration of the donor atomsc.) the concentration of the electronsd.) the concentration of the holesCorrect answer a.)

    4.

    1p

    Figure 1.1 shows the structure of a „p-n” junction. With „ N  D” has

    been noted:

    ANp ≅  

    A

    DNn ≅  

    C

    Metallurgical junction

    Figure 1.1

    a.) the concentration of the acceptor atomsb.) the concentration of the donor atomsc.) the concentration of the electronsd.) the concentration of the holesCorrect answer b.)

    5.1p

    Figure 1.2 shows the symbol of a „p-n” diode. With „A” has beennoted:

    Figure 1.2

    a.) anodeb.) cathodec.) total instantaneous value of the drop voltage across the dioded.) total instantaneous value of the current flowing through the diodeCorrect answer a.)

    6.

    1p

    Figure 1.2 shows the symbol of a „p-n” diode. With „C” has been

    noted:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    3/294

    Analog Electronics - Tests

    3

    Figure 1.2

    a.) anodeb.) cathodec.) total instantaneous value of the drop voltage across the dioded.) total instantaneous value of the current flowing through the diodeCorrect answer b.)

    7.

    1p

    Figure 1.2 shows the symbol of a „p-n” diode. With „v A” has been

    noted:

    Figure 1.2

    a.) anodeb.) cathodec.) total instantaneous value of the drop voltage across the dioded.) total instantaneous value of the current flowing through the diodeCorrect answer c.)

    8.

    1p

    Figure 1.2 shows the symbol of a „p-n” diode. With „i A” has been

    noted:

    Figure 1.2

    a.) anodeb.) cathodec.) total instantaneous value of the drop voltage across the dioded.) total instantaneous value of the current flowing through the diodeCorrect answer d.)

    9.3p

    “Diode effect” means:

    a.) in normal operation- practically -the current through the diode

    flows only from cathode to anodeb.) in normal operation- practically -the current through the diode

    flows only from anode to cathode

  • 8/18/2019 1. Analog Electronics Tests .pdf

    4/294

    Analog Electronics - Tests

    4

    c.) in normal operation - practically - meaning diode current is dictatedby the external circuit of the dioded.) in normal operation, - practically - the diode current flows

    sometimes from the anode to the cathode and other times from thecathode to the anode

    Correct answer b.)

    10.

    1p

    Figure 1.3 shows a "p-n" junction at thermal equilibrium. With „1”

    has been noted:

    p n

    - -

    - -

    - -

    - -

    - -

    - -

    - -

    + + + +

    + + + +

    + + + +

    + + + +

    + + + +

    + + + +

    E

    1. 3.2.

    Figure 1.3

    a.) P neutral regionb.) N neutral regionc.) transition regiond.) internal electric fieldCorrect answer a.)

    11.

    1p

    Figure 1.3 shows a "p-n" junction at thermal equilibrium. With „2”

    has been noted:

    p n

    - -

    - -

    - -

    - -

    - -

    - -

    - -

    + + + +

    + + + +

    + + + +

    + + + +

    + + + +

    + + + +

    E

    1. 3.2.

    Figure 1.3

    a.) P neutral regionb.) N neutral regionc.) transition regiond.) internal electric fieldCorrect answer c.)

    12.1p

    Figure 1.3 shows a "p-n" junction at thermal equilibrium. With „3”has been noted:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    5/294

  • 8/18/2019 1. Analog Electronics Tests .pdf

    6/294

    Analog Electronics - Tests

    6

    a.) concentration gradient of the acceptor and donor atoms of the “p”neutral region and transition regionb.) concentration gradient of the acceptor and donor atoms of the “n”

    neutral region and transition regionc.) concentration gradient of the acceptor and donor atoms of the “p”

    neutral region and “n” neutral regiond.) concentration gradient of donors and the acceptor atoms

    surrounding the metallurgical junctionCorrect answer d.) 

    16.

    3p

    Figure 1.4 shows a "p-n" junction at thermal equilibrium. Transition

    region responsible for the appearance of diode-effect occurs aroundthe metallurgical junction as a result of the diffusion of the electrons

    and holes. The diffusion phenomenon is caused by  concentrationgradient of donors and the acceptor atoms surrounding themetallurgical junction.  As a result of this phenomenon, in thestructure fixed charges appear. They are represented by:

    p n

    - -

    - -

    - -

    - -

    - -

    - -

    - -

    + + + +

    + + + +

    + + + +

    + + + +

    + + + +

    + + + +

    +

    E

    P neutralregion

    N neutralregion

    Transitionregion

    Figure 1.4

    a.) ions trapped in crystalline network

    b.) electronsc.) holesd.) lattice structureCorrect answer a.) 

    17.2p

    The internal electric field existing in the transition region is due to:

    a.) ions trapped in crystalline networkb.) electronsc.) holesd.) lattice structureCorrect answer a.) 

    18.

    2p

    At reverse bias, the internal potential barrier is:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    7/294

    Analog Electronics - Tests

    7

    a.) increasedb.) decreasedc.) unaffectedd.) sometimes increased, sometimes decreasedCorrect answer a.) 

    19.

    2p

    At forward bias, the internal potential barrier is:

    a.) increasedb.) decreasedc.) unaffectedd.) sometimes increased, sometimes decreased

    Correct answer b.) 

    20.

    2p

    From a formal point of view, the diode is fully described by:

    a.) one characteristic equationb.) two characteristic equationsc.) a number of equations depending by the topology of the circuitd.) a number of equations depending by the operating regimeCorrect answer a.) 

    21.3p

    From a formal point of view, a diode operating in quasi-static largesignal regime is fully described by an equation of the type:

    a.) 0,,,dtvd

    ,,dt

    dv,v,dt

    id,,dt

    di,iE p1m

    Am

    AAn

    An

    AA   = 

     

     

     

    θθ   KKK  b.) ( ) 0,   = A A   vi E   

    c.) aaa   vgi   =  

    d.) 0dt

    vd,,

    dt

    dv,v,

    dt

    id,,

    dt

    di,iE

    mA

    mA

    AnA

    nA

    A   = 

      

     KK

     

    Correct answer a.) 

    22.3p

    From a formal point of view, a diode operating in quasi-static smallsignal regime is fully described by an equation of the type::

    a.) 0,,,dt

    vd,,

    dt

    dv,v,

    dt

    id,,

    dt

    di,iE p1m

    Am

    AAn

    An

    AA   =

     

      

     θθ   KKK  

    b.)( ) 0v,iE

    AA

      =  

    c.) aaa vgi   =  

  • 8/18/2019 1. Analog Electronics Tests .pdf

    8/294

    Analog Electronics - Tests

    8

    d.) 0dt

    vd,,dt

    dv,v,dt

    id,,dt

    di,iEm

    AmAAn

    AnAA   =

      

      

    KK  

    Correct answer c.) 

    23.

    2p

    The I-V characteristic of an ideal diode is:

    a.)

     

      

     = 1

    v

    eexpIi

    A

    TSA

     

    b.)

     

      

     = 1

    ev

    expIiT

    ASA

     

    c.)

    +

     

      

     = 1

    e

    vexpIi

    T

    ASA

     

    d.)

    +

     

      

     = 1

    ve

    expIiA

    TSA

     

    Correct answer b.) 

    24.2p

    The I-V characteristic of an ideal diode is:

     

      

     = 1

    e

    vexpIi

    T

    ASA

     

    where:

    q

    kT eT  =

     

    At room temperature:

    a.) eT ≅2.5 mVb.) eT ≅25 mVc.) eT ≅250 mVd.) eT ≅2.5 VCorrect answer b.) 

    25.1p

    Figure 1.5 represents the static characteristic of a diode.

  • 8/18/2019 1. Analog Electronics Tests .pdf

    9/294

    Analog Electronics - Tests

    9

    IS 

    VBR 

    vA 

    iA 

    Vγ  

    1.

    4.2.

    3.

    Figure 1.5

    “IS” is:

    a.) half-wave rectified average currentb.) peak value of the current

    c.) saturation currentd.) full-wave rectified average currentCorrect answer b.) 

    26.

    1p

    Figure 1.5 represents the static characteristic of a diode. Vγ is:

    IS 

    VBR 

    vA 

    iA 

    Vγ  

    1.

    4.2.

    3.

    Figure 1.5

    a.) breakdown voltageb.) built-in voltagec.) half-wave rectified average voltaged.) full-wave rectified average voltageCorrect answer b.) 

    27.1p

    Figure 1.5 represents the static characteristic of a diode. VBR is:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    10/294

    Analog Electronics - Tests

    10

    IS 

    VBR 

    vA 

    iA 

    Vγ  

    1.

    4.2.

    3.

    Figure 1.5

    a.) breakdown voltageb.) built-in voltagec.) half-wave rectified average voltage

    d.) full-wave rectified average voltageCorrect answer a.) 

    28.1p

    Figure 1.5 represents the static characteristic of a diode. With the"1" was noted:

    IS 

    VBR 

    vA 

    iA 

    Vγ  

    1.

    4.2.

    3.

    Figure 1.5

    a.) breakdown regionb.) cut-off region – reverse biasc.) cut-off region – forward biasd.) conduction regionCorrect answer a.) 

    29.

    1p

    Figure 1.5 represents the static characteristic of a diode. With the

    "2" was noted:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    11/294

    Analog Electronics - Tests

    11

    IS 

    VBR 

    vA 

    iA 

    Vγ  

    1.

    4.2.

    3.

    Figure 1.5

    a.) breakdown regionb.) cut-off region – reverse biasc.) cut-off region – forward bias

    d.) conduction regionCorrect answer b.) 

    30.

    1p

    Figure 1.5 represents the static characteristic of a diode. With the

    "3" was noted:

    IS 

    VBR 

    vA 

    iA 

    Vγ  

    1.

    4.2.

    3.

    Figure 1.5

    a.) breakdown regionb.) cut-off region – reverse biasc.) cut-off region – forward biasd.) conduction regionCorrect answer c.) 

    31.

    1p

    Figure 1.5 represents the static characteristic of a diode. With the

    "4" was noted:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    12/294

    Analog Electronics - Tests

    12

    IS 

    VBR 

    vA 

    iA 

    Vγ  

    1.

    4.2.

    3.

    Figure 1.5

    a.) breakdown regionb.) cut-off region – reverse biasc.) cut-off region – forward bias

    d.) conduction regionCorrect answer d.) 

