7
AIJX J1,IARY COOLING LO AD S IN PASSIVELY A N EXPERIMENTAL RESEARCH P. FAIREY Principal Research Scientist R VIEIRA Assistant Engineer S. KALAGHC HY COOLEI) BUILDINGS STUDY S . CH NDR Acting Director, RL A KERESTECIOGLU Graduate Student Assistant Graduate Student Assistant Florida Solar Energy Center 300 St a te Road 401 Cape Canaveral, FL 32920 ABSTRACT Currently accepted methods of passive cooling offset only sensible building loads. In the warm, humid southeastern gulf coast climates the latent building load can comprise 35 of the building load in the typical residence. As the sensible load on residences in these climates is reduced or offset by passive cooling techniques, this latent cooling load percentage increases rapidly. In such residences the auxiliary cooling load cannot be effectively met by conventional cooling equipment . The Florida Solar Energy Center (FSEC) i s examining the auxil iary cooling requirements of residences in warm, humid climates. The study addressee both the thermal and moisture response of buildings. total of eight wall systems, three frame wall types a nd five concrete block wall types are under test at the FSEC Passive Cooling Laboratory (PCL) in Cape Canaveral. Moisture studies involve examination of the absorption and desorption rates of building materials and furnishings and the developn~ent f improved moisture migration modelling techniques for inclusion in building energy an al ys is programs. TARP (Thermal Analysis Research program), developed at NBS by George Walton, and FL O AD , by F CHA R T Sof tw ar e, have bee n cho sen as the analysis programs with which cooling examined. alternatives are The PCL : s capable of the precise production of both sensible a nd latent energy. Any reasonable interior condition can be produced. Both the drybulb and dewpoint temperatures can be separately control led and maintained by computer. T he lat en t and sensible energy required to produce and maintain those conditions can be precisely monitored. Figure 1 shows a test cell load-measurement schematic illustrating the load an d measurement syrtems. The strategy employed for most tests consists of side-by-side testing (Figure 2) in which the performance of one component or test space is compared with another. One component is usually standard throughout the test period. This serves as a control for the evaluation of the le ss s tandard or experimental component. Reference 1 contains more detailed information on the PCL. Current t,zsting comprises two tes t cells located on the rest side of the PCL. Both cells are equipped as shorn in Figure 1 for moisture and thermal testing. On cell (cell D) contains wood frame exterior wall systems while the other (cell E contains concrete block exterior wall systems. In all, eight different wall systems are u~der est -- three wood frame s ystems and five concrete block systems (1). Analytical studiee at FSEC are conducted using a variety of solytware. Detailed analysis of thermal and sass transfer problems are conducted with either finite difference or iinite element programs which have been developed in-house to meet the specific needs of the work (2). Ic addition, two building energy analysis programs are being used for parametric building analysis. A large-scale conduction transfer function code called TARP (Thermal Analysis Research Program) 3 ) is being used for detailed analysis and a microcomputer based bin-method program called FIOAD 4 ) is being used PS EC h as cl and experimenta hot, humid c 1 ~ conducted in thc . . .. . . .-La building of residential scale j cooling and energy conservation be experimentally evaluated unde full-scale conditions. in whichvarious passive forotherstudies. building techniques can , r closely controlled but Neither o these rnme n~ninr~orl tn building energy- analysis codes . I correctly analyze moisture. ESL-HH-84-08-05 Proceedings of the First Symposium on Improving Building Systems in Hot and Humid Climates, August 1984

07 ESL-HH-84-08-05

Embed Size (px)

Citation preview

Page 1: 07 ESL-HH-84-08-05

8/18/2019 07 ESL-HH-84-08-05

http://slidepdf.com/reader/full/07-esl-hh-84-08-05 1/7

AIJX J1,IARY COOLING LOADS IN PASSIVELY

AN EXPERIMENTAL RESEARCH

P. FAIREY

Pr inc ipa l Resea rc h Sc i e n t i s t

R

VIEIRA

A ss i s t a n t E ng ine e r

S. KALAGHCHY

COOLEI) BUILDINGS

STUDY

S. CH NDR

A c t ing D i r e c to r ,

RL

A KERESTECIOGLU

G r aduat e S tude n t A ss i s t a n t

Gradua te S tudent Ass is tant

Flor ida Sola r Energy Cente r

300 St a t e Road 401

Cape Can av era l, FL 32920

ABSTRACT

Current ly accepted methods of pass ive cool ing

of f s e t only sens ibl e bui ldin g loads . In th e warm, humid

s o u t h ea s t er n g u l f c o a s t c l i m a t e s t h e l a t e n t b u i l d i n g

load can comprise

35

of t h e bu i l d ing l oad i n t he

typi ca l r es idence . As the sen s ib le load on res idences

in t he se c l ima te s i s r educ ed o r o f f se t by pa s s ive

c oo l ing t e c hn ique s , t h i s l a t e n t c oo l i ng loa d pe r c e n t a ge

inc r e a se s r a p id ly . I n such r e s ide nc e s t he a ux i l i a r y

cool ing load cannot be e f fe c t iv e l y met by conven t iona l

cooling equipment .

The Florida Solar Energy Center (FSEC)

i s

examining

the a ux i l i a r y c oo l i ng r e qu ir e men t s o f r e s ide nc e s i n

warm, humid cl i mat es. The stud y addr esse e both th e

ther mal a nd moi s tu r e r e sponse o f bu i l d in gs . t o t a l o f

e igh t wal l sys tems, thr ee f rame wal l types and f iv e

c onc r e t e b loc k w a l l t ype s a r e under t e s t a t t he FSEC

Pass ive Cooling Labo rato ry (PCL) in Cape Canave ral.

