35
 MIT Haystack Observatory Haystack 2003- AJC 08/01/11  Haystack Radar (HY) Haystack Auxiliary Radar (HAX) Millstone Hill Radar (MHR) OUTLINE More history Index of Refraction More basic radar

07-Radar and History Anthea

Embed Size (px)

DESCRIPTION

radar history

Citation preview

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Haystack Radar (HY)

    Haystack Auxiliary Radar (HAX)

    Millstone Hill Radar (MHR)

    OUTLINE

    More history Index of RefractionMore basic radar

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    It is frequently said that, although the atomic bomb ended World War II, it was

    radar that won the war.

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    MIT Radiation Laboratory The primary technical barrier to developing UHF systems was the lack of a usable source for generating high-power microwaves. In February 1940, John Randall and Harry Boot at Birmingham University in the UK built a resonant cavity magnetron. Bombing of London Sept 1940 May 1941 (The Blitz) Britain was interested in developing practical applications for airborne microwave radar, but did not have the large-scale manufacturing ability to mass produce magnetrons. In1940, Britain partnered with the US National Defense Research Committee (NDRC)

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    MIT Radiation Laboratory

    Over the course of five years, MIT researchers designed 50 percent of the radar used in World War II and invented over 100 different

    radar systems.

    Including: Airborne bombing radars Shipboard search radars Harbor and coastal defense radars Interrogate-friend-or-foe beacon systems Long-range navigation (LORAN) system Critical contributions of the Radiation Laboratory were:

    the microwave early-warning (MEW) radars, which effectively nullified the V-1 threat to London, and

    air-to-surface vessel (ASV) radars, which turned the tide on the U-boat threat to Allied shipping.

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Millstone

    The BMEWS Prototype

    Millstone Radar1957

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Millstone

    The BMEWS Prototype

    Millstone Radar1957

    SputnikA-Scope Trace

    TransmitterPulse

    Echo

    Range

    Am

    plitu

    de

    First in Space Surveillance

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Outline

    More History Index of Refraction More Basic Radar

    Appleton - Hartree

    but also

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Outline

    More History Index of Refraction More Basic Radar

    Appleton - Hartree

    but also

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Radar Range Measurement

    Transmi

    tted

    Pulse

    Reflecte

    d

    Pulse

    Range

    Target

    Target range = c2

    where c = speed of light = round trip time

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Phase Velocity, Group Velocity, Index of

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Phase Velocity, Group Velocity, Index of

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Illustration of Atmospheric Effects

    Elevation Refraction Range Delay

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Appleton-Hartree Equation

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Outline

    More History Index of Refraction More Basic Radar

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    RADARRAdio Detection And Ranging

    Radar observables: Target range Target angles (azimuth & elevation) Target size (radar cross section) Target speed (Doppler) Target features (imaging)

    Antenna

    TransmittedPulse

    TargetCross

    Section

    Propagation

    ReflectedPulse

    (echo)

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Radar Block Diagram

    Transmitter

    PulseCompression

    Recording

    Receiver

    Tracking &Parameter Estimation

    Console /Display

    Antenna

    PropagationMedium

    TargetCross

    Section DopplerProcessingA / D

    WaveformGenerator

    Detection

    Signal Processor

    Main Computer

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Radar Range Equation

    R

    Transmitted Pulse

    Received Pulse

    Received SignalEnergy

    TransmitPower

    TransmitGain

    SpreadFactor

    TargetRCS

    SpreadFactor

    ReceiveAperture

    DwellTime

    Target Cross Section

    Antenna Aperture ATransmit Power PT

    PT4A2 4R2

    1 4R2

    1 A

    Losses

    L1=

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Pulsed RadarTerminology and Concepts

    Pow

    er

    Duty cycle =

    Average power = Peak power * Duty cycle

    Peak

    pow

    er

    Time

    Pulse length

    Pulse repetition interval(PRI)

    Pulse lengthPulse repetition interval

    Pulse repetition frequency (PRF) = 1/(PRI)

    Continuous wave (CW) radar: Duty cycle = 100% (always on)

    TargetReturn

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Pulsed RadarTerminology and Concepts

    Pow

    er

    Duty cycle =

    Average power = Peak power * Duty cycle

    Peak

    pow

    er

    Time

    Pulse length

    Pulse repetition interval(PRI)

    Pulse lengthPulse repetition interval

    Pulse repetition frequency (PRF) = 1/(PRI)

    Continuous wave (CW) radar: Duty cycle = 100% (always on)

    TargetReturn

    1 Mwatt

    100 kWatt

    10%

    100 sec

    1 msec

    1 kHz

    1 watt

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Radar Waveforms

    Waves?

    or Pulses?

    What do radars transmit?

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Radar Waveforms

    Waves?

    or Pulses?

    Waves, modulatedby on-off action of

    pulse envelope

    What do radars transmit?

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Properties of WavesRelationship Between Frequency and Wavelength

    Speed of light, c c = 3x108 m/sec = 300,000,000 m/sec

    Frequency (1/s) =Speed of light (m/s)Wavelength (m)

    Examples: Frequency Wavelength 100 MHz 3 m 1 GHz 30 cm 3 GHz 10 cm 10 GHz 3 cm

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Properties of WavesPhase and Amplitude

    Amplitude (volts)

    Phase,

    90 phase offset

    A

    Amplitude (volts)

    Phase,

    A

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Properties of WavesConstructive vs. Destructive Addition

    Constructive(in phase)

    Destructive(180 out of phase)

    Partially Constructive(somewhat out of phase)

    Non-coherent signals(noise)

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Polarization

    x

    yElectric Field

    Magnetic Field

    Electromagnetic Wave

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Polarization

    x

    yElectric Field

    Magnetic Field

    Electromagnetic Wave

    x

    y

    zE

    Horizontal Polarization

    Electric Field

    Magnetic Field

    Electromagnetic Wave

    x

    y

    z

    E

    Vertical Polarization

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Doppler Effect

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Doppler Shift Concept

    = cf

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Doppler Shift Concept

    c v

    = cf

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Doppler Shift Concept

    c v

    = cf

    c v

    f = c

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Doppler Shift Concept

    c v

    = cf

    c v

    f = c

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Doppler Shift Concept

    c v

    = cf

    c v

    f = c

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Doppler Shift Concept

    c v

    = cf

    c v

    f = c

    c

    f = f (2v/) Dopplershift

  • MIT Haystack ObservatoryHaystack 2003-AJC 08/01/11

    Resolving Doppler

    Tx signal: cos(2fot)Doppler shifted: cos[2(fo+ fD)t]

    Multiply by cos(2fot) -> Low pass filter -> cos(2fDt)

    BUT, the sign of fD is lost (cosine is an even function)

    So, instead useexp(j2fDt) = cos(2fDt) + jsin(2fDt)

    Generate this signal by mixing cos and sin via two oscillators (same frequency, 90o out of phase)

    Components are called I (In phase) and Q (Quadrature): Aexp(j2fDt) = I + jQ