    32.2p

    Figure 1.6 shows a possible linearization of the characteristic inFigure 1.5 and it is called “zero order model” (Mathematically

    idealized diode). 

    IS 

    VBR 

    vA 

    iA 

    Vγ  

    1.

    4.2.

    3.

    vA 

    iA 

    Zero order model Real Characteristic

    Figure 1.5  Figure 1.6Under this approximation the equivalent circuit of the diode is:a.)

    b.)

    c.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    13/294

    Analog Electronics - Tests

    13

    d.)

    Correct answer d.) 

    33.

    2p

    Figure 1.6 shows a possible linearization of the characteristic in

    Figure 1.5 and it is called “zero order model” (Mathematicallyidealized diode).  According to this approximation, a diode operatingin conduction region behaves as:

    IS 

    VBR 

    vA 

    iA 

    Vγ  

    1.

    4.2.

    3.

    vA 

    iA 

    Zero order model Real Characteristic

    Figure 1.5  Figure 1.6a.) a resistorb.) an open circuitc.) an short circuitd.) a switchCorrect answer c.) 

    34.2p

    Figure 1.6 shows a possible linearization of the characteristic inFigure 1.5 and it is called “zero order model” (Mathematically

    idealized diode).  According to this approximation, a diode operating

    in cut-off region behaves as

    IS 

    VBR 

    vA 

    iA 

    Vγ  

    1.

    4.2.

    3.

    vA 

    iA 

    Zero order model Real Characteristic

    Figure 1.5  Figure 1.6a.) a resistorb.) an open circuitc.) an short circuitd.) a switchCorrect answer a.) 

    35. Avalanche multiplication occurs at:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    14/294

    Analog Electronics - Tests

    14

    3pa.) high voltages in case of weakly doped junctionsb.) low voltages in case of weakly doped junctionsc.) high voltages in case of strong doped junctionsd.) low voltages in case of strong doped junctionsCorrect answer a.) 

    36.3p

    Tunneling occurs at:

    a.) high voltages in case of weakly doped junctionsb.) low voltages in case of weakly doped junctionsc.) high voltages in case of strong doped junctionsd.) low voltages in case of strong doped junctionsCorrect answer d.) 

    37.

    2p

    Figure 1.7 shows the static characteristic of a Zener diode. It must

    operates:

    IZM 

    IZm 

    VZ vZ 

    iZ 

    Figure 1.7

    a.) in breakdown regionb.) in cut-off region reverse biasc.) in cut-off region forward biasd.) conduction regionCorrect answer a.) 

    38.2p

    Figure 1.7 shows the static characteristic of a Zener diode. Thecurrent flowing through the diode must satisfy the condition:

    IZM 

    IZm 

    VZ vZ 

    iZ 

    Figure 1.7a.)

    Mm ZZZIiI   ≤≥  

  • 8/18/2019 1. Analog Electronics Tests .pdf

    15/294

    Analog Electronics - Tests

    15

    b.) Mm ZZZ IiI   ≤≤  c.)

    Mm ZZZIiI   ≥≥  

    d.)Mm ZZZ

    IiI   ≥≤  

    Correct answer b.) 

    39.2p

    In real situations there are certain limitations to avoid the destructionof a rectifier diode. The most common limitations are:a.) IFM and VBR b.) IZM and VZ c.) IFM and VZ d.) IZM and VBR Correct answer a.) 

    40.

    2p

    In real situations there are certain limitations to avoid the destruction

    of a Zener diode. The most common limitations are:a.) IFM and VBR b.) IZM and VZ c.) IFM and VZ d.) IZM and VBR Correct answer b.) 

    41.

    4p

    The value of the current IA  flowing through the diode is (see figure

    1.8):

    Figure 1.8 

    a.) mA4IA ≅  b.) mA4IA   −≅  c.) mA0IA ≅  d.) mA2IA ≅  Correct answer c.) 

    42.4p The value of the drop voltage VA across the diode is (see figure 1.8):

  • 8/18/2019 1. Analog Electronics Tests .pdf

    16/294

    Analog Electronics - Tests

    16

    Figure 1.8 

    a.) V10VA   −=  b.) V8VA   −=  c.) V8VA =  d.) V10VA =  Correct answer b.) 

    43.3p

    Small signal condition for a semiconductor diode is satisfied if:

    a.) the signal across the diode is less than 2.5 mVb.) the signal across the diode is less than 10 mV c.) the signal across the diode is less than 25 mV d.) the signal across the diode is less than 100 mV Correct answer b.) 

    44.

    3p

    Small signal conductance of semiconductor diode has the value:

    a.) [ ] [ ]mAI25mSg Aa   =  b.) [ ] [ ]mAI5.2mSg Aa   =  

    c.) [ ] [ ]mAI4mSg Aa   =  d.) [ ] [ ]mAI40mSg Aa   =  Correct answer d.) 

    45.

    3p

    The mathematical model of a semiconductor diode that operates

    under quasi-static small signal regime is:a.) aaa   vgi   =  

    b.)

     

      

     = 1

    e

    vexpIi

    T

    ASA

     

    c.) 1−=   aaa   vgi  

    d.)

     

      

     =

    T

    ASA e

    vexpIi  

    Correct answer a.) 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    17/294

    Analog Electronics - Tests

    17

    46.3p

    Equivalent circuit of a semiconductor diode that works under quasi-static small signal regime is:

    a.)

    b.)

    c.)

    d.)

    Correct answer b.) 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    18/294

    Analog Electronics - Tests

    18

  • 8/18/2019 1. Analog Electronics Tests .pdf

    19/294

    Analog Electronics - Tests

    19

    Chapter 2

    Rectifiers

    1.

    1p

    Figure 2.1 shows:

    Figure 2.1 a.) a half wave rectifierb.) a full wave rectifierc.) a bridge rectifierd.) a peak rectifierCorrect answer a.)

    2.1p

    Figure 2.1 shows a half wave rectifier. With “Tr” was noted:

    Figure 2.1 a.) the load resistorb.) the non-linear element, providing the effect of recoveryc.) the power transformerd.) the filtering elementCorrect answer c.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    20/294

    Analog Electronics - Tests

    20

    3.

    1p

    Figure 2.1 shows a half wave rectifier. With “RL” was noted:

    Figure 2.1 a.) the load resistorb.) the non-linear element, providing the effect of recovery

    c.) the power transformerd.) the filtering elementCorrect answer d.)

    4.

    1p

    Figure 2.1 shows a half wave rectifier. With “D” was noted:

    Figure 2.1 a.) the load resistorb.) the non-linear element, providing the effect of recoveryc.) the power transformerd.) the filtering elementCorrect answer b.)

    5.

    1p

    Figure 2.1 shows a half wave rectifier. With “Vp” was noted:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    21/294

  • 8/18/2019 1. Analog Electronics Tests .pdf

    22/294

    Analog Electronics - Tests

    22

    Figure 2.1 a.) the amplitude value of the AC voltage drop across the load resistorb.) the effective value of the AC voltage drop across the load resistorc.) the instantaneous value of the AC voltage drop across the load

    resistord.) the total value of the voltage drop across the load resistor

    Correct answer c.)

    8.1p

    Figure 2.1 shows a half wave rectifier. With “iL” was noted:

    Figure 2.1 a.) the amplitude value of the AC load currentb.) the effective value of the AC load currentc.) the instantaneous value of the AC load currentd.) the total value of the load currentCorrect answer d.)

    9.1p

    See figure 2.1. Diode “D” is conducting:

    Figure 2.1 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    23/294

    Analog Electronics - Tests

    23

    a.) on the positive half waveb.) on the negative half wavec.) a relatively small time interval of the positive half waved.) a relatively small time interval of the negative half waveCorrect answer a.)

    10.

    2p

    Figure 2.2 shows the wave forms of a:

    Vs

      t 

     t 

    Vs

    vL

    π 5π 4π 3π 2

    VL

     Figure 2.2

    a.) half wave rectifierb.) full wave rectifierc.) bridge rectifierd.) peak rectifierCorrect answer a.)

    11.

    4p

    See figure2.1. The DC component of the drop voltage across the load

    resistor is:

    Figure 2.1 

    a.)π

    = sLV2

    V  

    b.)π

    =2

    VV sL  

    c.) π=s

    L

    V

    V

  • 8/18/2019 1. Analog Electronics Tests .pdf

    24/294

    Analog Electronics - Tests

    24

    d.)π

    = sL V2V

    Correct answer c.)

    12.1p

    Figure 2.3 shows:

    Figure 2.3 a.) a half wave rectifierb.) a full wave rectifierc.) a bridge rectifierd.) a peak rectifierCorrect answer b.)

    13.

    1p

    Figure 2.3 shows a full wave rectifier. With “Tr” was noted:

    Figure 2.3 a.) the load resistorb.) the non-linear element, providing the effect of recoveryc.) the power transformerd.) the filtering elementCorrect answer c.)

    14.

    1p

    Figure 2.3 shows a full wave rectifier. With “RL” was noted:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    25/294

    Analog Electronics - Tests

    25

    Figure 2.3 a.) the load resistorb.) the non-linear element, providing the effect of recoveryc.) the power transformerd.) the filtering elementCorrect answer a.)

    15.

    1p

    Figure 2.3 shows a full wave rectifier. With “D1” and “D2” werenoted:

    Figure 2.3 a.) the load resistorb.) the non-linear elements, providing the effect of recovery

    c.) the power transformerd.) the filtering elementCorrect answer b.)

    16.1p

    Figure 2.3 shows a full wave rectifier. With “Vp” was noted:

    Figure 2.3 a.) the amplitude value of the AC voltage applied across the primary ofthe power transformer

  • 8/18/2019 1. Analog Electronics Tests .pdf

    26/294

    Analog Electronics - Tests

    26

    b.) the effective value of the AC voltage applied across the primary ofthe power transformerc.) the instantaneous value of the AC voltage applied across the

    primary of the power transformerd.) the total value of the voltage applied across the primary of the

    power transformerCorrect answer a.)

    17.1p

    Figure 2.3 shows a full wave rectifier. With “Vs” was noted:

    Figure 2.3 a.) the amplitude value of the AC voltage drop across the secondary of

    the power transformerb.) the effective value of the AC voltage drop across the secondary of

    the power transformerc.) the instantaneous value of the AC voltage drop across the

    secondary of the power transformerd.) the total value of the voltage drop across the secondary of the

    power transformer

    Correct answer a.)

    18.