Moi stu re s t ud i e s i nvo lve e xamina t ion o f t he

a bsor p t i on and de so r p t i on r a t e s o f bu i l d ing ma te r i a l s

and furn is hin gs and th e develop n~ent f improved moi stu re

migr at i on model l ing t e c hn iques f o r i nc lus ion i n bu i l d ing

energy an al ys is programs. TARP (Thermal An aly sis

Research program), d eveloped a t NBS by George Walton,

and FLOAD, by FCHART Sof tw ar e, ha ve bee n cho se n a s t h e

ana lys is programs wi th which cool in g

examined.

a l t e r n at i v e s a r e

The PCL

: s

c a pa b l e o f t h e p r e c i se p r oduct i o

both sen s ib le and la te nt energy. Any reason

in t e r i o r c ond i t i on ca n be p roduce d. Bo th t h e d r y

and dewpoint tempera tures can be sep ara te l y c on t ro

and maintained by computer . The l at en t and se n

energy requi red to produce and mainta in thos e con di

c a n be p r e c i se ly monito re d . F igur e

1

s h o w s a t e s t

load-measurement schemat ic i l lu s t ra t i n g th e load

measurement syrtems.

The s t r a t e g y employed f o r most t e s t s c on s i s t

s ide-by-s ide te s t in g (Figu re 2) in which the per form

of one component or te s t space i s compared wi th anot

One component i s u s u a l l y s t an d ar d t h ro u gh o u t t h e

pe r iod . T h i s s e r ve s a s a c on t r o l f o r t he e va lua t i o

th e le ss s tandard o r experimental compo

Reference

1

c on t a ins mor e de t a i l e d i n f o r ma t ion on

PCL.

Cur re n t t , z s t i ng c ompr ise s two t e s t c e l l s l oc a t e

t h e r e s t s i d e o f t h e PCL. B ot h c e l l s a r e eq u ip p e

shorn i n F igur e 1 fo r moi s tur e and thermal tes t in g.

c e l l ( c e l l D) c on t a ins wood f r a me e x t e r i o r w a l l sys

w h il e t h e o t h e r ( c e l l E c on t a ins c onc r e t e b

e x t e r i o r w a l l sy st em s. I n a l l , e i g h t d i f f e r e n t

sy stems a r e u ~ d e r e s t -- t hr e e wood frame s yst ems

f i ve c onc r e t e b lock sys t ems ( 1 ) .

Anal yt ic a l s tu die e a t FSEC are conduc ted u s in

va r i e t y of solytware . De ta i led an a l ys is of the rmal

s a s s t r a n s f e r p ro bl em s a r e c on du ct ed w i t h e i t h e r f i

d i f fe ren ce o r i i n i t e e lement programs which have

deve loped in-house t o mee t the s pe c i f i c needs of

work ( 2 ) . I c a dd i t i o n , two bu i l d ing e ner gy a na l

programs a re be ing used fo r parametr ic b ui l

a n a l y s i s . A l a r ge - sc a l e c onduc t ion t r a ns f e r f un

cod e ca ll ed TARP (Thermal An aly sis Research Program)

i s b ei n g us ed f o r d e t a i l e d a n a l y s i s and

a

microcom

based bin-method progra m c a l l e d FIOAD 4 ) i s be ing

PSEC has cl

and experimenta

hot, humid c 1

~

conducted in thc . . .. .. . - L a

b u il d in g o f r e s i d e n t i a l s c a l e j

cool ing and energy conserva t i on

be experimentall y ev alua ted unde

f u l l - s c a l e c o n d i t i o n s .

in w h i c h v a r i ou s p a ss i ve f o r o t h e r s t u d i e s .

bui l din g techniques can

, r c los e ly c on t r o l l e d bu t N e i the r

o

t h e s e

r n m e

n ~ n i n r ~ o r l

t n

bu i ld in g e ner gy- a na ly s i s c

.

I c or r e c t l y a na lyz e moi s t

ESL-HH-84-08-05

Proceedings of the First Symposium on Improving Building Systems in Hot and Humid Climates, August 1984

Page 2: 07 ESL-HH-84-08-05

8/18/2019 07 ESL-HH-84-08-05

http://slidepdf.com/reader/full/07-esl-hh-84-08-05 2/7

Y A I I condlllonar

Lnral ooa c onduollva load

InllllrlH on load

O

Lalant lntarnal~oad

O. Smdbl a lnlarnal load

Vanlllallon load

Figure 1. Passive Cooling Laboratory (PCL)

Measurement, lo ads and Energy Balance

Schema t i c .

Expanded polystyrene (Li")

R

19

Fiber g lass ba t t

Ex ter io r nusmi te ( 7 /16 /" )

,-Vapar barrier

~ m d d

o l ys tv r en e ~ l i " ) E x t e ri o r m s o n i t e (:/lbm')

i

ai r soace . vented

,-muble sid ed bu il de r' s

Foil

.

io r maon ice ( ? /16 /" )

a i r space , ven ted

i pypslnn

d v w a l l

f o i l f aced r soc) nur a te [ S / 4 ]

D M

IRRIER WALL

ID

Environmental

Envlronmenl

95

=pQ=e0

Cofl'rol

b Chamber

Figure 2 . Se ct io n thru PCL Showing Environmental

Contr ol Chambers and Side-by- Side Te st in g

Strategy.

w e l y s t y r e n e (1 )

Ply*ood

bat ton (1 x 1;)

Exter ior masmite (7/16") 36 l b c o n cr e te b l x k

p o l ys t y re n e ( l j " ) ~ V a p c r a r r i e r

I

x

4

softwood

trun

E 2

xma 1NsJUTIcN

ded polystwene ( I")

1 si e t u l l d e r ' a f o l l

Exrerror mrsonite ['/lb

6 l b concre te b l d

-1

4

sof- trim

\ L i o n c r e t e m r t a r

E xp an de d p c l y s ~ v e n c

1 )

Foi l faced i sc- zmunts

W 4 )

G x e r i o r wasonice (7116~')

hrsmca W 4 v ' 1

fhmd b a r t m

{3/4

x I")

Eight Wall Syetems

Under

Teet

i n FSEC PCL.

