05 Visual Mappings

Embed Size (px)

Citation preview

  • 8/10/2019 05 Visual Mappings

    1/45

    Weiskopf/Machiraju/Mller

    Approaches to Visual

    Mappings

    CMPT 467/767

    VisualizationTorsten Mller

  • 8/10/2019 05 Visual Mappings

    2/45

    Weiskopf/Machiraju/Mller 2

    Overview

    Effectiveness of mappings

    Mapping to positional quantities

    Mapping to shape Mapping to color

    Mapping to texture

    Other mappings Glyphs

  • 8/10/2019 05 Visual Mappings

    3/45

    Weiskopf/Machiraju/Mller 3

    Readings

    Colin Ware:

    Chapter 4 (Color)

    Chapter 5 (Visual Attention and Informationthat Pops Out)

    The Visualization Handbook:

    Chapter 1 (Overview of Visualization)

    Additional (background) reading

    J. Mackinlay: Automating the design of

    graphical presentations of relational

    information.

    ACM ToG, 5(2), 110-141, 1986

  • 8/10/2019 05 Visual Mappings

    4/45

    Weiskopf/Machiraju/Mller

    Visual Language is a Sign

    System Image perceived as a set of signs

    Sender encodes information in signs

    Receiver decodes information from signs

    Jacques Bertin

    French cartographer [1918-2010] Semiology of Graphics [1967]

    Theoretical principles for visual encodings

    Semiology of Graphics [J. Bertin, 83]

    4

  • 8/10/2019 05 Visual Mappings

    5/45

    Weiskopf/Machiraju/Mller 5

    Effectiveness of Mappings

    Mapping from (filtered) data to renderable

    representation

    Most important part of visualization Possible visual representations:

    Position

    Size

    Orientation Shape

    Brightness

    Color (hue, saturation)

    .

  • 8/10/2019 05 Visual Mappings

    6/45

    Weiskopf/Machiraju/Mller 6

    Effectiveness of Mappings

    Efficiency and effectiveness depends on

    input data:

    Nominal

    Ordinal

    Quantitative

    Good visual design

    Based on psychology and psychophysics

    Psychological investigations to evaluate the

    appropriateness of mapping approaches

  • 8/10/2019 05 Visual Mappings

    7/45

    Weiskopf/Machiraju/Mller

    Basic Types of Visual

    Encodings

    Position

    Size

    (Grey)Value

    Texture

    Color

    Orientation

    Shape

    Semiology of Graphics [J. Bertin, 67]

    Points Lines Areas

    7

  • 8/10/2019 05 Visual Mappings

    8/45

    Weiskopf/Machiraju/Mller

    Mapping to Data TypesNominal Ordinal Quantitative

    Position

    Size

    (Grey)Value

    Texture

    Color

    Orientation

    Shape!= Good~ = OK

    "= Bad8

  • 8/10/2019 05 Visual Mappings

    9/45

    Weiskopf/Machiraju/Mller

    Mapping to Data TypesNominal Ordinal Quantitative

    Position ! ! !

    Size ! ! !

    (Grey)Value ! ! ~

    Texture ! ~ "

    Color ! " "

    Orientation ! " "

    Shape ! " "

    != Good~ = OK

    "= Bad9

  • 8/10/2019 05 Visual Mappings

    10/45

    Weiskopf/Machiraju/Mller[Mackinlay, Automating the Design of Graphical Presentations

    of Relational Information, ACM TOG 5:2, 1986]

    Mackinlays Retinal Variables

    10

  • 8/10/2019 05 Visual Mappings

    11/45

    Weiskopf/Machiraju/Mller 11

    Effectiveness of Mappings

    Effectiveness of visual variables According to Mackinlay

    [J. Mackinlay: Automating the design of graphical presentations of relational information. ACM

    Transactions on Graphics, 5(2), 110-141, 1986]

  • 8/10/2019 05 Visual Mappings

    12/45

    Weiskopf/Machiraju/Mller

    Stolte / Hanrahan

    Polaris: A System for Query, Analysis andVisualization of Multi-dimensional Relational DatabasesChris Stolte and Pat Hanrahan

    12

  • 8/10/2019 05 Visual Mappings

    13/45

    Weiskopf/Machiraju/Mller 13

    Effectiveness of Mappings

    Effectiveness according to neurophysiology

    Cells in Visual Areas 1 and 2 differentially tuned

    to each of the following properties: Orientation and size (with luminance)

    Color (two types of signal)

    Stereoscopic depth

    Motion

    Grapheme Describes a graphical element that is primitive in

    visual terms

    Makes use of early stages of human vision

  • 8/10/2019 05 Visual Mappings

    14/45

    Weiskopf/Machiraju/Mller 14

    Mapping to Positional

    Quantities Mapping to positional quantities:

