06.Sed.sas.Sys Resp Ct

Embed Size (px)

DESCRIPTION

transfer function

Citation preview

  • 1Signal and System Analysis(MCT 2121)

    Department of Mechatronics Engineering

    International Islamic University Malaysia

    Wahju [email protected]

  • 2Tell me and I'll forget;

    Show me and I may remember;

    I do and I'll understand.

    Chinese proverbs

    bung macht den Meister

    (Practice makes perfect) German proverbs

    That man can have nothing but what he strives for

    Al Quran (An-Najm) 53:39

  • 3Contents

    System response (CT-domain analysis)

    Zero input response

    Impulse response

    Zero state response

  • 4System Response

    For a linear system:LTI y(t)x(t)

    Systems total response

    Zero-input response

    Response when x(t) = 0

    Results from internal system conditions only

    Independent of x(t)

    For most filtering applications (e.g. your stereo system), we want no zero-input response.

    Zero-state response

    Response to non-zero x(t)

    A system in zero state cannot generate any response for zero input

    Zero state corresponds to initial conditions being zero

  • 5 Example: Differential systems

    There are N derivatives of y(t) and M derivatives of x(t)

    Constants a1, , aN and bN-M, , bN

    Using short-hand notation,above equation becomes

    txbtxdt

    dbtx

    dt

    dbtx

    dt

    db

    tyatydt

    daty

    dt

    daty

    dt

    d

    NNM

    M

    MNM

    M

    MN

    NNN

    N

    N

    N

    11

    1

    1

    11

    1

    1

    k

    kk

    dt

    dD

    dt

    dD

    dt

    dD

    2

    22

    txbDbDbDbtyaDaDaDDP

    NN

    M

    MN

    M

    MN

    DQ

    NN

    NN

    )(

    1

    1

    1

    )(

    1

    1

    1

    Continuous-Time Domain Analysis

  • 6 Polynomials Q(D) and P(D)

    o Normalization: a0 = 1

    o N derivatives of y(t)

    o M derivatives of x(t)

    This differential system behaves as (M-N)th-order differentiator if M > N

    o Noise occupies both low and high frequencies

    o Differentiator amplifies high frequencies

    o To avoid amplification of noise in high frequencies, we assume that M N

    M

    l

    l

    lN DbDP0

    )(

    Continuous-Time Domain Analysis

    N

    k

    kN

    k DaDQ0

    )(

  • 7 Linearity: for any complex constants c1 and c2

    txDPtyDQ

    tyDQctxcDP 2222

    tyDQctyDQc

    txcDPtxcDPtxctxcDP

    2211

    22112211

    tytyDQtxtxDP 2121

    Continuous-Time Domain Analysis

    tyDQctxDPctxcDP 111111

  • 8 System response (CT-domain analysis)

    Zero input response

    Impulse response

    Zero state response

  • 9Zero Input Response: Example 1Determine the zero input response for the system described by the differential equation:

    ,)(

    )(2)(

    3)(

    2

    2

    dt

    tdxty

    dt

    tdy

    dt

    tyd

    given that the initial conditions: ,50,00 yy

    5,5

    52)0(

    0)0(

    2)(

    )(

    ,2,1

    023023

    )(23

    ,)(,)(,)(

    21

    02

    2

    0

    1

    02

    2

    0

    1

    2

    21

    2

    21

    21

    22

    2

    2

    CC

    eCeCy

    eCeCy

    eCeCty

    eCeCty

    Ce

    dt

    tdxCeCeCe

    CetyCetyCety

    tt

    tt

    t

    ttt

    ttt

    Let:

    Substitute:

    Factorised:

    Substitute:

    Therefore:

    To determine C1 and C2, utilise the initial conditions and solve the simultaneous

    equations :

    Characteristic

    equation

    Characteristic polynomial

    Characteristic roots

    Sol.:

    tt eety 255)(

    Zero input: no input signal

  • 10

    Notes on System Characteristics

    Characteristic equation

    Q(D) y(t) = 0

    Polynomial Q()

    o Characteristic of system

    o Independent of the input

    Roots 1, 2, , N

    Characteristic roots a.k.a. characteristic values, eigenvalues, natural frequencies