23

ESL-HH-84-08-05

Proceedings of the First Symposium on Improving Building Systems in Hot and Humid Climates, August 1984

Page 3: 07 ESL-HH-84-08-05

8/18/2019 07 ESL-HH-84-08-05

http://slidepdf.com/reader/full/07-esl-hh-84-08-05 3/7

Therefore , a major e f f or t i s underway a t FSEC t o develop

moisture migrat ion alg orith ms f or i ncl usi on i n TARP, and

th e FSEC ver si on of TARP now has de ta i le d .mo is tur e

n lod el l i n g cap a l i . l i t i e s . For ce r t a i n ma te r i a l s (mo st ly

newer s y n t h e t i c s ) , h owever, t h e r e i s l i t t l e o r no

mois ture proper ty data and absorp t ion , d i f f us io n and

desorp t ion parameters ar e no t yet wel l es tab l i shed .

SELECTED RESULTS

EXTERIOR WALL TESTS

Eight ex te r i or wal l sys tems have been under t e s t in

th e PCL sin ce September 1983. Fiv e of t he se wa ll

systems are equipped with rad ian t ba r r ie r sys tems . A

r ad ian t b a r r i e r s y st em co mp r is e s an a i r s p ac e wi th on e o r

more of i t s b ou n d ar i e s f u n c t io n in g a s a r a d ian t b a r r i e r

( low emi ss ivi ty su rf ac e) . For the PCL t e s t s , aluminum

fo i l i s u sed a s th e r ad ian t b a r r i e r s u r f ace . Two o f th e

r ad ian t b a r r i e r s y st ems a r e ap p l i ed t o wood f rame wa l l s

and th r ee a r e ap p l i ed to co n c re te b lock wa l l s . Fo r th e

b lo ck wa l l s y st ems , two r ad ian t b a r r i e r s a r e lo ca ted a t

the e x t er io r boundary of th e wal l and one

i s

l o c at e d a t

the in te r i or boundary of the wal l . Figure 3 shows a

plan view of ea ch wa ll system.

Measurements

Extensive measurements a re t aken f or each wall

system. A t

e

niinimum, t he s ur fa ce boundary t emper ature s

o f each ma te r i a l i n th e co mpo s it e s ec t io n a r e t aken .

For concre te b lock sys tems the a i r cor e temperature i s

al so measured wi th a rad ia t io n sh ie lded probe. In

ad d i t io n , f lu x meas uremen ts a r e t aken a t t h e i n t e r io r

sur fac e boundary of each wa ll system. Complete ex te ri or

me tero log ical d a ta a l s o a r e t ak en , in c lu d in g s o la r

in s o la t io n meas uremen ts o n a v e r t i ca l p l an e p a r a l l e l t o

th e ex te r n a l s u r f ace o f th e wa l l s ys tems .

A l l measurements ar e taken a t a 15-second scan

in t erv al , then averaged and recorded t o n ine- t rack tape

a t 1 5 -min ute r eco rd ing in t e r v a l s .

A

c on c er t ed e f f o r t i s

made t o u s e o n ly th e f in ea t q u a l i ty p rob es an d d a t a

acqui s i t i on sys tems , and a l l se ns i t iv e measurement

in s t ru ment s a r e c a l i b r a t ed ag a in s t NBS t r aceab le

r e f e r en ce s t an d a rds on a r eg u la r b as i s . Hea t f lu x

meter s a r e ca l ib r a t ed by in dep en den t t e s t i n g

lab ora tor ies a t temperatures 80°F) and f luxe s 2

~ t u / f t ~ +r ) l i k e ly t o be ex pe r i en ced in t e s t in g .

C o nd u c tiv i ty co r r ec t i o n f ac to r s th a t accou n t f o r

differences between meter and mounting material

c o n d u c ~ i v i t i e s r e a pp l i ed t o t h e i r o u t p ut s 51 .

Analvs is

Data ana lys is takes many forms ; t he u l t im ate

obj ect ive of each form

i s

t o p ro vi d e s i m p l i f i ed r e s u l t s

t h a t

m y

b e ap p l i ed in th e f i e l d . S in ce R -v alues a r e

mos t o f t en us ed in t h e f i e ld , an a t t emp t i s made h e r e t o

transpose the peak seasona

1

p er fo rman ce ch a rac te r i s t i c s

of rad i an t ba r r ie r sys tems to t he i r apparent R-values .

For th e p urp os e o f in - s i tu t e s t in g and an a ly s i s , o n ly

peak condi t ions dur ing which heat f low i s p r i mar i l y

undir ecti onnl may be used f or such an analy sis .