    Position

    Size Orientation

    Geometric mapping

    Typically, very effective visual parameters

    Generic diagram methods

    0.100

    0.325

    0.550

    0.775

    1.000

    0.05 0.288 0.525 0.763 1

  • 8/10/2019 05 Visual Mappings

    15/45

    Weiskopf/Machiraju/Mller 15

    Mapping to Positional

    Quantities Point diagrams

    E.g. scatter plots: visual recognition of

    correlations

  • 8/10/2019 05 Visual Mappings

    16/45

    Weiskopf/Machiraju/Mller 16

    Mapping to Positional

    Quantities Line and curve diagrams:

    Effective perception of differences in

    Position and

    Length

    5000

    6250

    7500

    8750

    10000

    0 7.5 15 22.5 30

  • 8/10/2019 05 Visual Mappings

    17/45

    Weiskopf/Machiraju/Mller 17

    Mapping to Positional

    Quantities Bar graph:

    Discrete independent variable (domain):

    nominal/ordinal/quantitative

    Quantitative dependent variable (data)

    5000

    6250

    7500

    8750

    10000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14

  • 8/10/2019 05 Visual Mappings

    18/45

    Weiskopf/Machiraju/Mller 18

    Mapping to Positional

    Quantities Pie charts:

    Quantitative data that adds up to a (fixed?)

    number

    0.6188

    0.9944

    0.3258

    0.4613

    0.7847

    0.1292

  • 8/10/2019 05 Visual Mappings

    19/45

    Weiskopf/Machiraju/Mller 19

    Mapping to Shape

    Especially useful for data with direct

    relationship to locations

    Convey spatial structures

    Examples

    Isolines (contour lines)

    Height fields

    Function graphs (function plots)

    Direct encoding of qualitative data

    Typically in the form of glyphs

  • 8/10/2019 05 Visual Mappings

    20/45

    Weiskopf/Machiraju/Mller 20

    Mapping to Color

    Issues: What kind of data can be color-coded?

    What kind of information can be efficiently

    visualized?

    Areas of application Provide information coding

    Designate or emphasize a specific target in a crowded

    display

    Provide a sense of realism or virtual realism Provide warning signals or signify low probability events

    Group, categorize, and chunk information

    Convey emotional content

    Provide an aesthetically pleasing display

  • 8/10/2019 05 Visual Mappings

    21/45

    Weiskopf/Machiraju/Mller 21

    Mapping to Color

    Possible problems:

    Distract the user when inadequately used

    Dependent on viewing and stimulus conditions

    Ineffective for color deficient individuals (use

    redundancy)

    Results in information overload

    Unintentionally conflict with culturalconventions

    Cause unintended visual effects and discomfort

  • 8/10/2019 05 Visual Mappings

    22/45

    Weiskopf/Machiraju/Mller 22

    Mapping to Color

    Nominal data

    Colors need to be

    distinguished

    Localization of data

    Around 8 different

    basis colors

    co-citation analysis

  • 8/10/2019 05 Visual Mappings

    23/45

    Weiskopf/Machiraju/Mller 23

    Mapping to Color

    Nominal data

  • 8/10/2019 05 Visual Mappings

    24/45

    Weiskopf/Machiraju/Mller 24

    Mapping to Color

    Ordinal and quantitative data

    Ordering of data should be represented by ordering of

    colors

    Psychological aspects x1< x2< ... < xn! E(c1) < E(c2) < ... < E(cn)

    Color coding for scalar data

    Assign to each scalar value a different color value

    Assignment via transfer function T

    T : scalarvalue !colorvalue

    Code color values into a color lookup table

    0

    Scalar "(0,1)

    RiGiBi

    (0,1)!(0,N-1)255

  • 8/10/2019 05 Visual Mappings

    25/45

    Weiskopf/Machiraju/Mller 25

    Mapping to Color

    Pre-shading vs. post-shading

    Pre-shading

    Assign color values to original function values (e.g. at vertices of a cell)

    Interpolate between color values (within a cell)

    Post-shading

    Interpolate between scalar values (within a cell)

    Assign color values to interpolated scalar values

    Linear transfer function for color coding

    Specify color for fmin and for fmax (Rmin ,Gmin , Bmin) and (Rmax , Gmax , Bmax)

    Linearly interpolate between them

  • 8/10/2019 05 Visual Mappings

    26/45

    Weiskopf/Machiraju/Mller 26

    Mapping to Color

    Different color spaces lead to different interpolation

    functions

    In order to visualize (enhance/suppress) specific details,

    non-linear color lookup tables are needed Gray scale color table

    Intuitive ordering

    Rainbow color table

    Less intuitive

    HSV color model

    Perceptual issues

    Temperature color table

  • 8/10/2019 05 Visual Mappings

    27/45

    Weiskopf/Machiraju/Mller 27

    Mapping to Color

    Bivariate and trivariate color tables are

    problematic:

    No intuitive ordering

    Colors hard to distinguish

    Many more color tables for specific

    applications

    Design of good color tables depends onpsychological / perceptional issues

    Often interactive specification of transfer

    functions to extract important features

  • 8/10/2019 05 Visual Mappings

    28/45

    Weiskopf/Machiraju/Mller 28

    Mapping to Texture

    Main parameters for texture Orientation

    Size

    Contrast

    Alternatively

    [Tamura 78]: Coarseness

    Roughness Contrast

    Directionality

    Line-likeness

    Regularity

    [C.

