23
1 1-4. 超超超超超超超超超超 超超超超超超 1 超超超超超超超超超超超超超超超 2010 超 7 超 16 超 超超 超超超超超 超超超超超超超超超超 超超超 超超超超超超超超超超

1-4. 超電導ケーブル標準化

Embed Size (px)

DESCRIPTION

1-4. 超電導ケーブル標準化. 低温工学協会・第 1 回超電導応用研究会シンポジウム 2010 年 7 月 16 日 佐藤 謙一 フェロー  材料技術研究開発本部・技師長  住友電気工業株式会社. 国際標準のメリット. ① 製品開発初期における国際的な市場拡大 ②製品のビジネス拡大期におけるコストダウン獲得 国際標準は、 WTO(World Trade Organization, 世界貿易機関 ) の「貿易の技術的障害に関する協定」で各国標準の基礎として用いられることを義務づけられている. 新宅純二郎,江藤学 , “ コンセンサス標準戦略”,日本経済新聞社,東京,. - PowerPoint PPT Presentation

Citation preview

Page 1: 1-4.  超電導ケーブル標準化

1

1-4. 超電導ケーブル標準化

低温工学協会・第 1回超電導応用研究会シンポジウム

2010年 7月 16日佐藤 謙一フェロー 

材料技術研究開発本部・技師長  住友電気工業株式会社

Page 2: 1-4.  超電導ケーブル標準化

2

国際標準のメリット

• ①製品開発初期における国際的な市場拡大

• ②製品のビジネス拡大期におけるコストダウン獲得

• 国際標準は、WTO(World Trade Organization, 世界貿易機関 )の「貿易の技術的障害に関する協定」で各国標準の基礎として用いられることを義務づけられている

新宅純二郎,江藤学 , “コンセンサス標準戦略”,日本経済新聞社,東京,

Page 3: 1-4.  超電導ケーブル標準化

3

Lord Kelvin IEC's First President (1906)

'If you cannot measure it, you cannot improve it.'

Page 4: 1-4.  超電導ケーブル標準化

4The International Electrotechnical Commission

TECHNICAL COMMITTEE No. 90: SUPERCONDUCTIVITY

• Established: 1989• Chairperson Country: U.S.A.• Secretariat: Japan• Scope:

– To deal with technical aspects, problems and standards activities related to superconducting material and devices.

– All classes of superconductors will be covered. • Liaison:   A) : VAMAS (Versailles Project on

Advanced Materials and Standards)

Page 5: 1-4.  超電導ケーブル標準化

5

TECHNICAL COMMITTEE No. 90: SUPERCONDUCTIVITY - Membership

• Chairman: Dr. Loren F. GOODRICH   National Institute of Standards and Technology, U.S.A.• Secretary: Dr. Ken-ichi SATO  Sumitomo Electric Industries, Ltd., Japan• Assistant Secretary: Mr. Jun FUJIKAMI  Sumitomo Electric Industries, Ltd., Japan

• Membership: Number of Participating countries: 11, Number of Observer countries: 14– P- member country:– AUSTRIA, CHINA, FRANCE, GERMANY, ITALY, JAPAN,

KOREA (REPUBLIC OF), POLAND, ROMANIA, RUSSIAN FEDERATION, UNITED STATES OF AMERICA

Page 6: 1-4.  超電導ケーブル標準化

6

Items for standardization

• 1. Terms and definitions. • 2. Measurements.

– 2.1 Raw materials (including materials used for superconductors and real apparatus).

– 2.2 Wire, bulk and film.

• 3. Material specification. – 3.1 Raw materials. – 3.2 Wire, bulk and film.

• 4. Equipment and device performance and tests specifications.