The gener a l form of th e equat ions used i n t he

an a ly s i s i s der ived f rom the s teady- s ta t e heat f low

equation

where Ra Apparen t R-value

E A T

=

Sum of th e measured tempe ratur e

d i f f e r e n t i a l s a c r os s

t1 e

Composite

Z =

Sum of th e measured hea t f lu xe s

a t

t h e i n t e r io r s u r f ac e b ou nd ary

I t i s impor tan t t o no te t ha t t he summations in

1

must be cont inuou s and cov er a period of t

s u f f i c i e n t ly lo n g t o mask th e t ime co n s tan t o f th e w

system ( 6 ) .

Three weather per iods were chosen for the an alys

One was a summer condition and two were win

con dit ion s. Dux ing t he gummer cond it io n and one of

w i n t e r c o n d i t i o r ~ s h e e x t e r i o r r a d i a n t b a r r i e r s ys t

were vented wit h ambient a ir . During the remain

win te r co n d i t io n v en t s were s ea led t o ev a lu a te u n ven

r a d i a n t b a r r i e r s ys te ms .

B ecau se o f v a r i a t io n s in wa l l co n s t ru c t io n f

wal l sys tem t o wal l sys tem th e AT term in Eq 1 v ar

drama t ica l ly f rom wal l sys tem to wa l l sys t

Therefore , apparent re a is tan ces were normal ized t

s t an d a rd wa l l co n s t ru c t io n . A base-case cons t ruct

was ch os en fo r each t e s t ce l l and th e wa l l s co n ta in

rad ian t ba r r i er sys tems were compared t o i t For

wood f r ame t e s t ce l l , w a l l D l was chosen as the ba

Fo r th e co n c re te b lo ck t e s t ce l l , wa l l E.1 was u s ed

th e base fo r wal l E .5 , and E.2 was used as the base

wa l ls E.3 and

E 4

( s e e F i g u r e 3 ) .

The c al cu ls te d base -cas e compoa i t e ASRRAE R-val

were then used with measured hea t f lu xe s to determ

t h e no rm al iz ed r e s i s t a n c e of t h e r a d i a n t b a r r i e r w

s y stems wi th r e s p ec t t o th e n on - rad ian t b a r r

base-case wal ls .

R es u l t s

Table

1

g l-ves th e r e s u l t s o f wa l l t e s t an a ly s

Although D.2 and E.3 have es se nt i al ly th e s

re f l ec t i ve vent .ed a i r spa ces th e i r summert ime R-va

a r e ra d i ca l l y d i f f er en t , R-9.7 and R-5.7 respe ct ive

Th i s i a p ro b ab ly du e to th e b as e r e s i e t an ce o f

r ema in d er o f th e wa l l s ec t io n . The e f f e c t of a r ad i

b a r r i e r i s t o n e ar l y e l i m i n a te th e s o l -a i r e f f e

Thu s, r ad ia n t b a r r i e r R -v alues t end t o b e h ig h e r

w a l l s w i t h hi g h l e v e l s o f o r d i n a r y i n s u l a t i o n . I t a

i l l u s t r a t e 6 t he f a c t t h a t r e f l e c t i v e a i r s p ac e e r e f l

hea t, so they cannot be well cha rac ter ize d by an R-va

alth ough R-value f or a vented 314 w a l l

i s

5.3 (w

E.4 as opposed t o 5.7 for the

1

1 / 2 w a l l ( ~ . 3 ) .

s ea led r ad ian t b a r r i e r wa l l (E.5) h as an

R

of 4 9 but

i s

on th e in s id e of th e wal l .

The performance of vented rad ian t b ar r i er s i s p

i n w i n t e r .

D :Z

yie lded an R of 0 .2 whi le t he dou

rad ian t ba r r ie r in D.3 had 5.7. In D.3 t he out s

r e f l e c t i v e a i r s p a c e was ve nt e d and t h e i n n e r r e f l e c t

a i r s p ace was b.ept s ea led fo r a l l t e s t s . The o u

vented ra d ia n t b ar r i er showed no re a l v a lue i n wal l D

The aea led r ad ia n t b a r r i e r R-va lu e ap p ea r s to b e s im

f o r D.3 and E 5 a t R-5.7 in win ter . Wall E.3 approac

th e same v a lu e when i t s ex te r io r v en t s a r e s ea led

win te r . The v en ted r ad ia n t b a r r i e r s in E 3 and

performed bet te r i n summer but worse i n win ter than

E.5.

Because of warm weat her, th e cloned-vent da ta

was co l lec ted f or on ly two days . Clos ing th e ven ts

improve performance. The be t t e r R-value fo r

ESL-HH-84-08-05

Proceedings of the First Symposium on Improving Building Systems in Hot and Humid Climates, August 1984

Page 4: 07 ESL-HH-84-08-05

8/18/2019 07 ESL-HH-84-08-05

http://slidepdf.com/reader/full/07-esl-hh-84-08-05 4/7

T a b l e 1

V en te d a nd S e a l e d R a d i a n t B a r r i e r W a l l D a ta

Fl.UX RATIO BASE

T e s t d a y s

=

S e p t . 17 - 2 0, 1 9 8 3

A ve ra ge h ig li =8 8. 0 A ve ra ge 1 0 ~ ~ 7 5 . 8

H ea t f l u x i n t o s p a c e , B t u

ASHRAE R - v a l u e w / o r e f l . s p a c e

e l

F lu x r a t i o w r t b a s e c a s e

R -v al ue o f o v e r a l l w a l l

R - v a l ue o f r e f l e c t i v e s p a c e ( s )

T e s t D a ys J a n . 1 0 - 1 2 , 1 9 8 4

A v e r a g e h i g h = 7 2 , 7 A v e r a g e I o w= 6 6. 4

H ea t f l u x o u t , B tu

ASHRE R - v a l ue w / o r e f l . a p a c e ( s )