    1p

    Figure 2.3 shows a full wave rectifier. With “vL” was noted:

    Figure 2.3 a.) the amplitude value of the AC voltage drop across the load resistor

    b.) the effective value of the AC voltage drop across the load resistorc.) the instantaneous value of the AC voltage drop across the loadresistor

  • 8/18/2019 1. Analog Electronics Tests .pdf

    27/294

    Analog Electronics - Tests

    27

    d.) the total value of the voltage drop across the load resistorCorrect answer d.)

    19.

    1p

    Figure 2.3 shows a full wave rectifier. With “iL” was noted:

    Figure 2.3 

    a.) the amplitude value of the AC load currentb.) the effective value of the AC load currentc.) the instantaneous value of the AC load currentd.) the total value of the load currentCorrect answer d.)

    20.2p

    Figure 2.3 shows a full wave rectifier. In normal operation:

    Figure 2.3 a.) on the positive half wave D1 and D2 diodes operate in “on” stateb.) on the positive half wave D1  diode operates in “on” state and D2 

    diode operates in “off” statec.) on the positive half wave D2  diode operates in “on” state and D1 

    diode operates in “off” stated.) on the positive half wave D1 and D2 diodes operate in “off” stateCorrect answer b.)

    21.

    2p

    Figure 2.3 shows a full wave rectifier. In normal operation:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    28/294

    Analog Electronics - Tests

    28

    Figure 2.3 a.) on the negative half wave D1 and D2 diodes operate in “on” stateb.) on the negative half wave D1 diode operates in “on” state and D2 

    diode operates in “off” statec.) on the negative half wave D2 diode operates in “on” state and D1 

    diode operates in “off” state

    d.) on the negative half wave D1 and D2 diodes operate in “off” stateCorrect answer c.)

    22.

    2p

    Figure 2.4 shows the wave forms of a:

    Vs

      t ω 

      t ω 

    Vs

    vL

    π    π 5π 4π 3π 2

    VL

     Figure 2.4

    a.) half wave rectifierb.) full wave rectifierc.) clipping circuitd.) peak rectifierCorrect answer b.)

    23.

    4p

    See figure2.3. The DC component of the voltage drop across the load

    resistor is:

    Figure 2.3 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    29/294

    Analog Electronics - Tests

    29

    a.)π

    = sL V2V

    b.)π

    =2V

    V sL  

    c.)π

    = sLV

    V  

    d.)π

    = sLV

    2V  

    Correct answer a.)

    24.

    1p

    Figure 2.5 shows:

    Figure 2.5 a.) a half wave rectifierb.) a full wave rectifierc.) a bridge rectifierd.) a peak rectifierCorrect answer c.)

    25

    1p

    Figure 2.5 shows a bridge rectifier. With “Tr” was noted:

    Figure 2.5 a.) the load resistor

    b.) the non-linear elements, providing the effect of recoveryc.) the power transformerd.) the filtering element

  • 8/18/2019 1. Analog Electronics Tests .pdf

    30/294

    Analog Electronics - Tests

    30

    Correct answer c.)

    26.1p

    Figure 2.5 shows a bridge rectifier. With “RL” was noted:

    Figure 2.5 a.) the load resistor

    b.) the non-linear elements, providing the effect of recoveryc.) the power transformerd.) the filtering elementCorrect answer a.)

    27.

    1p

    Figure 2.5 shows a bridge rectifier. With “D1, D2, D3 and D4” was

    noted:

    Figure 2.5 a.) the load resistorb.) the non-linear elements, providing the effect of recoveryc.) the power transformerd.) the filtering elementCorrect answer a.)

    28.1p

    Figure 2.5 shows a bridge rectifier. With “Vp” was noted:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    31/294

    Analog Electronics - Tests

    31

    Figure 2.5 a.) the amplitude value of the AC voltage applied across the primary of

    the power transformerb.) the effective value of the AC voltage applied across the primary of

    the power transformerc.) the instantaneous value of the AC voltage applied across the

    primary of the power transformerd.) the total value of the voltage applied across the primary of thepower transformer

    Correct answer a.)

    29.

    1p

    Figure 2.5 shows a bridge rectifier. With “Vs” was noted:

    Figure 2.5 a.) the amplitude value of the AC voltage drop across the secondary of

    the power transformerb.) the effective value of the AC voltage drop across the secondary of

    the power transformerc.) the instantaneous value of the AC voltage drop across the

    secondary of the power transformerd.) the total value of the voltage drop across the secondary of the

    power transformerCorrect answer b.)

    30.

    2p

    Figure 2.5 shows a bridge rectifier. In normal operation:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    32/294

    Analog Electronics - Tests

    32

    Figure 2.5 a.) on the positive half wave D1, D2, D3, and D4, diodes operate in “on”

    stateb.) on the positive half wave D1  and D3  diodes operate in “on” state

    and D2 and D4 diodes operates in “off” statec.) on the positive half wave D2  and D4  diodes operate in “on” state

    and D1 and D3 diodes operate in “off” stated.) on the positive half wave D1, D2, D3, and D4 diodes operate in “off”state

    Correct answer b.)

    31.2p

    Figure 2.5 shows a bridge rectifier. In normal operation:

    Figure 2.5 a.) on the negative half wave D1, D2, D3, and D4, diodes operate in

    “on” stateb.) on the negative half wave D1  and D3 diodes operate in “on” state

    and D2 and D4 diodes operates in “off” statec.) on the negative half wave D2  and D4 diodes operate in “on” state

    and D1 and D3 diodes operate in “off” stated.) on the negative half wave D1, D2, D3, and D4 diodes operate in “off”

    stateCorrect answer c.)

    32.4p

    See figure2.5. The DC component of the voltage drop across the loadresistor is:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    33/294

    Analog Electronics - Tests

    33

    Figure 2.5 

    a.)π

    = sLV2

    V  

    b.)π

    =2

    VV sL  

    c.) π=sL VV  

    d.)π

    = sLV

    2V  

    Correct answer a.)

    33.

    1p

    Figure 2.6 shows::

    Figure 2.6 a.) a half wave rectifierb.) a full wave rectifierc.) a bridge rectifierd.) a peak rectifierCorrect answer d.)

    34.

    1p

    Figure 2.6 shows a peak rectifier. With “Tr” was noted:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    34/294

    Analog Electronics - Tests

    34

    Figure 2.6 a.) the load resistorb.) the non-linear elements, providing the effect of recoveryc.) the power transformerd.) the filtering elementCorrect answer c.)

    35.1p

    Figure 2.6 shows a peak rectifier. With “RL” was noted:

    Figure 2.6 a.) the load resistorb.) the non-linear elements, providing the effect of recoveryc.) the power transformerd.) the filtering elementCorrect answer a.)

    36.1p

    Figure 2.6 shows a peak rectifier. With “D” was noted:

    Figure 2.6 a.) the load resistor

    b.) the non-linear elements, providing the effect of recoveryc.) the power transformerd.) the filtering element

  • 8/18/2019 1. Analog Electronics Tests .pdf

    35/294

    Analog Electronics - Tests

    35

    Correct answer b.)

    37.1p

    Figure 2.6 shows a peak rectifier. With “C” was noted:

    Figure 2.6 a.) the load resistorb.) the non-linear elements, providing the effect of recovery

    c.) the power transformerd.) the filtering elementCorrect answer d.)

    38.

    1p

    Figure 2.6 shows a peak rectifier. With “Vp” was noted:

    Figure 2.6 a.) the amplitude value of the AC voltage applied across the primary ofthe power transformer

    b.) the effective value of the AC voltage applied across the primary ofthe power transformer

    c.) the instantaneous value of the AC voltage applied across theprimary of the power transformer

    d.) the total value of the voltage applied across the primary of thepower transformer

    Correct answer a.)

    39.

    1p

    Figure 2.6 shows a peak rectifier. With “Vs” was noted:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    36/294

    Analog Electronics - Tests

    36

    Figure 2.6 a.) the amplitude value of the AC voltage drop across the secondary of

    the power transformerb.) the effective value of the AC voltage drop across the secondary of

    the power transformerc.) the instantaneous value of the AC voltage drop across the

    secondary of the power transformer

    d.) the total value of the voltage drop across the secondary of thepower transformer

    Correct answer b.)

    40.

    1p

    Figure 2.6 shows a peak rectifier. With “vL” was noted:

    Figure 2.6 

    a.) the amplitude value of the AC voltage drop across the load resistorb.) the effective value of the AC voltage drop across the load resistorc.) the instantaneous value of the AC voltage drop across the load

    resistord.) the total value of the voltage drop across the load resistorCorrect answer d.)

    41.1p

    Figure 2.6 shows a peak rectifier. With “iL” was noted:

    Figure 2.6 a.) the amplitude value of the AC load current

  • 8/18/2019 1. Analog Electronics Tests .pdf

    37/294

    Analog Electronics - Tests

    37

    b.) the effective value of the AC load currentc.) the instantaneous value of the AC load currentd.) the total value of the load currentCorrect answer d.)

    42.

    1p

    See figure 2.6. Diode “D” is conducting:

    Figure 2.6 a.) on the positive half waveb.) on the negative half wavec.) a relatively small time interval of the positive half waved.) a relatively small time interval of the negative half waveCorrect answer c.)

    43.2p

    Figure 2.7 shows the wave forms of a:

    V

    VL  Vl 

    Vs 

    tT

    τ 

    Figure 2.7

    a.) half wave rectifierb.) full wave rectifierc.) clipping circuitd.) peak rectifierCorrect answer d.)

    44.

    4p

    See figure2.6. The DC component of the voltage drop across the load

    resistor:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    38/294

    Analog Electronics - Tests

    38

    Figure 2.6 a.) increases with increase in load currentb.) decreases with increase in load currentc.) does not depend on the current value of the loadd.) decreases with decrease in load currentCorrect answer b.)

    45.4p

    See figure2.6. The AC component of the voltage drop across the loadresistor:

    Figure 2.6 a.) increases with increase in load currentb.) decreases with increase in load currentc.) does not depend on the current value of the load

    d.) increases with decrease in load currentCorrect answer a.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    39/294

    Analog Electronics - Tests

    39

    Chapter 3

    Bipolar Junction Transistor

    1.

    3p

    Consider a „pnp” or a „npn” structure. According to general

    definition of a Bipolar Junction Transistor, this type of structure

    behaves like a Bipolar Junction Transistor if:a.) the base is very narrow (only)b.) the emitter is heavily doped (only)c.) the base is very narrow and the emitter is heavily dopedd.) the base is very narrow or the emitter is heavily dopedCorrect answer c.) 