Page 7: 1-4.  超電導ケーブル標準化

7

TC90 Meeting History

・ 1st TC meeting was held in Tokyo in May 1990 ・ 2nd meeting in Paris in November 1992 ・ 3rd meeting in Boulder in April 1995 ・ 4th meeting in Beijing in October 1996 ・ 5th meeting in Frankfurt in June 1998 ・ 6th meeting in Boulder in March 2000 ・ 7th meeting in Seoul in September 2001・ 8th meeting in Vienna in February 2003 ・ 9th meeting in Argonne in September 2004 ・ 10th meeting in Kyoto in June 2006・ 11th meeting in Berlin in June 2008・ 12th meeting will be in Seattle in October 2010

Page 8: 1-4.  超電導ケーブル標準化

8

Working Groups in TC90

WG 1 : Terms and definitionsWG 2 : Critical current measurement of Nb-Ti composite superconductorsWG 3 : Critical current measurement method of oxide superconductorsWG 4 : Test method for residual resistivity ratio of Cu/Nb-Ti and Nb3Sn composite superconductorsWG 5 : Tensile test of composite superconductorsWG 6 : Matrix composition ratio of Cu/Nb-Ti composite superconductorsWG 7 : Critical current measurement method of Nb3Sn composite superconductorsWG 8 : Electronic characteristic measurementsWG 9 : Measurement method for AC losses in superconducting wiresWG 10 : Measurement for bulk high temperature superconductors - Trapped flux density in large grain oxide superconductorsWG 11 : Critical temperature measurement - Critical temperature of composite superconductorsWG 12 : Current Leads (established, January, 2007)

Page 9: 1-4.  超電導ケーブル標準化

9

Publications issued by TC 90

• IEC 60050-815: 2000 International Electrotechnical Vocabulary – Part 815: Superconductivity

• IEC 61788-1 Ed. 2.0: Superconductivity - Part 1: Critical current measurement - DC critical current of Cu/Nb-Ti composite superconductors

• IEC 61788-2 Ed. 2.0: Superconductivity - Part 2: Critical current measurement - DC critical current of Nb3Sn composite superconductors

• IEC 61788-3 Ed. 2.0: Superconductivity - Part 3: Critical current measurement - DC critical current of Ag-sheathed Bi-2212 and Bi-2223 oxide superconductors

• IEC 61788-4 Ed. 2.0: Superconductivity - Part 4: Residual resistance ratio measurement - Residual resistance ratio of Nb-Ti composite superconductors

• IEC 61788-5 Ed. 1.0: Superconductivity - Part 5: Matrix to superconductor volume ratio measurement - Copper to superconductor volume ratio of Cu/Nb-Ti composite superconductors

• IEC 61788-6 Ed. 2.0: Superconductivity - Part 6: Mechanical properties measurement - Room temperature tensile test of Cu/Nb-Ti composite superconductors

• IEC 61788-7 Ed. 2.0: Superconductivity - Part 7: Electronic characteristic measurements - Surface resistance of superconductors at microwave frequencies

Page 10: 1-4.  超電導ケーブル標準化

10

Publications issued by TC 90 –continued-

• IEC 61788-8 Ed. 2.0: Superconductivity - Part 8: AC loss measurements - Total AC loss measurement of Cu/Nb-Ti composite superconducting wires exposed to a transverse alternating magnetic field by a pickup coil method

• IEC 61788-9 Ed. 1.0: Superconductivity - Part 9: Measurements for bulk high temperature superconductors - Trapped flux density of large grain oxide superconductors

• IEC 61788-10 Ed. 2.0: Superconductivity - Part 10: Critical temperature measurement - Critical temperature of Nb-Ti, Nb3Sn, and Bi-system oxide composite superconductors by a resistance method

• IEC 61788-11 Ed. 1.0: Superconductivity - Part 11: Residual resistance ratio measurement - Residual resistance ratio of Nb3Sn composite superconductors

• IEC 61788-12 Ed. 1.0: Superconductivity - Part 12: Matrix to superconductor volume ratio measurement - Copper to non-copper volume ratio of Nb3Sn composite superconducting wires

• IEC 61788-13 Ed. 1.0: Superconductivity - Part 13: AC loss measurements - Magnetometer methods for hysteresis loss in Cu/Nb-Ti multifilamentary composites

• IEC 61788-14 Ed. 1.0: Superconductivity - Part 14: Superconducting power devices – General requirements for characteristic tests of current leads designed for powering superconducting devices (2010-06)