F lu x r a t i o w r t b a s e c a s e

R -v sl ue o f wh o l e w a l l w r t b a s e c a s e

R -va lu e o f r e f l e c t i v e s p a c e

6 )

T e a t D a y s = Feb. 7-8 1 9 8 4

A v e r a ge h i g h z 6 2 . 9 A v e r a g e l o w= 4 3. 5

H ea t f l u x o u t , B t u

ASHRXE R - v a l u e w / o r e f l . a p a c e ( 8 )

F lu x r a t i o w r t b a s e c a s e

R -v al u e o f wh o le w a l l w r t b a s e c a s e

R-va l u e o f r e f l e c t i v e s p a c e ( s )

---FRAME WALLS--- MASS WALLS

D

D.2 D.3 E l E. 2 E . 3 E . 4 E . 5

D 1 D l E.2 E.2 E. l

A

SUMMER VENTS OPEN ( E x c e p t E .5 )

Av. C e l l T em p. = n / a Av. C e l l T e mp . =7 7 .1

1 1 5 1 0 6 1 1 1 2 0 5 1 9 1 1 9 7 1 2 4 1 3

2 0 . 4 1 2 . 4 6 . 6 6 8 . 4 8 . 4 2 . 4 7 . 7 7 . 7

0 . 9 3 0 . 9 6 1 . 0 3 0 . 6 5 0 , 6

2 0 . 4 2 2 . 0 2 1 . 2 8 . 4 8 . 4 8 . 2 1 2 . 9 1 2 .

9 . 7 1 4 . 5 5 . 7 5 . 3 4 . 9

B WINTER VENTS OPEN ( ~ x c e p t . 5 )

A v. C e l l T e m p .= 7 2 . 4 Av. c e l l T e mp . =7 2 .1

1 3 2 2 1 6 2 0 0 3 1 5 3 4 6 5 6 2 2 8 9 1 9

2 0 . 3 1 2 . 3 6 . 5 8 , 3 8 . 3 2 . 3

7 6

7 .

1 6 3 1 66 1 . 6 2 0 . 8 4 0 . 6

20 3

1 2 . 5 1 2 . 2 8 . 3 8 . 3 5 . 1 1 0 . 1 1 3 .

0 . 2 5 . 7 2 . 8 2 .4

5 7

C ) WINTER VENTS CLOSED

Av . C e l l T e m p . =7 1 . 2 Av. C e l l T e m p . 17 0 . 4

5 9 9 6 9 8 1 2 6 1 2 4 2 3 9 1 1 3 8

2 0 . 3 1 2 . 3 6 . 5 8 . 3 8 . 3 2 . 3 7 . 6 7 .

1 . 3 6 1 . 5 5 1 . 1 5 0 . 8 0 0 . 6

2 0 . 3 1 5 . 0 1 3. 1 8 3 8 . 3 7 . 2 1 0 . 4 1 3 .

2 .7 6 . 5 4 . 9 2 . 8 6 . 3

re f l ec t i ve space in E.3 compared to th at i n E.4 i s

apparen t ly due t o the base r es i s t a nce o f the r emainder

of th e wa ll , th e aame phenomenon which ap pa re nt ly caused

t he di ff er en ce s between D.2 and E.3 and

D 3

and

E.4

i n

summer, but appl ied i n the oppos i te d ir ect ion . For

summert ime, i f the R-value f or the in te r i or ref le ct iv e

ai rs pa ce of wa ll E.5 (4.9) i s added t o th e ASHRAE

R-value fo r s o l id pa r t s of wal l D.3, the r es u l t an t

I t-va lue fo r t he ex t e r i o r ven ted r ad ian t ba r r i e r a i r epace

, 3

become8 9.7, id en ti ca l t o th at of wal l D.2. This

procedure can be appl ied t o wal l D.3 fo r each of

three cases (winter open and winter c losed) ,

i c ing ne t R-va lues fo r the ex t e r i o r r ad i an t ba r r i e r

, ac e t h a t a r e v e r y c l o s e t o t h o se g i v en i n w a ll

D 2

5

observat ions e tand out :

The performance of vented ex te r i or radi ant ba rr ie r

eystems i s po or i n t h e w i nt e r s e as on f o r a l l w a l l

types bu t i s pa r t i c u la r ly poor fo r f r ame wal l

systems.

The performance of exter ior radiant barr ier ays tems

in summer appears t o be re l a t ed t o the base wal l

res is t anc e and type. Frame wal ls appear t o ben ef i t

more f rom exter ior radiant barr iers than do mass

walls .

The perfonnance of in te r i or ra dia nt bar r i er sys tems

does not appear t o be very s t ro ngl y dependent on

ei ther season or wal l type.

lURE STUDIES

A s

s e n s i b l e c oo l i ng l o a d s a r e d ec r e ae e d , t h e l a t e n t

on buildings takes on increasing importance.

Cooling load analys is of a typ ica l F lo r ida r es idenc

l o c a t e d i n v ar i o ue F l o r i d a c l i m a t e s

i s

i n d i c a t i v e of t h

p roblem s tha t a r e f aced in such c l im at es . F igure

graphical ly depicts a breakdown of cool ing loads of

t y p i c a l f ra me w a l l r e s i d e n c e l o c a t e d i n t h r e e F l o r i d

c i t i e s .