    2.2p

    The emitter of a Bipolar Junction Transistor:

    a.) is intended to "collect" mainstream carriers flowing through thestructure

    b.) is intended to "control" mainstream carriers flowing through the

    structurec.) is intended to "generate" mainstream carriers flowing through thestructure

    d.) has no roleCorrect answer c.) 

    3.2p

    The collector of a Bipolar Junction Transistor:

    a.) is intended to "collect" mainstream carriers flowing through thestructure

    b.) is intended to "control" mainstream carriers flowing through thestructure

    c.) is intended to "generate" mainstream carriers flowing through the

    structured.) has no roleCorrect answer c.) 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    40/294

    Analog Electronics - Tests

    40

    4.

    2p

    The base of a Bipolar Junction Transistor:

    a.) is intended to "collect" mainstream carriers flowing through thestructure

    b.) is intended to "control" mainstream carriers flowing through thestructure

    c.) is intended to "generate" mainstream carriers flowing through thestructure

    d.) has no roleCorrect answer b.) 

    5.

    1p

    Figure 3.1 shows:

    C

    E

    B

     Figure 3.1 

    a.) a “n” channel field effect transistorb.) a “p” channel field effect transistorc.) a “pnp” bipolar junction transistord.) a “npn” bipolar junction transistorCorrect answer d.) 

    6.

    1p

    Figure 3.2 shows: 

    C

    E

    B

    Figure 3.2 a.) a “n” channel field effect transistorb.) a “p” channel field effect transistorc.) a “pnp” bipolar junction transistor

    d.) a “npn” bipolar junction transistorCorrect answer c.) 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    41/294

    Analog Electronics - Tests

    41

    7.2p

    A bipolar junction transistor operating in cut-off mode behaves as:

    a.) a current controlled sourceb.) a short circuitc.) an open circuitd.) a switchCorrect answer c.) 

    8.

    2p

    A bipolar junction transistor operating in saturation mode behaves

    as: a.) a current controlled sourceb.) a short circuitc.) an open circuit

    d.) a switchCorrect answer b.) 

    9.

    2p

    A bipolar junction transistor operating in active mode behaves as: 

    a.) a current controlled sourceb.) a short circuitc.) an open circuitd.) a switchCorrect answer a.) 

    10.

    3p

    An approximate mathematical model of a bipolar junction transistor

    operating in cut-off mode is:a.) 0iC ≅  and 0iB ≅  b.) 0vBC ≅ and 0vBE ≅  c.)

    BC ii   β≅  and γ ≅ VvBE  d.)

    EC ii   α≅  and γ ≅ VvBE  

    Correct answer a.) 

    11.

    3p

    An approximate mathematical model of a bipolar junction transistor

    operating in saturation mode is: a.) 0iC ≅  and 0iB ≅  b.) 0vBC ≅ and 0vBE ≅  

    c.) BC ii   β≅  and γ ≅ VvBE  d.)EC ii   α≅  and γ ≅ VvBE  

  • 8/18/2019 1. Analog Electronics Tests .pdf

    42/294

    Analog Electronics - Tests

    42

    Correct answer b.) 

    12.2p

    If a bipolar junction transistor operates in active mode: 

    a.) emitter-base junction is “on” and collector-base junction is “off”b.) emitter-base junction is “off” and collector-base junction is “on”c.) emitter-base junction is “off” and collector-base junction is “off”d.) emitter-base junction is “on” and collector-base junction is “on”Correct answer a.) 

    13.

    2p

    If a bipolar junction transistor operates in saturation mode: 

    a.) emitter-base junction is “on” and collector-base junction is “off”b.) emitter-base junction is “off” and collector-base junction is “on”c.) emitter-base junction is “off” and collector-base junction is “off”d.) emitter-base junction is “on” and collector-base junction is “on”Correct answer d.) 

    14.

    2p

    If a bipolar junction transistor operates in cut-off mode: 

    a.) emitter-base junction is “on” and collector-base junction is “off”b.) emitter-base junction is “off” and collector-base junction is “on”c.) emitter-base junction is “off” and collector-base junction is “off”d.) emitter-base junction is “on” and collector-base junction is “on”Correct answer c.) 

    15.

    2p

    If a bipolar junction transistor operates in reverse active mode: 

    a.) emitter-base junction is “on” and collector-base junction is “off”b.) emitter-base junction is “off” and collector-base junction is “on”c.) emitter-base junction is “off” and collector-base junction is “off”d.) emitter-base junction is “on” and collector-base junction is “on”Correct answer b.) 

    16.1p

    A bipolar junction transistor works as a simple transistor amplifierif:a.) it operates in active modeb.) it operates in saturation mode 

    c.) it operates in cut-off mode d.) it operates in reverse active mode Correct answer a.) 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    43/294

    Analog Electronics - Tests

    43

    17.

    3p

    If a transistor operates in active mode emitter-base junction is “on”

    and collector-base junction is “off”. In this situation the so called”transistor effect” occurs. It means:a.) that a current of relatively high value is flowing through the emitter

     junctionb.) that a current of relatively small value is flowing through the

    emitter junction c.) that a current of relatively high value is flowing through the

    collector junctiond.) that a current of relatively small value is flowing through the

    collector junction Correct answer c.) 

    18.

    3p

    If a transistor operates in active mode the so called ”transistor

    effect” occurs. It means  that a current of relatively high value isflowing through the collector junction which is in “off” state. The

    explanation lies in the fact that: a.) there is a tunneling effect into the baseb.) there is a tunneling effect into the emitter c.) the base is very narrow and so the mobile carriers injected by the

    emitter into the base may reach the collector layerd.) there is a tunneling effect into the collector Correct answer c.) 

    19.1p

    Figure 3.3 shows:

    iB 

    iC 

    Input

    Output

    vBE 

    vCE 

    Figure 3.3

    a.) common emitter connectionb.) common base connection c.) common collector connectiond.) common drain connection Correct answer a.) 

    20.

    1p

    Figure 3.4 shows: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    44/294

    Analog Electronics - Tests

    44

    iB 

    iE 

    Input

    Output

    vBC  

    vEC 

    Figure 3.4

    a.) common emitter connectionb.) common base connection c.) common collector connectiond.) common drain connection Correct answer c.) 

    21.

    1p

    Figure 3.5 shows: 

    iC iE 

    Input OutputvEB  vCB

     Figure 3.5

    a.) common emitter connectionb.) common base connection c.) common collector connectiond.) common drain connection Correct answer b.) 

    22.2p In common emitter connection:

    a.) input signals are:* base-emitter voltage* base current

    output signals are:* collector-emitter voltage* collector current

    b.) input signals are:* base-collector voltage* base current

    output signals are:* emitter-collector voltage

    * emitter currentc.) input signals are:* emitter-base voltage

  • 8/18/2019 1. Analog Electronics Tests .pdf

    45/294

    Analog Electronics - Tests

    45

    * emitter currentoutput signals are:* collector-base voltage* collector current

    d.) input signals are:* base-emitter voltage* base current

    output signals are:* emitter-collector voltage* emitter current

    Correct answer a.) 

    23.

    2p

    In common collector connection: 

    a.) input signals are:* base-emitter voltage* base current

    output signals are:* collector-emitter voltage* collector current

    b.) input signals are:* base-collector voltage* base current

    output signals are:* emitter-collector voltage* emitter current

    c.) input signals are:* emitter-base voltage* emitter current

    output signals are:* collector-base voltage* collector current

    d.) input signals are:* base-emitter voltage* base current

    output signals are:* emitter-collector voltage* emitter current

    Correct answer b.) 24. In common base connection: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    46/294

    Analog Electronics - Tests

    46

    2pa.) input signals are:

    * base-emitter voltage* base current

    output signals are:* collector-emitter voltage* collector current

    b.) input signals are:* base-collector voltage* base current

    output signals are:* emitter-collector voltage* emitter current

    c.) input signals are:* emitter-base voltage* emitter current

    output signals are:* collector-base voltage* collector current

    d.) input signals are:* base-emitter voltage* base current

    output signals are:* emitter-collector voltage* emitter current

    Correct answer c.) 

    25.3p

    Under quasi-static large signal regime, the bipolar junctiontransistor is fully described by two and only two equations, calledstatic characteristic equations, or in short, static characteristics. 

    Typically these are:a.) ( )BCBCC i,vii   =  and ( )CEBEBB v,vii   =  b.) ( )BCECC i,vii   =  and ( )CEBCBB v,vii   =  c.) ( )BCECC i,vii   =  and ( )CEBEBB v,vii   =  d.) ( )BCCC i,iii   =  and ( )CEBEBB v,vii   =  Correct answer c.) 

    26.3p

    The output static characteristic is: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    47/294

    Analog Electronics - Tests

    47

    a.) ( ) .constiCECC Bvii   ==  b.) ( ) .constvBCC CEiii   ==  

    c.) ( ) .constvBEBB CEvii   ==  

    d.) ( ) .constvCEBB BEvii   ==  

    Correct answer b.) 

    27.

    3p

    The input static characteristic is: 

    a.) ( ) .constiCECC Bvii   ==  

    b.) ( ) .constvBCC CEiii   ==  c.) ( ) .constvBEBB CEvii   ==  

    d.) ( ) .constvCEBB BEvii   ==  

    Correct answer c.) 

    28.

    1p

    Figure 3.6 shows the output static characteristic “1”is denoted:

    v CE 

    i C 

    i B1 

    i B2 

    i B3 

    i B4 

    v CB =0 

    1

    2

    Figure 3.6

    a.) active regionb.) saturation regionc.) cut-off regiond.) reverse active regionCorrect answer b.) 

    29.1p

    Figure 3.6 shows the output static characteristic “2”is denoted: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    48/294

    Analog Electronics - Tests

    48

    v CE 

    i C 

    i B1 

    i B2 

    i B3 

    i B4 

    v CB =0 

    1

    2

    Figure 3.6

    a.) active regionb.) saturation regionc.) cut-off regiond.) reverse active regionCorrect answer c.) 

    30.

    1p

    Figure 3.6 shows the output static characteristic “3”is denoted: 

    v CE 

    i C 

    i B1 

    i B2 

    i B3 

    i B4 

    v CB =0 

    1

    2

    Figure 3.6a.) active regionb.) saturation regionc.) cut-off regiond.) reverse active regionCorrect answer a.) 

