4
Supporting Information for "Adaptive adhesion strategies of Dictyostelium discoideum -a force spectroscopy study" Nadine Kamprad, Hannes Witt, Marcel Schröder, Christian Titus Kreis, Oliver Bäumchen, Andreas Janshoff and Marco Tarantola A B N-OTS N-SiO 2 Figure S1 Water contact angle measurements, exemplary shown for the N-wafer A: with and B: without silanization (after piranha cleaning). Table S1 Summary of the substrate properties of N- and T-wafer as well as the silanization. Advancing (adv) and receding (rec) contact angle of H 2 O, as well as contact angle measurement based hysteresis (Δα ) (Piranha cleaned); complete wetting (CW). Surface energy and roughness were reported by Kreis 1 (Ethanol-cleaned). The isoelectric point (IEP) was reported by Loskill et al. 2 (Ethanol-cleaned) Substrate α adv α rec Δα γ tot (mJ/m 2 ) γ LW (mJ/m 2 ) γ AB (mJ/m 2 ) rms (nm) IEP N-SiO 2 CW CW 35 ± 4 32 ± 1 3 ± 3 0.17 3 T-SiO 2 CW CW 37 ± 3 32 ± 1 5 ± 3 0.19 3 OTS 113 ± 3 100 ± 2 13 23 ± 1 23 ± 1 0.2 0.16 4 40 30 20 10 0 Nr. Steps Lat 0h 3h 6h 0h 3h 6h Lat 0.2 0.1 0.0 # Rel. counts 4 3 2 1 0 F Step (100*pN) 0h n = 778 3h n = 874 6h n = 198 A B Figure S2 A: Tether force and B: amount of tethers from SCFS of AX3 WT cells on a glass surface during starvation-induced development (switch from medium to PB-buffer at t = 0 h). 5 μ M Latrunculin A (LatA) treatment is shown as reference. Table S2 Parameters used for figure 4B Cells w (mN/m) T 0 (mN/m) R 2 (μ m) K A (mN/m) AX3 0.11 0.12 3.5 50 AX3+α M 0.06 3 3.5 100 AX3+sadA0 0.09 0.12 3.5 85 AX3+sadA0+α M 0.022 3 3.5 85 1 Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

0DWHULDO (6, IRU1DQRVFDOH 7KLV

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 0DWHULDO (6, IRU1DQRVFDOH 7KLV

Supporting Information for "Adaptive adhesion strategies of Dictyostelium discoideum - aforce spectroscopy study"

Nadine Kamprad, Hannes Witt, Marcel Schröder, Christian Titus Kreis, Oliver Bäumchen, Andreas Janshoff and MarcoTarantola

A B N-OTS N-SiO2

Figure S1 Water contact angle measurements, exemplary shown for the N-wafer A: with and B: without silanization (after piranha cleaning).

Table S1 Summary of the substrate properties of N- and T-wafer as well as the silanization. Advancing (adv) and receding (rec) contact angle of H2O,as well as contact angle measurement based hysteresis (∆α) (Piranha cleaned); complete wetting (CW). Surface energy and roughness were reportedby Kreis 1(Ethanol-cleaned). The isoelectric point (IEP) was reported by Loskill et al. 2(Ethanol-cleaned)

Substrate αadv αrec ∆α γtot (mJ/m2) γLW (mJ/m2) γAB (mJ/m2) rms (nm) IEPN-SiO2 CW CW 35±4 32±1 3±3 0.17 3T-SiO2 CW CW 37±3 32±1 5±3 0.19 3OTS 113±3◦ 100±2◦ 13◦ 23±1 23±1 ≤ 0.2 0.16 ≤ 4

40

30

20

10

0

Nr.

Ste

ps

Lat 0h 3h 6h

40

30

20

10

0

Nr.

Ste

ps

Lat 0h 3h 6h

40

30

20

10

0

Nr.

Ste

ps

Lat 0h 3h 6h

0.2

0.1

0.0

# R

el. c

ount

s

43210FStep (100*pN)

0h n = 778 3h n = 874 6h n = 198

A B

Figure S2 A: Tether force and B: amount of tethers from SCFS of AX3 WT cells on a glass surface during starvation-induced development (switch frommedium to PB-buffer at t = 0 h). 5 µM Latrunculin A (LatA) treatment is shown as reference.