Ce rt ai n key po in ts become appar ent i n examining t h

re s u l t s . F i r s t and ve ry im por tan t . i n te rna l loads an

in f i l t r a t i on accoun t fo r more than 50 of tbe to ta

load. More than ha lf of th i s

s

a mois ture load

Neither of these loade can be gr ea t l y reduced throug

bui ld i ng des ign. The i n f i l t ra t i o n load may be reduce

from .J5

ACH

to .5

A C H

bu t in te rna l ga ins p robab l

cannot be reduced witho ut ser i ous l i f e- s t y l e changes .

Therefore , in terms o f building des ign and hea

gai n prevent ion, we may only af fe ct 50 of th e to ta

load . Large s av ings in ex te rna l ly d r iven s ens ib le load

can probably be obta ined through s t r a t eg ic windo

s hading and r ad ia n t ba r r i e r e t r a te g ie s . Overa l l , we ca

reduce these external loads by half .

Another ser io us cool ing problem i s caused by t h

high mois ture loads in such cl ima tes . Each of the thr e

cl i mate s produces a moieture load grea te r than 30 o

th e t o t al load. However, a s sen s i bl e loads ar e reduce

through improved bui ld i ng pra ct i ces , the load s t ru ct ur

changes drama tic al l y because mois ture Ioads cannot b

s imultaneous ly reduced by curr en t l y ava i la bl

t echn iques . I f the ex t e rn a l l y d r iven loads ( s o l a r an

conduct ion) i n the re s idenc es analyzed ar e reduced b

ha lf , t he mois ture load becomes gr ea te r than 40 of t h

t o t a l l o a d .

Addi tio nal FSEC st ud ie s

7 )

have examined thi

ESL-HH-84-08-05

Proceedings of the First Symposium on Improving Building Systems in Hot and Humid Climates, August 1984

Page 5: 07 ESL-HH-84-08-05

8/18/2019 07 ESL-HH-84-08-05

http://slidepdf.com/reader/full/07-esl-hh-84-08-05 5/7

  m

w i t h r e s p e c t t o a i r - c o n d i t i o n e r p e rf o rm a n ce .

,how s u r p r i s i n g r e s u l t s . As t h e l oa d s t r u c t u r e o n

, u i l d i n g c h o ng e s , c o m m e r ci a l l y a v a i l a b l e v a p o r

: s s i o n m e c ha n ic a l u n i t s b ecom e i n e f f e c t i v e i n

kg k i t h m o i s tu r e l o a d e . F i g u r e s

5

an d 6 i l l u s t r a t e

I f e c t o f s u ch c h a n g e s . T h r e e r e s i d e n c e t y p e s an d

x h a n i c a l u n i t e f f i c i e n c i e s a r e c om pa re d i n f i g u r e

he

h o u s e t y p e s a r e g i v e n a s : C O N -c o n ve n ti o na l ,

)L.

e n e t g y u s e , a nd PA S-v ery e n e r g y e f f i c i e n t .

~ i c a l y s t em a a r e g i v e n a s TA C -t yp ic al (S EE R 8 . 0 )

\ C - h i e l ) e f f i c i e n c y (SEER 11.0 . T he l i n e s p l o t e d

[ I

i n t e r i o r t a l ~ n c e o i n t a i r c o n d i t i o n s r ea ch ed

n e s t r a d y - s t a t e m a c h i ne p e r fo r m a n c e

t

t ~

s t

i c s .

Two

n~e

o r o b s e r v a t i o n s m ay b e dr a wn

igure 5.

6 a i r - c o n d i t o n e r e f f i c i e n c y i n c r e a s e s , t h e a b i l i t y

: o r e m o v e m o i s t u r e d e c r e a s e s .

\ s t h e t h er m a l p r o t e c t i o n

of

t h e b u i l d i n g e n v e l o p e

improves,

t h e i n d o o r b a l a n c e p o i n t r e l a t i v e

w m i d i t y r i s e s .

JACKSONVILLE

(Hay-Sap t )

OIUANLhJ

(Hay-Oct)

T ot al h a d 3 1 . 6 mBtu

Total load 4 3 . 0 d t u

Latent

33 . 7

t o t a l

Lacmc 31X t o t a l

M I M I

(Apr-Oct)

Tocal load 5 3 . 3 cu

Latent

35.2:

t o t a l

F i g u r e

4.

C o o l in g S e a so n Lo ad S t r u c t u r e s f o r a T y p i c a l

1 5 0 0 s q . f t . F ra me R e s i d e n c e L o c a te d i n T h r e e

F l o r i d a C i t i e s .

F i g u r e

6

i l l u s t r a t e s t h e r a t h e r s e v e r e p ro bl em a

f a c ed b y v e r y e ne r gy e f f i c i e n t r e s i d e n c e s w h er e b a l a n c e

p o i n t c o n d i t i o n s may r e m a i n a b o ve

70

r e l a t i v e h u m id i ty .

T h i s l e v e l

i s

u n a c c e p t a b l e i n r e s i d e n c e s b e c a u se o f t h e

p o t e n t i a l f o r mo ld a nd m i ld e w g ro w t h

8 ) .

A l t e r n a t i v e

l a t e n t c o o l i n g s y s t e m s w i l l b e r e q u i r e d f o r s u c h

r e s i d e n c e s .

T h i s p r o b l e m i s c om po un de d e v e n f u r t h e r w he n

p a s s i v e c o o l i n g t e c h n i q u e s a r e i n t r o d u c e d . C u r r e n t

r e s e a r c h i n d i c a t e s t h a t p a s s i v e c o o l i n g t e c h n iq u e s a r e

c a p a b l e o f s t a t i s f y i n g m os t o f t h e s e n s i b l e b u i l d i n g

C O N T A C

7 5 0 0

9

I N D O O R O R Y BULB OE

I N D OO R R H V S I N D O O R T f M P C R A T

F i g u r e 5.

