50
1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of Section 5 SECTION 5 Complex Integration II

1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

Embed Size (px)

Citation preview

Page 1: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

1

(1) Indefinite Integration

(2) Cauchy’s Integral Formula

(3) Formulas for the derivatives of an analytic function

Section 5

SECTION 5Complex Integration II

Page 2: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

2

value of the integralbetween two pointsdepends on the path

1C

dzz

y

x

j1

0

jdzzC

1no real meaning to

j

dzz1

0

Section 5

Page 3: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

3

integrate the function along the path Cjoining 2 to 12j as shown

2)( zzf

Example

1022)( ttjttz

)219(3

1

)3/8(1)21(

)84()443()21(

)21()22(

)()(

1

0

22

1

0

2

1

0

j

jj

dtttjttj

dtjtjt

dtdt

dztzfdzzf

C

y

x

j21

0

C

2

Section 5

Page 4: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

4

integrate the function along the path CC1 C2 joining 2 to 12j as shown

2)( zzf

Example

202)( tttz

3

8)44(

)1()2()(

2

0

2

2

0

2

dttt

dttdzzfC

y

x

j21

0 21C

2C

Along C1:

0

2

2dxx

alongreal axis !

102)( ttjttzAlong C2:

jdttj

dtjtjtdzzfC

3

2

3

11)211(

)21()2()(

1

0

2

1

0

2

Section 5

Page 5: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

5

3/)219(2 jdzzC

y

x

j21

0

3/)219(2 jdzzC

value of the integralalong both paths is

the same

2

coincidence ??

Section 5

Page 6: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

6

Dependence of Path

1z

2z1C

2C0)()(

21

CC

dzzfdzzf

Suppose f (z) is analytic ina simply connected domain D

D

by the Cauchy Integral Theorem

2

2

1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

alongalong

alongalong

alongalong

)()(

)()(

0)()(

C

z

z

C

z

z

C

z

z

C

z

z

C

z

z

C

z

z

dzzfdzzf

dzzfdzzf

dzzfdzzf

1z

2z

1C2C

note:if they intersect,we just do thisto each “loop”,one at a time

Section 5

Page 7: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

7

Section 5Integration (independence of path)

Consider the integral dzzfz

z1

0

)(

If f (z) is analytic in a simply connected domain D, and z0

and z1 are in D, then the integral is independent of path in D

)()()( 01

1

0

zFzFdzzfz

z

where )(zfdz

dF

0z

1z

)219(3

1

332

3

21

321

2

2 jzz

dzzzjz

j

e.g.

Not only that, but.......

Page 8: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

8

Section 5Examples

(1)

j

jj

zdzzj

j

j

j

097.23

sinh2)sin(2

sincos

the wholecomplex plane

C

(2) ?1

0

dzzj

( f (z) not analytic anywhere - dependent on path )

(3) jz

dzz

j

j

j

j

211

2

f (z) analytic in

this domain

(both 1z2 and 1z are not analytic at z0 - the path of integration C must bypass this point)

Page 9: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

9

Section 5

Question:

dzz

z

2

22 1

sin

Can you evaluate the definite integral

Page 10: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

10

Section 5More Integration around Closed Contours ...We can use Cauchy’s Integral Theorem to integrate aroundclosed contours functions which are

(a) analytic, or (b) analytic in certain regions

For example,

0C z

dzC

f (z) is analytic everywhereexcept at z0

But what if the contour surrounds a singular point ?

C?

C z

dz

Page 11: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

11

)(2)(

00

zfjdzzz

zf

C

Section 5Cauchy’s Integral Formula

Let f (z) be analytic in a simply connected domain D. Then forany point z0 in D and any closed contour C in D that encloses z0

D

0z

C

Page 12: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

12

Section 5Cauchy’s Integral Formula

)(2)(

00

zfjdzzz

zf

C

Let f (z) be analytic in a simply connected domain D. Then forany point z0 in D and any closed contour C in D that encloses z0

D

0z

C

Page 13: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

13

Section 5Example

C

dzz

z

2

2

Evaluate the integral where C is

20 z

Singular point inside !

becomes

or jdzz

z

C

82

2

21 z

)(2)(

00

zfjdzzz

zf

C

The Cauchy Integral formula

422

2

jdzz

z

C

Page 14: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

14

Section 5Example

C

dzz

z

2

2

Evaluate the integral where C is

20 z

Singular point inside !