    31. Figure 3.7 shows:

    vBE

    iB

    vCE1

    vCE2>vCE1

    γV  

    Figure 3.7

  • 8/18/2019 1. Analog Electronics Tests .pdf

    49/294

    Analog Electronics - Tests

    49

    a.) the output static characteristicb.) the input static characteristic c.) the transfer static characteristicd.) the transfer dynamic characteristic Correct answer b.) 

    32.

    3p

    Equivalent circuit of a transistor that operates in cut-off mode is

    shown in figure noted:a.) B

    E

    C

    vBE vCE

     b.) B

    E

    CiCiB

     c.)

    B

    E

    C

    βFiBvBE

    iB

     d.)

    B

    E

    C

    βFiBIS / βF

    iB

     Correct answer a.) 

    33.3p Equivalent circuit of a transistor that operates in saturation mode isshown in figure noted: a.) B

    E

    C

    vBE vCE

     b.) B

    E

    CiCiB

     c.)

    B

    E

    C

    βFiBvBE

    iB

     

  • 8/18/2019 1. Analog Electronics Tests .pdf

    50/294

    Analog Electronics - Tests

    50

    d.) B

    E

    C

    βFiBIS / βF

    iB

     Correct answer b.) 

    34.3p

    The so called “zero order model” of bipolar junction transistoroperating in active mode (large signal quasi-static regime) is:a.) .constvBE ≅  and EC ii   ≅  b.) γ ≅ VvBE  and BC ii   β≅  c.)

     

      

     

    β=

    T

    BE

    F

    SB e

    vexp

    Ii and

     

      

     =

    T

    BESC e

    vexpIi

    d.) γ ≅ VvBE  and CB ii   β≅  

    Correct answer a.) 

    35.

    3p

    The so called “first order model” of bipolar junction transistor

    operating in active mode (large signal quasi-static regime) is: a.) .constvBE ≅  and EC ii   ≅  b.) γ ≅ VvBE  and BC ii   β≅  c.)

     

      

     

    β=

    T

    BE

    F

    SB e

    vexp

    Ii and

     

      

     =

    T

    BESC e

    vexpIi

    d.) γ ≅ VvBE  and CB ii   β≅  

    Correct answer b.) 

    36.3p

    The so called “second order model” of bipolar junction transistoroperating in active mode (large signal quasi-static regime) is: a.) .constvBE ≅  and EC ii   ≅  b.) γ ≅ VvBE  and BC ii   β≅  c.)

     

      

     

    β=

    T

    BE

    F

    SB e

    vexp

    Ii and

     

      

     =

    T

    BESC e

    vexpIi

    d.) γ ≅ VvBE  and CB ii   β≅  

    Correct answer c.) 

    37.

    3p

    Assume a bipolar junction transistor operating under quasi-static

    large signal regime in active region. The equivalent circuit of such a

  • 8/18/2019 1. Analog Electronics Tests .pdf

    51/294

    Analog Electronics - Tests

    51

    transistor related to “first order model” is:a.) B

    E

    C

    vBE vCE

     b.) B

    E

    CiCiB

     c.)

    B

    E

    C

    βFiBvBE

    iB

     d.)

    B

    E

    CβFiBIS / βF

    iB

     Correct answer c.) 

    38.

    3p

    Assume a bipolar junction transistor operating under quasi-static

    large signal regime in active region. The equivalent circuit of such atransistor related to “second order model” is: a.) B

    E

    C

    vBE vCE

     b.) B

    E

    CiCiB

     c.)

    B

    E

    C

    βFiBvBE

    iB

     d.)

    B

    E

    C

    βFiBIS / βF

    iB

     Correct answer d.) 

    39.3p See figure 3.8. “1” is denoted:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    52/294

    Analog Electronics - Tests

    52

    1. 

    IB=0

    vCE 

    iC  2. 

    Figure 3.8

    a.) primer breakdownb.) secondary breakdown c.) thermal runawayd.) tunneling phenomenon Correct answer a.) 

    40.3p

    See figure 3.8. “2” is denoted: 

    1. 

    IB=0

    vCE 

    iC 2. 

    Figure 3.8

    a.) primer breakdownb.) secondary breakdown c.) thermal runaway

    d.) tunneling phenomenon Correct answer b.) 

    41.3p

    Due to thermal runaway phenomenon:

    a.) “iC” increases uncontrollably when ambient temperature increasesb.) “iC” decreases uncontrollably when ambient temperature increases c.) “iC” increases uncontrollably when ambient temperature decreasesd.) “iC” decreases uncontrollably when ambient temperature decreases Correct answer a.)

    42.

    3p

    Due to thermal runaway phenomenon “iC” increases uncontrollably

    when ambient temperature increases: The explanation is that a

    regenerative phenomenon can occur in the structure. That means:a.) decreasing of ambient temperature leads to increasing of junction

    temperature. Increasing of junction temperature leads to increasing

  • 8/18/2019 1. Analog Electronics Tests .pdf

    53/294

    Analog Electronics - Tests

    53

    of collector current. On the other hand, increasing of collectorcurrent leads to increasing of junction temperature. In theseconditions a regenerative phenomenon occurs in the structure.

    b.) increasing of ambient temperature leads to increasing of junctiontemperature. Increasing of junction temperature leads to increasingof collector current. On the other hand, increasing of collectorcurrent leads to increasing of junction temperature. In theseconditions a regenerative phenomenon occurs in the structure. 

    c.) decreasing of ambient temperature leads to decreasing of junctiontemperature. Decreasing of junction temperature leads to increasingof collector current. On the other hand, increasing of collectorcurrent leads to increasing of junction temperature. In theseconditions a regenerative phenomenon occurs in the structure.

    d.) increasing of ambient temperature leads to decreasing of junctiontemperature. Decreasing of junction temperature leads to increasingof collector current. On the other hand, increasing of collectorcurrent leads to increasing of junction temperature. In theseconditions a regenerative phenomenon occurs in the structure. 

    Correct answer b.)

    43.

    3p

    The voltage drop across the base-emitter junction varies with

    temperature difference about:a.) 1-1.5 mV/ oCb.) 2-2.5 mV/ oC c.) 10-15 mV/ oCd.) 20-25 mV/ oC Correct answer b.)

    44.1p

    The operating limitations of a bipolar junction transistor arepresented in figure 3.9. With “1” was denoted:

    vCE 

    iC 

    1

    Saturationregion

    Cut-offregion

    4

    3

    2

    Figure 3.9

    a.) maximum value of the voltage collector-emitter

  • 8/18/2019 1. Analog Electronics Tests .pdf

    54/294

  • 8/18/2019 1. Analog Electronics Tests .pdf

    55/294

    Analog Electronics - Tests

    55

    47.

    1p

    The operating limitations of a bipolar junction transistor are

    presented in figure 3.9. With “4” was denoted: 

    vCE 

    iC 

    1

    Saturationregion

    Cut-offregion

    4

    3

    2

    Figure 3.9a.) maximum value of the voltage collector-emitterb.) maximum value of the collector currentc.) maximum value of the power dissipationd.) safe areaCorrect answer d.)

    48.3p

    A possible mathematic model for a bipolar junction transistoroperating under quasi-static small signal regime is:a.)

    BC ii   β≅  and γ ≅ VvBE  b.)

     

      

     =

    T

    BESC e

    vexpIi  and

     

      

     

    β=

    T

    BE

    F

    SB e

    vexp

    Ii  

    c.)be

    mc vg

    1i   =  andπ

    =r

    vi beb  

    d.)bemc vgi   =  and

    π

    =r

    vi beb  

    Correct answer d.)

    49.3p Assume that

    T

    C

    BE

    Cm e

    I

    dv

    dig   ≅= . The value is:

    a.) gm[mS]=2.5IC[mA]b.) gm[mS]=4IC[mA] c.) gm[mS]=25IC[mA]

    d.) gm[mS]=40IC[mA] Correct answer d.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    56/294

    Analog Electronics - Tests

    56

    50.3p

    The relationship between mg  (trans-conductance) and π r  (input

    resistance) is:a.) β=πrgm  b.) π=β rgm  c.)

    mgr   =βπ  d.)

    β=πr

    gm  

    Correct answer a.)

    51.

    3p

    The bias circuits of the bipolar transistor are designed to:

    a.) stabilize the quiescent point only for the effects of temperatureb.) stabilize the quiescent point only for the effects scatteringparameters 

    c.) stabilize the quiescent point for the effects of temperature or for theeffects scattering parameters

    d.) stabilize the quiescent point for the effects of temperature and forthe effects scattering parameters 

    Correct answer a.)

    52.4p

    Figure 3.10 shows a simple bias circuit.

    Figure 3.10

    The equivalent circuit (for quasi-static regime) of this circuit is: a.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    57/294

    Analog Electronics - Tests

    57

    b.)

    c.)

    d.)

    Correct answer d.)

    53.

    4p

    Figure 3.10 shows a simple bias circuit. The value of “IC” is given by: 

    a.)

    C

    BECC R

    VEI

      −β=  

    b.)

    C

    BECC R

    VEI

      +β=  

    c.)

    B

    BECC R

    VEI   −β=  

    d.)

    B

    BECC R

    VEI

      +β=  

    Correct answer c.)

    54.4p

    Figure 3.11 shows a typical bias circuit. “RE” is used for thermalstability. The mechanism by which this is accomplished is: 

    Figure 3.11

  • 8/18/2019 1. Analog Electronics Tests .pdf

    58/294

    Analog Electronics - Tests

    58

    a) T↑ ⇒ IC↑ ⇒ VRE ↑ ⇒ VE ↑ ⇒ VBE ↓ ⇒ IC ↓ 

    b) T↑ ⇒ IC↓ ⇒ VRE ↑ ⇒ VE ↑ ⇒ VBE ↓ ⇒ IC ↓ 

    c) T↑ ⇒ IC↑ ⇒ VRE ↓ ⇒ VE ↑ ⇒ VBE ↓ ⇒ IC ↓ 

    d) T↑ ⇒ IC↑ ⇒ VRE ↑ ⇒ VE ↓ ⇒ VBE ↓ ⇒ IC ↓ 

    where:VRE  - drop voltage across RE;

    VE  - emitter voltage. Correct answer a.) 

    55.

    4p

    Figure 3.11 shows a typical bias circuit.

    Figure 3.11

    The equivalent circuit is: 

    a)

    b)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    59/294

    Analog Electronics - Tests

    59

    c)

    d)

    Correct answer a.) 