Table S2 Parameters used for figure 4B

Cells w (mN/m) T0 (mN/m) R2 (µm) KA (mN/m)AX3 0.11 0.12 3.5 50AX3+αM 0.06 3 3.5 100AX3+sadA0 0.09 0.12 3.5 85AX3+sadA0+αM 0.022 3 3.5 85

1

Electronic Supplementary Material (ESI) for Nanoscale.This journal is © The Royal Society of Chemistry 2018

Page 2: 0DWHULDO (6, IRU1DQRVFDOH 7KLV

Figure S3 Computational force distance curves illustrating the impact of the mechanics of the cellular cortex by varying the area compressibilitymodulus KA.

30

20

10

0

Wad

h (fJ)

*** ******** ***

AX3 AX3+aM

SadA0+aM SadA0

Figure S4 Adhesion work of wildtype AX3 modifications on T-OTS. Wadh decreased from AX3 to α-Mannosidase-treated AX3+ by a factor of 2.5, fromAX3 to AX3-sadA0 nearly by a factor of 5. The αM-treatment reduces Wadh of AX3-sadA0 further by a factor of 2.5.

50

40

30

20

10

0

5040302010

0

Wad

h (fJ

)

16 21 31 36 76Ionic strength (mM)

********* *****

Figure S5 Adhesion work of AX3 in PB (red) in comparison to an ionic strenght of mono- or divalent ions on a non-silanized T-wafer (T-SiO2). For themonovalent ion K+ (blue), there is only a slight decrease of Wadh, which is much stronger for the divalent ion Mg2+(green).

2

Page 3: 0DWHULDO (6, IRU1DQRVFDOH 7KLV

30

20

10

0

30

20

10

0

Wad

h (fJ)

*** ***** ***

N-SiO2 T-SiO2 N-OTS T-OTS

Figure S6 Adhesion work of WT AX2 on model substrates. Wadh decreased from N-SiO2 to T-SiO2 by a factor of 2.5 and by a factor of 1.7 from N-OTSto T-OTS. Silanization also reduces adhesion work roughly by a factor of 2.

Table S3 Overview of SCFS for all cells, substrates and conditions used in this study. Medians of maximal adhesion force and adhesion work aregiven. As a reference the results for AX2 cells on glass by Leonhardt et al. 3 and for AX3 cells and Latrunculin A (LatA) treated AX3 cells on glass byTarantola et al. 4 are shown.

Cells Substrate Conditions Fmax Wadh(nN) (fJ)

AX2 Glass PB 7.73 16.53

AX3 Glass PB 7.64 27.34

AX2 N-SiO2 PB 5.4 10.0AX2 T-SiO2 PB 3.7 5.9AX2 T-SiO2 PB+5 mM KCl 3.5 3.9AX2 T-SiO2 PB+20 mM KCl 2.1 1.0AX2 T-SiO2 PB+5 mM MgCl2 1.9 5.0AX2 T-SiO2 PB+20 mM MgCl2 1.8 1.0AX2 N-OTS PB 3.1 5.5AX2 T-OTS PB 2.1 2.2AX3 T-OTS PB 2.5 3.8AX3+αM T-OTS PB 1.4 1.5AX3+sadA0 T-OTS PB 0.7 0.8AX3+sadA0+αM T-OTS PB 0.5 0.3AX3+LatA Glass PB 0.164 0.24

3

Page 4: 0DWHULDO (6, IRU1DQRVFDOH 7KLV

NOTES AND REFERENCES NOTES AND REFERENCES

Notes and references[1] C. T. Kreis, PhD thesis, Universität Göttingen, 2017.

[2] P. Loskill, H. Hahl, N. Thewes, C. T. Kreis, M. Bischoff, M. Herrmann and K. Jacobs, Langmuir, 2012, 28, 7242–7248.

[3] H. Leonhardt, M. Gerhardt, N. Höppner, K. Krüger, M. Tarantola and C. Beta, Physical Review E, 2016, 93, 012414(8).

[4] M. Tarantola, A. Bae, D. Fuller, E. Bodenschatz, W. J. Rappel and W. F. Loomis, Plos One, 2014, 9, e106574.

4