15 IEC International Standards published

Page 11: 1-4.  超電導ケーブル標準化

11

□: In operation (Lab & Grid)

□: Future grid operation

世界の主な超電導ケーブルプロジェクト

Page 12: 1-4.  超電導ケーブル標準化

12

Panel Discussions for future standardization works held by TC90

Year Venue Conference

October, 2004 Jacksonville, USA Applied Superconductivity Conference

September, 2005 Vienna, Austria European Conference on Applied Superconductivity

September, 2005 Genoa, Italy Magnet Technology - 19

November, 2005 Tsukuba, Japan International Superconductivity Conference

August, 2006 Seattle, USA Applied Superconductivity Conference

October, 2006 Nagoya, Japan International Superconductivity Conference

August, 2007 Philadelphia, USA Magnet Technology - 20

November, 2007 Tsukuba, Japan International Superconductivity Conference

November, 2008 Tsukuba, Japan International Superconductivity Conference

September, 2009 Dresden, Germany European Conference on Applied Superconductivity

August, 2010 Washington DC, USA Applied Superconductivity Conference

Page 13: 1-4.  超電導ケーブル標準化

13

2008年:超電導ケーブル標準化に向けて活動開始

• Started to communicate with Product TCs, first with TC20: Electric Cables, for superconducting Power Cable on April, 2008

• Agreed at the 11th TC90 Meeting at Berlin in June: TC20 & TC90 will jointly propose to CIGRE SC B1: Insulated Cables, to ask Pre-standardization Work.

• TC20 meeting at Rome in October, 2008: Confirmed to ask CIGRE jointly with TC90

• CIGRE SC B1: Task Force started in December, 2008 to study the necessity of creation of a new WG for further work on HTS cables (Convenor: D. Lindsay, Southwire)

Page 14: 1-4.  超電導ケーブル標準化

14

Recommendations from TC90 discussed at IEC Sector Board 1 meeting in 2007 Beijing &

2008 Newcastle

• TC90 should construct liaison relations with related TCs in IEC to deal with superconducting power equipments, for examples, power cables with TC20 and others

• TC90 should make a communication with SB1 on market needs for superconducting power equipments in transmission and distribution area

• TC90 will proceed with standardization works for superconducting properties, such as long high temperature superconducting wire properties, and superconducting devices based upon its activities

IEC Sector Board 1: Transmission and distribution

Page 15: 1-4.  超電導ケーブル標準化

15

Example: Optical Fiber (1)

• IEC 60793-1-1: Optical fibres – Measurement methods and test procedures – Part 1-1: General and guidance

• Publications in the IEC 60793-1 series concern measurement methods and test procedures as they apply to optical fibres. Within the same series, several different areas are grouped, as follows:

• parts 1-10 to 1-19: General• parts 1-20 to 1-29: Measurement methods and test procedures for

dimensions• parts 1-30 to 1-39: Measurement methods and test procedures for

mechanical characteristics• parts 1-40 to 1-49: Measurement methods and test procedures for

transmission and optical characteristics• parts 1-50 to 1-59: Measurement methods and test procedures for

environmental characteristics.

Page 16: 1-4.  超電導ケーブル標準化

16

Example: Optical Fiber (2)

• IEC 60793-2: Optical fibres – Part 2: Product specifications – General

• IEC 60793-2 consists of the following parts, under the general title Optical fibres:

• Part 2-10: Product specifications - Sectional specification for category A1 multimode fibres

• Part 2-20: Product specifications - Sectional specification for category A2 multimode fibres

• Part 2-30: Product specifications - Sectional specification for category A3 multimode fibres

• Part 2-40: Product specifications - Sectional specification for category A4 multimode fibres

• Part 2-50: Product specifications - Sectional specification for category B single-mode fibres

• Part 2-60: Product specifications - Sectional specification for category C single-mode intraconnection fibres

Page 17: 1-4.  超電導ケーブル標準化

17

Page 18: 1-4.  超電導ケーブル標準化

18

CIGRE Task Force B1.31 (TESTING OF SUPERCONDUCTING CABLE SYSTEMS)

Working year : 2008-2009Conclusion: The TF unanimously agrees and recommends B1 forma WG to develop and testing guideline for superconductingcable systems. Development and implementation of this technologywill continue and a proper guideline is required for the industry.