I n t e r i o r B a l a n c e P o i n t R e1 a t v ~ umid

R ea ,z he d b y S i x B u i l d i n g r A i r C o n d i t i

C o m b i n a t i o n s i n M i am i , F L f o r V a r

T h e r m o st a t S e t t i n g s .

0 5 0

A C . P H

0 . 7 5 A C P H

1 . 0 0 A C P H

1

. S O

A C P H

7 5 9

e

5

I N O O D R O R Y B U L B O E O F

I N O C I O R R E L

H U M I O I T Y

V S OB

T E M P

F i g u r e 6. I n t e r i o r B a l an c e P o in t R e l a t i v e H u m i d

R e a ch e d by V e ry E n e r g y E f f i c i e n t H o us e

H ig h E f f i c i e n c y

A i r

C o n d i t i o n e r i n M ia m i

f o r V a r i o u s T h e r m os t a t S e t t i n g s

I n f i l t r a t i o n R a t es .

l o a d . I f c a r r i e d t o t h e e x tr e m e , n i g h t s k y r a d i

r o o f p on d s y s t em s l o c a t e d i n F l o r i d a c a n c o n

m o i s t u r e on t 'h e c e i l i n g p l a n e a nd r a i n o n t h e b u i

i n t e r i o r

9 ) .

O t h e r t e c h n i q u es s u c h a s n i g h t

v e n t i l a t i o n mrly i n t r o d u c e m or e m o i s t u r e l o a d t h a n

s e n s i b l e c o o l in g p o t e n t i a l w a r r a n t s . I n v e s t i g a t i o

t h i s p ro bl e m i s d i f f i c u l t b e c a u s e c u r r e n t b u i

e n e r gy a n a l y s i s t e ch n i q u e s m od el m o i s t u r e t r a n s p o

a n e x t r e m e l y ~ : u d im e n t ar y f a s h i o n a t b e s t .

M o is tu re Model-

A n a l y z i n l ~ m o i s t u r e i n b u i l d i n g s i s a c o

p ro b l em . C u r r e n t p r a c t i c e i n b u i l d i n g e n e rg y a n a

m o de la a ss u m es t h a t a l l c h an g e s i n z o ne h u m i d i t

r e f l e c t e d i n t h e z on e a i r c o n d i t i o n s , I n r e

ESL-HH-84-08-05

Proceedings of the First Symposium on Improving Building Systems in Hot and Humid Climates, August 1984

Page 6: 07 ESL-HH-84-08-05

8/18/2019 07 ESL-HH-84-08-05

http://slidepdf.com/reader/full/07-esl-hh-84-08-05 6/7

nt s and fu rn is hi ng s may absor b and

o ~ou nt s o f mo i stu r e. I n ad d i t io n ,

ten1 performance ch ar ac te r i s t ic s ,

s en s ib le h ea t f r ac t io n (SHR), a r e q u i t e

zone humidity.

veloped

a

d e ta i l ed mo is tu r e mo d e l l in g

I ~ U L ~b ~ a p n t l e f a cc ou nt in g f o r t he m i g ra t i on ,

n , and d es o rp t io n of mo i s tu r e in r ea l

The model has been wel l va l ida ted a gai ns t

2 ) and con~pared aga ins t measured con dit ion s

f u l l - s c a l e a t t i c s w i th good r e s u l t s . F i g u r e 7 g i v e s

re s ul ts of FSEC's

MADAM

( I I o i ~ t u r e A b so rp t io n

~ o d e l ) p rogram and measurements

by Cleary (101. The agreement i s ex ce ll en t. This

s p r i ma r i ly d ue t o t h e d e t a i l e d c a p a b i l i t y of t h e MADAM

A co rr el at io n between ext er na l wind speed was

ed in th e mod el t o o b ta i n an in t e rn a l s u r f ac e

is

h ig h ly d ep en d ent ) . Witho ut th i s co r r e l a t i o n

eement i s not a s good.

I

. .

Ambient Dew Po in t

easured A t t i c Dew Po in t

.

ADAM Pred ic t ed

AcC. icDew Po in t

I U

ter Code P re di ct ion

Eta from Ful l-S cal e

o v i l l e ,

CA

f o r March

i l e d f i n i t e el em en t

have a l lowed us t o

accura te model ing

mois ture parameters

s l y s i s .

Design day TARP runs f or Orlando, Fl or id a, have

been made with the FSE mo is tu r e a lg o r i th m i n p lace .

The an a ly e i s t ech n iq u e u t i l i z ed a h y p o th e t i ca l

mechanical sys tem capable of main ta in ing zone mois ture

c o n d i ti o n s a t 60 RH The mechanic al s ystem was run

with a 30-minute on cy cl e dur ing each hour. Resul ts

f rom the run ar e shown i n Figu re

8.

The s o l i d l i n e i n

th e f ig u re g iv es th e in s t an tan eo u s mo is tu r e lo ad on t li e

s p ace a s s u n in g n o mo is tu r e ab s o rp t io n and d e s o rp t io n .

The dashed l in e giv es t he load assuming th e same

mechanical sys tem and wit h mois ture asorp t ion and

d es o rp t io n by th e b u i ld i n g ma te r i a l s ( d ry wa ll i n t h i s

case ) . The do ts g iven in the f ig ur e show the mechanical

sys tem SHF required t o main ta in these condi t ions .

ithauc M D M

nth W

6 =

load

6 . + .

h

Figure 8.