becomes

or jdzz

z

C

82

2

21 z

)(2)(

00

zfjdzzz

zf

C

The Cauchy Integral formula

422

2

jdzz

z

C

Page 15: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

15

Section 5Example

C

dzz

z

2

2

Evaluate the integral where C is

20 z

Singular point inside !

becomes

or jdzz

z

C

82

2

21 z

)(2)(

00

zfjdzzz

zf

C

The Cauchy Integral formula

422

2

jdzz

z

C

Page 16: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

16

Section 5Example

C

dzz

z

2

2

Evaluate the integral where C is

20 z

Singular point inside !

becomes

or jdzz

z

C

82

2

21 z

)(2)(

00

zfjdzzz

zf

C

The Cauchy Integral formula

422

2

jdzz

z

C

Page 17: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

17

Section 5Illustration of Cauchy’s Integral Formula

)(2)(

00

zfjdzzz

zf

C

Let us illustrate Cauchy’s Integral formulafor the case of f (z)z and z0 1

10 z

C DSo the Cauchy Integral formula

becomes

121

jdz

z

z

C

1)1( f

or jdzz

z

C

21

f (z) is analytic everywhere,so C can be any contour in thecomplex plane surrounding thepoint z1

Page 18: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

18

Section 5Another Example

)(2)(

00

zfjdzzz

zf

C

jz 0

C D

The Cauchy Integral formula

becomes

j

C

z

ejdzjz

e 2

or j

C

z

jedzjz

e 2

C

z

dzjz

eEvaluate where C is any closed contour

surrounding zj

f (z) is analytic everywhere

Page 19: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

19

Section 5Another Example

)(2)(

00

zfjdzzz

zf

C

jz 0

C D

The Cauchy Integral formula

becomes

j

C

z

ejdzjz

e 2

or j

C

z

jedzjz

e 2

C

z

dzjz

eEvaluate where C is any closed contour

surrounding zj

f (z) is analytic everywhere

Page 20: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

20

Section 5Another Example

)(2)(

00

zfjdzzz

zf

C

Let us illustrate Cauchy’s Integral formulafor the case of f (z)1 and z0 0

00 z

C DSo the Cauchy Integral formula

becomes

121

jdzzC

or jdzzC

21

f (z) is a constant, and so is entire,so C can be any contour in thecomplex plane surrounding theorigin z0

Page 21: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

21

Section 5Another Example

)(2)(

00

zfjdzzz

zf

C

Let us illustrate Cauchy’s Integral formulafor the case of f (z)1 and z0 0

00 z

C DSo the Cauchy Integral formula

becomes

121

jdzzC

or jdzzC

21

f (z) is a constant, and so is entire,so C can be any contour in thecomplex plane surrounding theorigin z0

Page 22: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

22

Section 5

Cut out the point z0 from the simply connected domain by introducinga small circle of radius r - this creates a doubly connected domain inwhich 1z is everywhere analytic.

From the Cauchy Integral Theorem as appliedto Doubly Connected Domains, we have

jdzzC

21

note: see section 4, slide 6

*

11

CC

dzz

dzz

C

*C

Let us now prove Cauchy’s Integral formulafor this same case: f (z)1 and z0 0

But the second integral, around C*, is given by

jdtjdtrjeer

dtdt

dztzfdzzf jtjt

C

21

)()(2

0

2

0

2

0*

Page 23: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

23

What does the equation mean ?

Section 5Equations involving the modulus

1z

1

122

22

yx

yxz

equation of a circle22

02

0 )()( ryyxx

x

y

zz

mathematically:

(these are used so that we can describe paths(circles) of integration more concisely)

Page 24: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

24

Section 5

x

y

Example

12 z

1)2(

)2(

2)(2

22

yx

yjx

jyxz

1)2( 22 yx

equation of a circle22

02

0 )()( ryyxx

z

Page 25: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

25

Section 5

0zz

x

yz

Page 26: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

26

Section 5

0zz

x

yz

Page 27: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

27

Section 5

0zz

x

y

0z

z0zz

centre

Page 28: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

28

Section 5

0zz

x

y

0z

z0zz

centre

radius

Page 29: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

29

Section 5

231 jz

Question:

x

y

Page 30: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

30

Section 5

)(2)(

00

zfjdzzz

zf

C

Examples

Evaluate the following integrals:

C jz

dz(1) where C is the circle z 2

jz 0let

1)( zflet

f (z) is analytic in D and C encloses z0

1)( 0 zf

C j

D

jjz

dz

C

2

Page 31: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

31

Section 5

)(2)(

00

zfjdzzz

zf

C

C z

dz

12(2) where C is the circle zj1

We need a term in the form 1(z z0) so we rewrite the integral as:

First of all, note that 1(z21) hassingular points at zj.