  • 11

    General case:

    The linear combination of y0(t) and its Nsuccessive derivatives are zero

    Assume that y0(t) = C e t

    dt

    dDtyDQ where0 0

    0 0111 tyaDaDaD NNNN

    tkk

    kk

    t

    t

    eCdt

    ydtyD

    eCdt

    ydtyD

    eCdt

    dytDy

    00

    2

    2

    0

    2

    0

    2

    00

    Zero-Input Response

  • 12

    Zero-Input Response

    Substituting into the differential equation

    y0(t) = C e t is a solution provided that Q() = 0

    Factorize Q() to obtain N solutions:

    Assuming that no two i terms are equal

    011

    1

    zeronon

    t

    Q

    NN

    NN

    zeronon

    eaaaC

    0)( 21 NQ

    tNtt NeCeCeCty

    21 210

  • 13

    Zero-Input Response

    Could i be complex?

    If complex, we can write it in Cartesian form

    Exponential solution e t becomes product of two terms

    For conjugate symmetric roots, and conjugate symmetric constants,

    iii j

    termgoscillatin termdamping

    sincos tjteeeee iittjttjt iiiiii

    termgoscillatin

    1

    termdamping

    111 cos2 CteCeCeC ittt iii

  • 14

    Zero-Input Response

    For repeated roots, the solution changes

    Simplest case of a root repeated twice:

    With r repeated roots

    002

    tyD

    tetCCty 210

    0 0

    tyDr

    trr etCtCCty 1210

  • 15

    Zero Input Response: Example 2Determine the zero input response for the RLC system below

    given that the initial conditions: ,50,00 vy

    )(tv)(tx

    H1 3

    F2

    1)(ty

    Solution: First, determine the model of the system:

    dt

    tdxty

    dt

    tdy

    dt

    tyd

    dytydt

    tdytx

    dytvtvtytvdt

    tdytv

    tvtvtvtx

    t

    t

    CRL

    CRL

    )()(2

    )(3

    )(

    )(2)(3)(

    )(

    )(2)()(),(3)(,)(

    )(

    )()()()(

    2

    2

    0

    0

    Use this model to find

    the systems zero input

    response

  • 16

    Zero Input Response: Example 2

    5,5

    52)0(

    5)0(

    5)0(3)0(0

    )()0(3)0()0(

    0)0(

    2)(

    )(

    ,2,1

    023023

    )(23

    ,)(,)(,)(

    21

    02

    2

    0

    1

    02

    2

    0

    1

    2

    21

    2

    21

    21

    22

    2

    2

    CC

    eCeCy

    y

    y

    tvyyx

    eCeCy

    eCeCty

    eCeCty

    Ce

    dt

    tdxCeCeCe

    CetyCetyCety

    tt

    tt

    t

    ttt

    ttt

    Let:

    Substitute:

    Factorised:

    Substitute:

    Therefore:

    To determine C1 and C2, utilise the initial conditions and solve the simultaneous

    equations :

    tt eety 255)(

  • 17

    System response (CT-domain analysis)

    Zero input response

    Impulse response

    Zero state response

  • 18

    Impulse Response

    Impulse response is the systems response when the input is an impulse:

    system)(

    )(

    t

    tx

    )(

    )(

    th

    ty

    There are 2 methods in determining the impulse response of a system.

    )()()()(

    ttxtyth

  • 19

    )( )(

    ,032,032

    )(,)(

    0)(3)(

    2

    ,0

    )(5)(3)(

    2

    2

    3

    23

    tuCeth

    CeCe

    Cedt

    tdhCeth

    thdt

    tdh

    t

    tthdt

    tdh

    t

    tt

    tt

    Impulse Response: Example 3

    )()()()(

    ttxtyth

    Method 1 Determine the impulse response for the system described by the differential equation:

    )(5)(3)(

    2 txtydt

    tdy

    Substitute:

    For:

    Let:

    Therefore:

    Solution:

    Linear Time Invariant

    Causal System

  • 20

    Impulse Response: Example 3

    )(2

    5)(

    2

    5

    )(5)( 3)()(2

    32

    ),(5)(3)(

    2

    2

    3

    23-

    23-

    23-

    tueth

    C

    ttuCetCetuCe

    tthdt

    tdh

    t

    ttt

    Substitute into the

    equation:

    )()( 2

    3)( 23

    23

    tCetuCedt

    tdh tt

  • 21

    Impulse Response

    Method 2

    For a system described by the differential equation:

    MM

    MM

    N

    N

    N

    N

    MM

    MM

    N

    N

    N

    N

    bDbDbDbDP

    aDaDaDDQ

    txDPtyDQ

    txbDbDbDbtyaDaDaD

    1

    1

    10

    1

    1

    1

    1

    1

    1

    10

    1

    1

    1

    1

    )(

    )(

    )()()()(

    )()(

    or:

    where:

    )( )()()()( 0 tutyDPtAth n

    )(tyn

    Its impulse response is given by:

    where is subjected to the following initial conditions:

    ,1)0(,0)0(,0)0(,3

    ,1)0(,0)0(,2

    1)0(,1

    nnn

    nn

    n

    yyyN

    yyN

    yN

    ,NM But, if its impulse response is given by: )()()( tyDPth n

    where 00 A

  • 22

    Impulse Response: Example 4

    Determine the zero impulse response for the system described by the

    differential equation:

    )()(

    )(6)(

    5)(

    2

    2

    txdt

    tdxty

    dt

    tdy

    dt

    tyd

    tt

    n

    n

    n

    eCeCty

    tutyDth

    DDP

    tutyDPth

    NM

    txDtyDD

    txdt

    tdxty

    dt

    tdy

    dt

    tyd

    2

    2

    3

    1

    21

    2

    2

    2

    2

    )(

    ,2,3

    065

    )( )()1()(

    1)(

    )( )()()(

    2,1

    )( 1)(65

    )()(

    )(6)(

    5)(

    Solution:

    Therefore:

    where:

    The characteristic equation:

  • 23

    Impulse Response: Example 4

    )( 2

    )( 23)(

    )( )()()( )()(

    )( )()1()(

    )(

    1,1

    123)0(

    0)0(

    23)(

    )(

    ,1)0(,0)0(

    2

    23

    2323

    23

    21

    )0(2

    2

    )0(3

    1

    )0(2

    2

    )0(3

    1

    2

    2

    3

    1

    2

    2

    3

    1

    tuee

    tueeeeth

    tutytytutydt

    tdytutyDth

    eety

    CC

    eCeCy

    eCeCy

    eCeCty

    eCeCty

    yy

    N

    tt

    tttt

    nnnn

    n

    tt

    n

    n

    n

    tt

    n

    tt

    n

    nn

    Therefore:

    Therefore:

    Substitute:

  • 24

    System response (CT-domain analysis)

    Zero input response

    Impulse response

    Zero state response

  • 25

    Zero State Response

    Zero-state response is the output which arises when all systems initial conditions are zero.

    dtxh

    dthx

    thtx

    responseimpulseinputtyzs

    )()(

    )()(

    )()(

    )()(

    LTI y(t)x(t)

    h(t)

  • 26

    Convolution Integral

    Graphical View of Staircase Approximation

  • 27

    Example: (Midterm question Sem 1 2013/2014)

  • 28

    Convolution table

    a)

  • 29

    b)

  • 30

    Assignment 2 (Due 31/03/2014)

    Q1. Consider the low pass filter shown below. Find its impulse

    response:

    y(t)h(t) = ?

    x(t) = (t)

    Input

    Signal

    Output

    Signal

    The differential equation for the above system is:

    The impulse response function is:

    EquationalDifferentiOrderFistRC

    tx

    RC

    ty

    dt

    tdy

    )()()(

    )( 1

    )( tueRC

    th RCt

  • 31

    Assignment 2

    Q2. Find the unit impulse response of an LTIC system specified by the equation:

    (D2 + 6D + 9) y(t) = (2D + 9) x(t)

  • 32

    Assignment 2

    Q3.