Page 19: 1-4.  超電導ケーブル標準化

19

CIGRE WG B1.31 (TESTING OF SUPERCONDUCTING CABLE SYSTEMS)

Back ground : IEC TC20 and TC90 has requested B1 to provide testing recommendations for HTSC cable systems, as the technology has made notable progress during the last years.

Convener : David Lindsay (US) Created: 2010, Disband: 2013

Members :Alex Geschiere (NL, Alliander), Ray Awad (CA, Hydro Quebec), Su-Kil Lee (KO, LS cable), Frank Schmidt (GE, Nexans)Nicolas Lallouet (FR, Nexans), Massimo Bechis (IT, Prysmian)Javier Iglesias Diaz( ES), Takato Masuda (JP, Sumitomo)Shinichi Mukoyama (observer, JP, Furukawa) David Lindsay (US, Southwire)

Page 20: 1-4.  超電導ケーブル標準化

20

CIGRE WG B1.31 (TESTING OF SUPERCONDUCTING CABLE SYSTEMS)

Terms of Reference: 1.Scope of the WG should be limited to AC High Temperature Superconductors (HTS) only (not including DC cable) and exclude those materials considered Low Temperature Superconductors (LTS). Voltage range: 10 to 145 kV 2.Cryogenic cooling hardware is outside the scope. However, Performance specification, reliability, functional requirements should be addressed 3.The WG shall collect detailed experience from existing HTS cable projects. 4.The WG shall address HTS cable systems operating under normal and short circuit conditions – including cable, joints and terminations. 5.The guideline shall include considerations for all known cable design options including single-core, three-core and three concentric phases. 6.The guideline shall address those test requirements associated with design and operation of a pressurized piping and pressure-vessel system as applicable to HTS cable systems. 7.The WG shall recommend testing requirements and guidelines for HTS cable system in the following areas: · Type / Qualification tests , · Factory Tests, · After Laying Tests 8.The WG shall discuss and document the prospective of technology up scaling to 275 kV

Page 21: 1-4.  超電導ケーブル標準化

21

CIGRE WG B1.31 (TESTING OF SUPERCONDUCTING CABLE SYSTEMS)

The full report shall be made available for final review at the B1 annual meeting in 2013.

Deliverables:• An Executive Summary article for Electra• A full report to be published as a Technical Brochure• A Tutorial

Page 22: 1-4.  超電導ケーブル標準化

22

2007 2008 2009 2010 2011 2012KEPRI & DAPAS, KR

Albany, US

Ohio, US

LIPA 1, Us

Yokohama, JPHydra, US

Amsterdam, NL

StandardPreliminary Stage/CIGRE: Task Force → WG

HTS Cable Projects and IEC Standards

Page 23: 1-4.  超電導ケーブル標準化

23IEC/TC90: 現在までのまとめと今後• 現在までの国際規格発行:測定方法 14件 (TC90)および超電導関連用語 1件 (TC1:用語+ TC90)←日本からの提案が大多数

• IEC規格作成のノウハウが各WGの ConvenorやWGエキスパートの間に定着するには、 10年かかった→人脈形成、国際標準制定までの各国との落としどころ協議→標準作成のフォーマット

• Pre-standard活動として実施された先進国間の協力である VAMAS *の成果を IEC規格へ取り込んできた( *先進材料と標準におけるベルサイユサミットの合意)-外部との連携が重要

• 将来方針の合意を常に形成する努力が必要• EU諸国からの国の代表は、同じ会社の異なる国の代表として出席する場合もある。規格が機器 になり利害がレベル衝突するようになると、日本としては、票を多く取りにくい。→中国、韓国との連携など重要

• 超電導のように、産業として成熟していない分野は、国の積極的な関与が不可欠(受益者負担の考えだけでは難かしい)