The path C encloses one of these points, zj.We make this our point z0 in the formula

Cj

j

D

CC jzjz

dz

z

dz

))((12

Page 32: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

32

Section 5

Cj

j

D

C z

dz

12

)(2)(

00

zfjdzzz

zf

C

jz 0let

CC jzjz

dz

z

dz

))((12

Page 33: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

33

Section 5

Cj

j

D

C z

dz

12

)(2)(

00

zfjdzzz

zf

C

jz 0letjz

zf

1

)(let

CC jzjz

dz

z

dz

))((12

Page 34: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

34

Section 5

Cj

j

D

C z

dz

12

)(2)(

00

zfjdzzz

zf

C

jz 0letjz

zf

1

)(let2/)( 0 jzf

CC jzjz

dz

z

dz

))((12

Page 35: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

35

Section 5

C z

dz

14(3) where C is the circle zj1C

j

j

1 1Here we have

CC jzjzzz

dz

z

dz

))()(1)(1(14

The path C encloses one of the four singular points, zj.We make this our point z0 in the formula

CC

dzjz

zf

z

dz )(

14 ))(1)(1(

1)(

jzzzzf

where

4)2)(1)(1(

1)()( 0

j

jjjjfzf

Now

2)(2

)(

1 00

4

zfjdzzz

zf

z

dz

CC

Page 36: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

36

Section 5

Question:

Evaluate the integral

C

z

jz

dze

1where C is the circle z 2

(i) Where is C ?

(ii) where are the singular point(s) ?

(ii) what’s z0 and what’s f (z) ? Is f (z) analytic on and inside C ?

(iii) Use the Cauchy Integral Formula.........

Page 37: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

37

Section 5

C z

zdz

1

tan2(4) where C is the circle z3/2

tanz is not analytic at /2, 3/2, , but thesepoints all lie outside the contour of integration

The path C encloses two singular points, z1.To be able to use Cauchy’s Integral Formula we mustonly have one singular point z0 inside C.

C

112/3 2/

Use Partial Fractions:

)1)(1(

)1()1(

111

12

zz

zBzA

z

B

z

A

z

2/1,2/11

0)(

BABA

zBA

Page 38: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

38

Section 5

CCC

dzz

zdz

z

zdz

z

z

1

tan

2

1

1

tan

2

1

1

tan2

C

11 2/

1tan)(

tan)(

1

0

0

zf

zzf

z

)1tan()(

tan)(

1

0

0

zf

zzf

z

jjdzz

z

C

785.9)1tan()1tan(2

12

1

tan2

Page 39: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

39

Section 5

0

!

2)(1

0 z

n

n

Cn dz

fd

n

jdz

zz

zf

For example,

More complicated functions, having powers of zz0, can betreated using the following formula:

Note: when n0 we haveCauchy’s Integral Formula: 0

)(2)(

0z

C

zfjdzzz

zf

Generalisation of Cauchy’s Integral Formula

C zzC dz

zdjdz

z

z

dz

zzdjdz

z

zz

2

2

2

3

1

2

2

2

00

cos

2

cos,

32

1

3

f analytic on andinside C, z0 inside C

This formula is also called the “formula for the derivatives of an analytic function”