    56.4p

    Figure 3.11 shows a typical bias circuit. Figure 3.12 shows theequivalent circuit. According to Kirchhoff’s theorems one obtains: 

    Figure 3.11  Figure 3.12

    a) I=I1+βIB I2=I1+IB IB+βIB=IE EC=βIBRC+VCE+IERE -VBE=-VCE-βIBRC+I1RB1 VBE=I2RB2-IERE 

    b) I=I1+βIB I1=I2+IB IB+βIB=IE EC=βIBRC+VCE+IBRE -VBE=-VCE-βIBRC+I1RB1 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    60/294

    Analog Electronics - Tests

    60

    VBE=I2RB2-IERE 

    c) I=I1+βIB I1=I2+IB IB+βIB=IE EC=βIBRC+VBE+IERE -VBE=-VCE-βIBRC+I1RB1 VBE=I2RB2-IERE 

    d) I=I1+βIB I1=I2+IB IB+βIB=IE 

    EC=βIBRC+VCE+IERE -VBE=-VCE-βIBRC+I1RB1 VBE=I2RB2-IERE 

    Correct answer d.) 

    57.

    4p

    Figure 3.11 shows a typical bias circuit.

    Figure 3.11

    Appling Thevenin rule, the circuit may be redrawn as: a)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    61/294

    Analog Electronics - Tests

    61

    b)

    c)

    d)

    where:2B1B

    2BCB RR

    REE

    +=   and

    2B1B

    2B1BB RR

    RRR

    +=  

    Correct answer b.) 

    58.4p

    Figure 3.11 shows a typical bias circuit. Figure 3.13 shows the samecircuit redrawn according to Thevenin rule.

    Figure 3.11  Figure 3.13

    The equivalent circuit is: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    62/294

    Analog Electronics - Tests

    62

    a)

    b)

    c)

    d)

    Correct answer c.) 

    59.4p

    Figure 3.11 shows a typical bias circuit. Figure 3.13 shows the samecircuit redrawn according to Thevenin rule. The equivalent circuit ofthis circuit is presented in figure 3.14. According to Kirchhoff’stheorems one obtains: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    63/294

    Analog Electronics - Tests

    63

    Figure 3.14

    a) IE=IE+βIB EC=βIBIC+VCE+IE EB-VBE=REIE+RBIB 

    b) IE=IB+βIC EC=βIBIC+VCE+IE EB-VBE=REIE+RBIB 

    c) IE=IB+βIB EC=βIBIC+VCE+IE EB-VBE=REIE+RBIB 

    d) IE=IB+βIB EC=βIBIC+VBE+IE EB-VBE=REIE+RBIB 

    where:2B1B

    2B

    CB RR

    R

    EE +=   and 2B1B2B1B

    B RR

    RR

    R +=  

    Correct answer c.) 

    60.4p

    Figure 3.11 shows a typical bias circuit. The value of “IC” is givenby: 

    Figure 3.11

    a) ( )( ) EB

    BEBC R1R

    VEI +β+

    −β=  

  • 8/18/2019 1. Analog Electronics Tests .pdf

    64/294

    Analog Electronics - Tests

    64

    b) ( )( ) EB

    BECC R1R

    VEI+β+−β=  

    c) ( )( ) BE

    BEBC R1R

    VEI

    +β+−β

    =  

    d) ( )( ) EB

    CEBC R1R

    VEI

    +β+−β

    =  

    Correct answer a.) 

    61.3p

    One of the mathematical models for quasi-static small signal regimeof a bipolar transistor is:a)

    BC ii   β≅  and γ ≅ VvBE  b)

     

     

     

     

    = TBE

    SC e

    vexpIi  and  

     

     

     

    β= TBE

    F

    SB e

    vexp

    Ii  

    c)be

    mc vg

    1i   =  and

    π

    =r

    vi beb  

    d)bc ii   β=  and

    π

    =r

    vi beb  

    Correct answer d.) 

    62.2p

    One of the mathematical models for quasi-static small signal regimeof a bipolar transistor is: 

    bc ii   β=  and

    π

    =r

    vi beb  

    According to this mathematical model the equivalent is:

    a)

    b)

    c)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    65/294

    Analog Electronics - Tests

    65

    d)

    Correct answer a.) 

    63.

    2p

    One of the mathematical models for quasi-static small signal regime

    of a bipolar transistor is: 

    bemc vgi   =  andπ

    =r

    vi beb  

    According to this mathematical model the equivalent is: a)

    b)

    c)

    d)

    Correct answer b.) 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    66/294

    Analog Electronics - Tests

    66

  • 8/18/2019 1. Analog Electronics Tests .pdf

    67/294

    Analog Electronics - Tests

    67

    Chapter 4

    Bipolar Junction TransistorFundamental Circuits 

    1.1p

    Schematic diagram of a common emitter stage is shown in figure:

    a.)

    b.)

    c.)

    d.)

    Correct answer a.)

    2.1p

    Schematic diagram of a common collector stage is shown in figure: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    68/294

    Analog Electronics - Tests

    68

    a.)

    b.)

    c.)

    d.)

    Correct answer b.)

    3.1p

    Schematic diagram of a common base stage is shown in figure: 

    a.)

    b.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    69/294

    Analog Electronics - Tests

    69

    c.)

    d.)

    Correct answer c.)

    4.

    2p

    Schematic diagram of a common emitter stage is shown in figure 4.1 

    Bipolar junction transistor ”T” is operating in cut-off region if: 

    Figure 4.1

    a.) vIN

  • 8/18/2019 1. Analog Electronics Tests .pdf

    70/294

    Analog Electronics - Tests

    70

    6.2p

    Schematic diagram of a common emitter stage is shown in figure 4.1 Bipolar junction transistor ”T” is operating in saturation region if: 

    Figure 4.1

    a.) vIN

  • 8/18/2019 1. Analog Electronics Tests .pdf

    71/294

    Analog Electronics - Tests

    71

    b.) CIN E,Vv   γ ∈  c.) CIN Ev   =  d.) γ −∞−∈ V,vIN  

    Correct answer b.) 

    9.

    2p

    Schematic diagram of a common collector stage is shown in figure 4.2. Bipolar junction transistor ”T” is operating in saturation regionif: 

    Figure 4.2

    a.) ( )γ  

    V v IN  ,∞−∈  b.)

    CIN E,Vv   γ ∈  c.) CIN Ev   =  d.) ( )γ −∞−∈ V,vIN  Correct answer c.) 

    10.2p

    Schematic diagram of a common base stage is shown in figure 4.3. Bipolar junction transistor ”T” is operating in cut-off region if: 

    Figure 4.3

    a.)BEsatIN vv   −≅  

    b.) γ −−∈ V,vv BEsatIN  c.) ∞+−∈   γ ,VvIN  d.) [   )∞+−∈ ,vv BEsatIN  Correct answer c.) 

    11.2p Schematic diagram of a common base stage is shown in figure 4.3. Bipolar junction transistor ”T” is operating in active region if: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    72/294

    Analog Electronics - Tests

    72

    Figure 4.3

    a.)BEsatIN vv   −≅  

    b.) ( )γ −−∈ V,vv BEsatIN  c.) ∞+−∈   γ ,VvIN  d.) [   )∞+−∈ ,vv BEsatIN  Correct answer b.) 

    12.2p

    Schematic diagram of a common base stage is shown in figure 4.3. Bipolar junction transistor ”T” is operating in saturation region if: 

    Figure 4.3

    a.)BEsatIN vv   −≅  

    b.) γ −−∈ V,vv BEsatIN  c.) ∞+−∈   γ ,VvIN  d.) [   )∞+−∈ ,vv BEsatIN  

    Correct answer a.) 

    13.2p

    Schematic diagram of a common emitter stage is shown in figure 4.1.

    Figure 4.1

    Bipolar junction transistor ”T” is operating in cut-off region if  vIN

  • 8/18/2019 1. Analog Electronics Tests .pdf

    73/294

  • 8/18/2019 1. Analog Electronics Tests .pdf

    74/294

    Analog Electronics - Tests

    74

    b.)

    c.)

    d.)

    Correct answer b.) 

    15.

    3p

    Schematic diagram of a common base stage is shown in figure 4.3.

    Figure 4.3

    Bipolar junction transistor, ”T” is operating in cut-off region if  +∞−∈   γ ,VvIN . In these circumstances, the equivalent circuit (quasi-

    static large signal regime) is:a.)

    b.)

    c.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    75/294

    Analog Electronics - Tests

    75

    d.)

    Correct answer c.) 

    16.

    2p

    Schematic diagram of a common emitter stage is shown in figure 4.1.

    Figure 4.1

    Bipolar junction transistor, ”T” is operating in active region if  Vγ γγ γ 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    76/294

    Analog Electronics - Tests

    76

    17.

    2p

    Schematic diagram of a common collector stage is shown in figure 4.2.

    Figure 4.2

    Bipolar junction transistor, ”T” is operating in active region if  vIN∈[   γ V , EC). In these circumstances, the equivalent circuit (quasi-

    static large signal regime) is:

    a.)

    b.)

    c.)

    d.)

    Correct answer b.) 

    18.

    2p

    Schematic diagram of a base collector stage is shown in figure 4.3.

  • 8/18/2019 1. Analog Electronics Tests .pdf

    77/294

    Analog Electronics - Tests

    77

    Figure 4.3

    Bipolar junction transistor, ”T” is operating in active region if  

    γ −−∈ V,vv BEsatIN . In these circumstances, the equivalent circuit

    (quasi-static large signal regime) is:a.)

    b.)

    c.)

    d.)

    Correct answer c.) 

    19.

    2p

    Schematic diagram of a common emitter stage is shown in figure 4.1. 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    78/294

    Analog Electronics - Tests

    78

    Figure 4.1

    Bipolar junction transistor, ”T” is operating in saturation region if  vIN≈vBEsat. In these circumstances, the equivalent circuit (quasi-staticlarge signal regime) isa.)

    b.)

    c.)

    d.)

    Correct answer a.) 

    20.

    2p

    Schematic diagram of a common collector stage is shown in figure 4.2.

    Figure 4.2

    Bipolar junction transistor, ”T” is operating in saturation region if  vIN=EC. In these circumstances, the equivalent circuit (quasi-staticlarge signal regime) is:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    79/294

    Analog Electronics - Tests

    79

    a.)

    b.)

    c.)

    d.)

    Correct answer b.) 

    21.