TARP

Analys is of Laten t Load Predic t ions

with and wi thout Absorp t ion Desorp t ion

Mod e l .

I t i s q u i t e i n t e r e s t i n g t o no t e t h a t a s i g n i f ic a n t

d i f fe re nc e ex is ts be tween th e loads when absorp t ion and

d e s o r p t io n a r e m od el le d. T h i e i s e s p e c i a l l y t r u e f o r

th e p eak co n d i t io n . t i s a l s o i n t e r e s ti n g t o no te t h e

la r g e SHF v a r i an ce t h a t i s r eq u i r ed to ma in ta in th i s 6 0%

RH The r e s u l t s a r e g iv en fo r t h e f in a l d ay o f a 5-day

r un a t d e s i gn c o n d i t i o n s

(db hig h 93OF, db lo v = 77OF,

coi nci den t wb = 760F, c learness =

. 95 ) .

Th e d a i ly

mo is tu r e lo ads on th e b u i ld in g a r e s t i l l u n equ a l by a

s ma l l amo un t a t t h e end of t h i s p e r io d , i n d ica t in g th a t

the mois tur e t ime cons tan t o f a bu i ld i ng may be ra t he r

l a r g e a s comp ared t o t h e th e rma l t ime co n s tan t .

CONCLUSIONS

FSEC has concluded from i t s s t u d i e s t h a t m o i s tu r e

p ro blems i n b u i ld in g s l o ca ted in h o t , humid c l ima te s a r e

q u i t e s i g n i f i c a n t . The inc lus ion of mois ture a lgor i thms

in TARP has shown ma te ri al ab sor pti on and des orp tio n t o

b e a v e ry s i g n i f i c a n t e f f e c t t h a t

i s

n o t c u r r e n t l y

co n s id e red in b u i ld i n g en e rgy an a l y s i s cod es .

Very energy ef Ei ci en t and pas siv ely coaled

s t ru ct ur es may su f f er unacceptab l e mois ture problems

ESL-HH-84-08-05

Proceedings of the First Symposium on Improving Building Systems in Hot and Humid Climates, August 1984

Page 7: 07 ESL-HH-84-08-05

8/18/2019 07 ESL-HH-84-08-05

http://slidepdf.com/reader/full/07-esl-hh-84-08-05 7/7

mhanced d eh u mid if i ca t io n cap ab i l i t i e s . C e r t a in

cool ing s t ra te g i es (n i ght vent ing) may pay a

penal ty th a t exceeds th e thermal cool ing

in very humid clim etes . In ord er t o understand

luate these problems

i t i s

imp o r tan t th a t

rese arch cont inue and tha t bu i ld ing energy

cod cs co r r ec t ly an a ly ze mo istu r e e f f e c t s .

ACKNOWLEDGMENTS

autho rs would l ik e t o thank th e Gae Research

i n genera l end Doug Kosar i n par t ic u l ar fo r

pport of much of th e work reported in t h i s

Addi t ional agencies which have contr i bu ted to

inp of t he work inclu de the Flor ida Div is i on o f

Affairs and NASA/Kennedy Space Center.

REFERENCES

rey

P.

"Passive Cool i n g f ~ a s Technology

ra ct er iz at io n and Development Work Plan ," Gas

l s r ch In s t i t u t e , C hicago , I l i n o i s , ( J u ne 19 83 ).

:ey,

P.

"Pa ss ive Cooling/Gas Techno1 ogy

rac ter iza t io n and Development Qua r te r ly

x t

Nov. '83 Ja n '84," Gas Res ear ch

& , , =i i t ut e , Chicago, I l l i n o i s , ( ~ e b r u e r ~9841.

3. Walton, G.

TARP Re fer enc e Manual, NBSIR 83-2655,

Nati onrl Bureau of S tnn dsr ds, Washington, DC,

() arch 198 3).

4. FLOAD, A Building and Equiment Enerav

se

Analveis

Program, FCHART Sof twa re, M idd let on, W is con sin ,

(1984).

5. Bligh , T. "Heat Flux Meter Correction Factors ,"

Fi na l Report, MIT, Cambridge, MA (Ap ril 28, 1983).

6.

Fair ey, P. "Effe cts

O F

In Era r ed R ad ia t io n B ar r i e r s

on th e Eff ec ti ve Thermal Performance of Bu ildi ng

Envelopes

.

Proceedings of ASHRAE~DOEonference

on Thermal Performance

of

Exterior Envelopes of

Buildings

I T b s

Vegas, NV,(December 1982).

7.

Khat tar ,

M

and Swami,

M.

"Impact of Passive

Cool ing Stra teg ies on A i r Conditioner Performance

in Warm, Humid Clim ates ." ASME So la r Energy

Div isi on Si xth Annual Techn ical ConEerence, Las

Vegaa, NV (Apr i l 1984) .

8. Humphreys, W.E., "Co nde ns ati on and Remedial

Measures I' Condeneation i n Build inas , Edit ed

y

Derek, Groome and Sh er ra tt , Applied S cien ce

Pub lis her s Ltd., London (1932).

9 . P i e i r a ,

R.K.

Enernv Savinas Pote n t i a l o f

Pehumidif ied Roof Pond Reside nces , Th es is f o r M.S.

in Applied Solar Energy, Tr in it y Unive rsit y, San

Antonio, TEXAS, (1983).

10 . C lery , Pe te r , p e r s o n a l co n v e r s at io n and l e t t e r

da te d 10 Hay 1984.

ESL-HH-84-08-05

Proceedings of the First Symposium on Improving Building Systems in Hot and Humid Climates, August 1984