Page 40: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

40

Section 5

)(2)(

)(02

0

zfjdzzz

zf

C

Example

Evaluate the integral

C

z

dzz

e2

where C is the circle z 2

C

00 zlet

zezf )(let

f (z) is analytic in D, and C encloses z0

0

0 )(

)(

ezf

ezf z

D

jz

dze

C

z2

22

Page 41: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

41

Section 5

)(2)(

)(02

0

zfjdzzz

zf

C

Example

Evaluate the integral

C

z

dzz

e2

where C is the circle z 2

C

00 zlet

zezf )(let

f (z) is analytic in D, and C encloses z0

0

0 )(

)(

ezf

ezf z

D

jz

dze

C

z2

22

Page 42: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

42

Section 5

)(2)(

)(02

0

zfjdzzz

zf

C

Example

Evaluate the integral

C

z

dzz

e2

where C is the circle z 2

C

00 zlet

zezf )(let

f (z) is analytic in D, and C encloses z0

0

0 )(

)(

ezf

ezf z

D

jz

dze

C

z2

22

Page 43: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

43

Section 5

)(2

2

)(

)(03

0

zfj

dzzz

zf

C

Another Example

Evaluate the integral

C

dzjz

z3

2

where C is the circle z 2

C

jz 0let

2)( zzf let

f (z) is analytic in D, and C encloses z0

2)(

2)(

0

zf

zf

D

jjz

dzz

C

2)( 3

2

Page 44: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

44

Section 5Summary of what we can Integrate

C

dzzf )( with f (z) analytic inside and on C - equals 0(1)

C o

dzzz

zf )(with f (z) analytic inside and on C, except at zzo - equals

(2)

( Cauchy’s Integral Theorem )

( Cauchy’s Integral Formula )

Ck

o

dzzz

zf )(with f (z) analytic inside and on C, except at zzo

(3)

( The Formula for Derivatives )

)(2 0zfj

Page 45: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

45

Section 5Summary of what we can Integrate

C

dzzf )( with f (z) analytic inside and on C - equals 0(1)

C o

dzzz

zf )(with f (z) analytic inside and on C, except at zzo - equals

(2)

( Cauchy’s Integral Theorem )

( Cauchy’s Integral Formula )

Ck

o

dzzz

zf )(with f (z) analytic inside and on C, except at zzo

(3)

( The Formula for Derivatives )

)(2 0zfj

Page 46: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

46

Section 5Summary of what we can Integrate

C

dzzf )( with f (z) analytic inside and on C - equals 0(1)

C o

dzzz

zf )(with f (z) analytic inside and on C, except at zzo - equals

(2)

( Cauchy’s Integral Theorem )

( Cauchy’s Integral Formula )

Ck

o

dzzz

zf )(with f (z) analytic inside and on C, except at zzo

(3)

( The Formula for Derivatives )

)(2 0zfj

Page 47: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

47

Section 5Summary of what we can Integrate

C

dzzf )( with f (z) analytic inside and on C - equals 0(1)

C o

dzzz

zf )(with f (z) analytic inside and on C, except at zzo - equals

(2)

( Cauchy’s Integral Theorem )

( Cauchy’s Integral Formula )

Ck

o

dzzz

zf )(with f (z) analytic inside and on C, except at zzo

(3)

( The Formula for Derivatives )

)(2 0zfj

Page 48: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

48

Section 5

What can’t we Integrate ?

(singularities at 2 inside C)

C

zdzze / where C is the unit circle

(singularity at 0 inside C)

e.g.

Functions we can’t put in the form of our formulas:

1z

C

zdztan where C is e.g. 2z

Page 49: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

49

Section 5Topics not Covered

(2) Proof of Cauchy’s Integral Formula

(3) Proof that the derivatives of all orders of an analytic function exist - and the derivation of the formulas for these derivatives

)(2)(

00

zfjdzzz

zf

C

(use the MLinequality in the proof)

(use the MLinequality in the proof)

(1) Proof that the antiderivative of an analytic function exists

)()()( 01

1

0

zFzFdzzfz

z

where )(zfdz

dF

(use Cauchy’s Integral Formula and the MLinequality in the proof)

Page 50: 1 (1) Indefinite Integration (2) Cauchy’s Integral Formula (3) Formulas for the derivatives of an analytic function Section 5 SECTION 5 Complex Integration

50

Section 5(4) Morera’s Theorem (a “converse” of Cauchy’s Integral Theorem)

(5) Cauchy’s Inequality

“If f (z) is continuous in a simply connected domain D and if 0)( C

dzzf

for every closed path in D, then f (z) is analytic in D”

nn

r

Mnzf

!)( 0

)( 0zr

CMzf on)(

C

(proved using the formula for the derivatives of an analytic function and the MLinequality)

(6) Liouville’s Theorem“If an entire function f (z) is bounded in absolute value for all z, then f (z) must be a constant” - proved using Cauchy’s inequality