    2p

    Schematic diagram of a common base stage is shown in figure 4.3.

    Figure 4.3

    Bipolar junction transistor, ”T” is operating in saturation region if  

    BEsatIN vv   −≅ . In these circumstances, the equivalent circuit (quasi-static large signal regime) is:a.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    80/294

    Analog Electronics - Tests

    80

    b.)

    c.)

    d.)

    Correct answer c.) 

    22.

    4p

    Schematic diagram of a common emitter stage is shown in figure 4.1.If the bipolar junction transistor ”T” is operating in cut-off region,the output voltage is: 

    Figure 4.1

    a.) vO=EC b.)

    satCEOvv   ≈  

    c.) vO=0d.)

    satBEOvv   ≈  

    Correct answer a.) 

    23.

    4p

    Schematic diagram of a common collector stage is shown in figure 4.2. If the bipolar junction transistor ”T” is operating in cut-off

    region, the output voltage is: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    81/294

    Analog Electronics - Tests

    81

    Figure 4.2

    a.) vO=EC b.)

    satCEOvv   ≈  

    c.) vO=0d.)

    satBEOvv   ≈  

    Correct answer c.) 

    24.

    4p

    Schematic diagram of a common base stage is shown in figure 4.3. Ifthe bipolar junction transistor ”T” is operating in cut-off region, theoutput voltage is: 

    Figure 4.3

    a.) vO=EC b.)

    satCEOvv   ≈  

    c.) vO=0

    d.) satBEO vv   ≈  Correct answer a.) 

    25.

    4p

    Schematic diagram of a common emitter stage is shown in figure 4.1.If the bipolar junction transistor ”T” is operating in active region, theoutput voltage is: 

    Figure 4.1

    a.) 

      

     −−=T

    INSCCO e

    vexpIREv  

  • 8/18/2019 1. Analog Electronics Tests .pdf

    82/294

    Analog Electronics - Tests

    82

    b.) vO=vIN-vBE c.) 0vO ≅  d.)

    T

    INCSCO e

    vexpRIEv   −=  

    Correct answer d.) 

    26.4p

    Schematic diagram of a common collector stage is shown in figure 4.2. If the bipolar junction transistor ”T” is operating in active

    region, the output voltage is: 

    Figure 4.2

    a.) 

      

     −−=

    T

    INSCCO e

    vexpIREv  

    b.) vO=vIN-vBE c.) 0vO ≅  d.)

    T

    INCSCO e

    vexpRIEv   −=  

    Correct answer b.) 

    27.

    4p

    Schematic diagram of a common base stage is shown in figure 4.3. Ifthe bipolar junction transistor ”T” is operating in active region, theoutput voltage is: 

    Figure 4.3

    a.) 

      

     −−=

    T

    INSCCO e

    vexpIREv  

    b.) vO=vIN-vBE c.) 0vO ≅  

  • 8/18/2019 1. Analog Electronics Tests .pdf

    83/294

    Analog Electronics - Tests

    83

    d.)T

    INCSCO e

    vexpRIEv   −=  

    Correct answer a.) 

    28.

    4p

    Schematic diagram of a common emitter stage is shown in figure 4.1.If the bipolar junction transistor ”T” is operating in saturation

    region, the output voltage is: 

    Figure 4.1

    a.) vO=vCEsat b.) vO=EC-vCEsat c.) vO=EC d.) vO=EC-vBEsat Correct answer a.) 

    29.

    4p

    Schematic diagram of a common collector stage is shown in figure 4.2. If the bipolar junction transistor ”T” is operating in saturationregion, the output voltage is: 

    Figure 4.2

    a.) vO=vCEsat b.) vO=EC-vCEsat c.) vO=EC d.) vO=EC-vBEsat Correct answer b.) 

    30.

    4p

    Schematic diagram of a common base stage is shown in figure 4.3. Ifthe bipolar junction transistor ”T” is operating in saturation region,the output voltage is: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    84/294

    Analog Electronics - Tests

    84

    Figure 4.3

    a.) vO=vCEsat b.) vO=EC-vCEsat c.) 0vO ≅  d.) vO=EC-vBEsat Correct answer c.) 

    31.

    3p

    The transfer characteristic of a common emitter stage is shown in

    figure:a.)

    0.5V  1V  vIN 

    vO EC 

    vCEsat 

    γ V  

    vBEsat

     b.)

    γ V   vIN 

    vO 

    EC-vCEsat. 

    EC 

    c.)

    -   γ V   vIN 

    vO 

    EC 

    -vBEsat 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    85/294

    Analog Electronics - Tests

    85

    d.)

    γ V   vIN 

    vO 

    EC-vCEsat. 

    EC 

    Correct answer a.) 

    32.

    3p

    The transfer characteristic of a common collector stage is shown in

    figure: a.)

    0.5V  1V  vIN 

    vO EC 

    vCEsat 

    γ V  

    vBEsat

     b.)

    γ V   vIN 

    vO 

    EC-vCEsat. 

    EC 

    c.)

    -   γ V   vIN 

    vO 

    EC 

    -vBEsat 

    d.)

    γ V   vIN 

    vO 

    EC-vCEsat. 

    EC 

    Correct answer b.) 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    86/294

    Analog Electronics - Tests

    86

    33.3p

    The transfer characteristic of a common base stage is shown infigure: a.)

    0.5V  1V  vIN 

    vO EC 

    vCEsat 

    γ V  

    vBEsat

     b.)

    γ V   vIN 

    vO 

    EC-vCEsat. 

    EC 

    c.)

    -   γ V   vIN 

    vO 

    EC 

    -vBEsat 

    d.)

    γ V   vIN 

    vO 

    EC-vCEsat. 

    EC 

    Correct answer c.) 

    344p

    The common emitter amplifier is presented in figure:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    87/294

    Analog Electronics - Tests

    87

    a.)

    b.)

    c.)

    d.)

    Correct answer a.) 

    35

    4p

    The common collector amplifier is presented in figure: 

    a.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    88/294

    Analog Electronics - Tests

    88

    b.)

    c.)

    d.)

    Correct answer b) 

    36

    4p

    The common base amplifier is presented in figure: 

    a.)

    b.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    89/294

    Analog Electronics - Tests

    89

    c.)

    d.)

    Correct answer d.) 

    38

    3p

    Figure 4.4 shows a common-emitter amplifier.

    Figure 4.4

    The equivalent circuit (quasi-static small signal regime) is: a.)

    b.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    90/294

    Analog Electronics - Tests

    90

    c.)

    d.)

    Correct answer a.) 

    39

    3p

    Figure 4.5 shows a common collector amplifier.

    Figure 4.5

    The equivalent circuit (quasi-static small signal regime) is:a.)

    b.)

    c.)

    d.)

    Correct answer b.) 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    91/294

  • 8/18/2019 1. Analog Electronics Tests .pdf

    92/294

    Analog Electronics - Tests

    92

    a.) assure the base potentialb.) assure the thermal stabilityc.) be loadd.) assure the base potential and the thermal stabilityCorrect answer a.) 

    42

    1p

    Figure 4.4 shows a common emitter amplifier. Resistor RE is

    designed to: 

    Figure 4.4

    a.) assure the base potentialb.) assure the thermal stabilityc.) be loadd.) assure the base potential and the thermal stabilityCorrect answer b.) 

    431p

    Figure 4.4 shows a common emitter amplifier. Resistor RC isdesigned to: 

    Figure 4.4

    a.) assure the base potentialb.) assure the thermal stabilityc.) be loadd.) assure the base potential and the thermal stabilityCorrect answer c.) 

    44

    1p

    Figure 4.4 shows a common emitter amplifier. Capacitor C1 is

    designed to: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    93/294

    Analog Electronics - Tests

    93

    Figure 4.4

    a.) assure the base potentialb.) assure the thermal stabilityc.) be a coupling capacitord.) be a decoupling capacitor

    Correct answer c.) 45

    1p

    Figure 4.4 shows a common emitter amplifier. Capacitor C2 is

    designed to: 

    Figure 4.4

    a.) assure the base potentialb.) assure the thermal stabilityc.) be a coupling capacitord.) be a decoupling capacitorCorrect answer c.) 

    46

    1p

    Figure 4.4 shows a common emitter amplifier. Capacitor CE is

    designed to: 

    Figure 4.4

  • 8/18/2019 1. Analog Electronics Tests .pdf

    94/294

    Analog Electronics - Tests

    94

    a.) assure the base potentialb.) assure the thermal stabilityc.) be a coupling capacitord.) be a decoupling capacitorCorrect answer d.) 

    47

    1p

    Figure 4.5 shows a common collector amplifier. Resistors RB1 and RB2 

    are designed to: 

    Figure 4.5

    a.) assure the base potentialb.) assure the thermal stabilityc.) be loadd.) assure the base potential and the thermal stabilityCorrect answer a.) 

    48

    1p

    Figure 4.5 shows a common collector amplifier. Resistor RE is

    designed to: 

    Figure 4.5

    a.) assure the base potentialb.) assure the thermal stabilityc.) be loadd.) assure the base potential and the thermal stabilityCorrect answer c.) 

    491p

    Figure 4.5 shows a common collector amplifier. Capacitor C1 isdesigned to: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    95/294

    Analog Electronics - Tests

    95

    Figure 4.5

    a.) assure the base potentialb.) assure the thermal stabilityc.) be a coupling capacitord.) be a decoupling capacitorCorrect answer c.) 

    50

    1p

    Figure 4.5 shows a common collector amplifier. Capacitor C2 is

    designed to: 

    Figure 4.5

    a.) assure the base potential

    b.) assure the thermal stabilityc.) be a coupling capacitord.) be a decoupling capacitorCorrect answer c.) 

    511p

    Figure 4.6 shows a common base amplifier. Resistors RB1 and RB2 aredesigned to: 

    Figure 4.6

    a.) assure the base potential

  • 8/18/2019 1. Analog Electronics Tests .pdf

    96/294

    Analog Electronics - Tests

    96

    b.) assure the thermal stabilityc.) be loadd.) assure the base potential and the thermal stabilityCorrect answer a.) 

    521p

    Figure 4.6 shows a common base amplifier. Resistor RE is designedto: 

    Figure 4.6

    a.) assure the base potentialb.) assure the thermal stabilityc.) be loadd.) assure the base potential and the thermal stabilityCorrect answer b.) 

    531p

    Figure 4.6 shows a common base amplifier. Resistor RC is designedto: 

    Figure 4.6

    a.) assure the base potentialb.) assure the thermal stabilityc.) be loadd.) assure the base potential and the thermal stabilityCorrect answer c.) 

    54

    1p

    Figure 4.6 shows a common base amplifier. Condenser C1 is designed

    to:

  • 8/18/2019 1. Analog Electronics Tests .pdf

    97/294

    Analog Electronics - Tests

    97

    Figure 4.6

    a.) assure the base potentialb.) assure the thermal stabilityc.) be a coupling capacitord.) be a decoupling capacitorCorrect answer c.) 

    551p

    Figure 4.6 shows a common base amplifier. Condenser C2 is designedto: 

    Figure 4.6

    a.) assure the base potentialb.) assure the thermal stabilityc.) be a coupling capacitor

    d.) be a decoupling capacitorCorrect answer c.) 

    56

    1p

    Figure 4.6 shows a common base amplifier. Condenser CB is designed

    to: 

    Figure 4.6

    a.) assure the base potentialb.) assure the thermal stabilityc.) be a coupling capacitor

  • 8/18/2019 1. Analog Electronics Tests .pdf

    98/294

    Analog Electronics - Tests

    98

    d.) be a decoupling capacitorCorrect answer d.) 

    60.

    4p

    Figure 4.4 shows a common emitter amplifier. Kipping in mind that

    in

    oV V

    VA   = , the voltage gain is: 

    Figure 4.4

    a.)Cv RgA   π−=  

    b.)Cmv RgA   −=  

    c.) 1Av ≅  d.)

    Cmv RgA   =  Correct answer a.) 

    61.

    4p

    Figure 4.5 shows a common collector amplifier. Kipping in mind that

    in

    oV

    V

    VA   = , the voltage gain is: 

    Figure 4.5

    a.)Cv RgA   π−=  

    b.) Cmv RgA   −=  c.) 1Av ≅  

    d.) Cmv RgA   =  Correct answer c.) 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    99/294

    Analog Electronics - Tests

    99

    62.

    4p

    Figure 4.6 shows a common collector amplifier. Kipping in mind that

    in

    oV V

    VA   = , the voltage gain is: 

    Figure 4.6

    a.)Cv RgA   π−=  

    b.) Cmv RgA   −=  c.) 1Av ≅  d.)

    Cmv RgA   =  Correct answer d.) 

    63.

    4p

    Figure 4.4 shows a common emitter amplifier. Kipping in mind that

    in

    inin I

    VR   = , the input resistance is: 

    Figure 4.4

    a.)

    β≅

    +β= mmEin

    r

    1

    rRR

    b.)

    β≅

    +β=   ππ

    r

    1

    rRR Ein  

    c.) ( )[ ] EEBEBin RRRR1rRR   β≅β≅+β+=   π  d.)

    ππ ≅= rrRR Bin  Correct answer d.) 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    100/294

    Analog Electronics - Tests

    100

    64.4p

    Figure 4.5 shows a common collector amplifier. Kipping in mind that

    in

    inin I

    VR   = , the input resistance is: 

    Figure 4.5

    a.)

    β≅+β= mmEinr

    1

    rRR

    b.)

    β≅

    +β=   ππ

    r

    1

    rRR Ein  

    c.) ( )[ ] EEBEBin RRRR1rRR   β≅β≅+β+=   π  d.)

    ππ ≅= rrRR Bin  Correct answer c.) 

    65.4p

    Figure 4.6 shows a common base amplifier. Kipping in mind that

    in

    inin I

    VR   = , the input resistance is: 

    Figure 4.6

    a.)

    β≅

    +β= mmEin

    r

    1

    rRR

    b.)

    β≅

    +β=   ππ

    r

    1

    rRR Ein  

    c.) ( )[ ] EEBEBin RRRR1rRR   β≅β≅+β+=   π  d.)

    ππ ≅= rrRR Bin  

  • 8/18/2019 1. Analog Electronics Tests .pdf

    101/294

    Analog Electronics - Tests

    101

    Correct answer a.) 

    66.

    4p

    Figure 4.7 shows a common emitter amplifier. The output generator

    is necessary in order to estimate the output resistance. The equivalent

    circuit (quasi-static small signal regime) is:

    Figure 4.7a.)

    b.)

    c.)

    d.)

    Correct answer a.) 

    67.4p

    Figure 4.8 shows a common collector amplifier. The output generatoris necessary in order to estimate the output resistance. The equivalentcircuit (quasi-static small signal regime) is: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    102/294

    Analog Electronics - Tests

    102

    Figure 4.8

    a.)

    b.)

    c.)

    d.)

    Correct answer b.) 

    68.4p

    Figure 4.9 shows a common base amplifier. The equivalent circuit(quasi-static small signal regime) necessary in order to estimate the

    output resistance is: 

    Figure 4.9

    a.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    103/294

    Analog Electronics - Tests

    103

    b.)

    c.)

    d.)

    Correct answer a.) 

    69.

    3p

    The output resistance of a common collector amplifier is

    a.) ( )[ ] EEBEBo RRRR1rRR   β≅β≅+β+=   π  b.)

    ππ ≅= rrRR Bo  c.)

    β≅

    +β=   ππ

    r

    1

    rRR Eo  

    d.) Co RR   =  Correct answer c.) 

    703p

    The output resistance of a common emitter amplifier is 

    a.) ( )[ ] EEBEBo RRRR1rRR   β≅β≅+β+=   π  b.)

    ππ ≅= rrRR Bo  c.)

    β≅

    +β=   ππ

    r

    1

    rRR Eo  

    d.)Co RR   =  

    Correct answer d.) 

    713p

    The output resistance of a common base amplifier is 

    a.) ( )[ ] EEBEBo RRRR1rRR   β≅β≅+β+=   π  b.)

    ππ ≅= rrRR Bo  

  • 8/18/2019 1. Analog Electronics Tests .pdf

    104/294

    Analog Electronics - Tests

    104

    c.)β

    ≅+β

    =   ππ r1

    rRR Eo  

    d.)Co RR   =  

    Correct answer d.) 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    105/294

    Analog Electronics - Tests

    105

    Chapter 5

    Junction Field Effect Transistor

    1

    2p

    Basic structure of a junction field effect transistor is shown in figure:

    a.) S G D

    SiO2 

    p++  n++ 

    n

    n

    channel

    b.) S G D

    SiO2 

    n++  n++ 

    p

    channel

    c.) G

    D

    channel

    p

    pn

    S

    n

    p-n junction

    p-n junction

     

  • 8/18/2019 1. Analog Electronics Tests .pdf

    106/294

    Analog Electronics - Tests

    106

    d.)S G D

    SiO2 

    n++  n++ 

    p

    n

    channel

    Correct answer c.)

    2.1p

    Figure 5.1 shows the basic structure of a junction field effecttransistor. With „S” is denoted:

    G

    D

    channel

    p

    pn

    S

    n

    p-n junction

    p-n junction

     Figure 5.1

    a.) Sourceb.) Drainc.) Grilld.) BulkCorrect answer a.)

    3.1p Figure 5.1 shows the basic structure of a junction field effecttransistor. With „G” is denoted: G

    D

    channel

    p

    pn

    S

    n

    p-n junction

    p-n junction

     Figure 5.1

    a.) Sourceb.) Drainc.) Grill

    d.) BulkCorrect answer c.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    107/294

    Analog Electronics - Tests

    107

    4.1p

    Figure 5.1 shows the basic structure of a junction field effecttransistor. With „G” is denoted: 

    G

    D

    channel

    p

    pn

    S

    n

    p-n junction

    p-n junction

     Figure 5.1

    a.) Sourceb.) Drainc.) Grill

    d.) BulkCorrect answer c.)

    5.

    1p

    The symbol of a “n” channel junction field effect transistor is:

    a.)

    b.)

    c.)

    d.)

    Correct answer d.)

    6.

    1p

    The symbol of a “p” channel junction field effect transistor is: 

    a.)

    b.)

  • 8/18/2019 1. Analog Electronics Tests .pdf

    108/294

  • 8/18/2019 1. Analog Electronics Tests .pdf

    109/294

    Analog Electronics - Tests

    109

    11.

    3p

    The main current of a “n” channel junction field effect transistor is

    flowing between source and drain. It is composed of electrons. Intheir course, these electrons pass through a region called “channel”.

    The resistance of the channel is controlled by the grill. This controlmay be realized if  grill-channel junction is operating in “off” mode.The control mechanism is: a.) gate voltage changes the space charge region size⇒geometry of

    the channel is changed⇒channel resistance is modified ⇒channelcurrent is controlled

    b.) gate voltage changes the space charge region size ⇒   channelresistance is modified ⇒geometry of the channel is changed ⇒  channel current is controlled

    c.) geometry of the channel is changed ⇒gate voltage changes thespace charge region size ⇒  channel resistance is modified ⇒  channel current is controlled

    d.) channel resistance is modified ⇒   gate voltage changes the spacecharge region size ⇒   geometry of the channel is changed ⇒  channel current is controlled

    Correct answer a.)

    12.

    1p

    Common source connection of a junction field effect transistor is

    presented in figure:a.)

    b.)

    c.)

    d.)

    Correct answer a.)

    13.1p Common drain connection of a junction field effect transistor ispresented in figure: 

  • 8/18/2019 1. Analog Electronics Tests .pdf

    110/294

    Analog Electronics - Tests

    110

    a.)

    b.)

    c.)

    d.)

    Correct answer c.)

    14.

    1p

    Common grill connection of a junction field effect transistor is

    presented in figure: a.)

    b.)

    c.)

    d.)

    Correct answer b.)

    15.

    3p

    In common source connection

    a.) input signals are:* grill-source voltage* grill current

    output signals are:* drain-source voltage

    * drain currentb.) input signals are:* grill-drain voltage

  • 8/18/2019 1. Analog Electronics Tests .pdf

    111/294

    Analog Electronics - Tests

    111

    * grill currentoutput signals are:* source-drain voltage* source current

    c.) input signals are:* source-grill voltage* source current

    output signals are:* drain-grill voltage* drain current

    d.) input signals are:* grill-source voltage* grill current

    output signals are:* source-drain voltage* source current

    Correct answer a.)

    16.3p

    In common grill connection 

    a.) input signals are:* grill-source voltage* grill current

    output signals are:* drain-source voltage* drain current

    b.) input signals are:* grill-drain voltage* grill current

    output signals are:* source-drain voltage* source current

    c.) input signals a