    Ware,

    InformationVisualization]

  • 8/10/2019 05 Visual Mappings

    29/45

    Weiskopf/Machiraju/Mller 29

    Mapping to Texture

    Goal:

    Avoid visual "crosstalk

    Orthogonal perceptual channels

    Restricts range of parameters

    E.g. approximately 30 degrees difference in

    orientation needed to distinguish textures

    Main application for textures: nominal data

    Some applications for direct visualization of

    orientations

  • 8/10/2019 05 Visual Mappings

    30/45

    Weiskopf/Machiraju/Mller 30

    Mapping to Texture

    Generate texture

    Gabor func. as primitives

    Parameters:

    Orientation

    Size

    Contrast

    Randomly splatter down

    Gabor functions Blending yields continuous

    coverage

    Stochastic texture model

    [C.

    Ware,

    InformationVis

    ualization]

    Visualization of a magnetic field

  • 8/10/2019 05 Visual Mappings

    31/45

    Weiskopf/Machiraju/Mller 31

    Mapping to Texture

    Other stochastic texture models:

    LIC (Line integral convolution) for vector field

    visualization

    Structural models

    Procedural description of texture generation

    E.g. Lindenmayer systems (L-systems)

  • 8/10/2019 05 Visual Mappings

    32/45

    Weiskopf/Machiraju/Mller 32

    Other Mappings

    More advanced mappings possible

    Examples for other visual variables Motion

    Blink coding

    Explicit use of 3D

    Multiple attributes

    Typical combination of

    attributes:

    Geometric position,e.g., height field

    Color: saturation,

    intensity, tone

    Texture

    Issue: Interference?

  • 8/10/2019 05 Visual Mappings

    33/45

    Weiskopf/Machiraju/Mller 33

    Glyphs

    Glyphs and icons

    Consist of several components

    Features should be easy to distinguish andcombine

    Icons should be separated from each other

    Mainly used for multivariate

    discretedata

  • 8/10/2019 05 Visual Mappings

    34/45

    Weiskopf/Machiraju/Mller 34

    Glyphs

    Multi-dimensional coding Perceptual independence?

    Integraldisplay dimensions Two or more attributes perceived holistically

    Separabledimensions Separate judgments about each graphical

    dimension

    Simplistic classification, with a large

    number of exceptions and asymmetries

    More integral coding pairs

    More separable coding pairs

    [C.W

    are,

    InformationVisualization]

  • 8/10/2019 05 Visual Mappings

    35/45

    Weiskopf/Machiraju/Mller 35

    Glyphs

    Interesting graphical attributes for basic glyph design

    [according to C. Ware, Information Visualization]

    Visual variable Dimensionality

    Spatial position of glyph 3 dimensions: X, Y, ZColor of glyph 3 dimensions: defined by color opponent theory

    Shape 23? dimensions unknown

    Orientation 3 dimensions: corresponding to orientation about each

    of the primary axes

    Surface texture 3 dimensions: orientation, size, and contrastMotion coding 23? Dimensions largely unknown, but phase may be

    useful

    Blink coding: The glyph

    blinks on and off at some

    rate

    1 dimension

  • 8/10/2019 05 Visual Mappings

    36/45

    Weiskopf/Machiraju/Mller 36

    Glyphs

    Color icons [Levkowitz 91]

    Subdivision of a basic figure (triangle,

    square, ) into edges and faces

    Mapping of data to faces

    via color tables

    Grouping by emphasizing

    edges or faces

  • 8/10/2019 05 Visual Mappings

    37/45

    Weiskopf/Machiraju/Mller 37

    Glyphs

    Stick-figure icon [Picket & Grinstein 88]

    2D figure with 4 limbs

    Coding of data via Length

    Thickness

    Angle with vertical axis

    12 attributes

    Exploits the human

    capability to recognize

    patterns/textures

  • 8/10/2019 05 Visual Mappings

    38/45

    Weiskopf/Machiraju/Mller 38

    Glyphs

    Stick-figure icon

  • 8/10/2019 05 Visual Mappings

    39/45

    Weiskopf/Machiraju/Mller 39

    Glyphs

    Circular icon plots:

    Star plots

    Sun ray plots

    etc

    Follow a "spoked wheel" format

    Values of variables are represented by

    distances between the center ("hub") of the

    icon and its edges

  • 8/10/2019 05 Visual Mappings

    40/45

    Weiskopf/Machiraju/Mller 40

    Glyphs

    Star glyphs[S. E. Fienberg: Graphical methods in statistics.

    The American Statistician, 33:165-178, 1979]

    A star is composed of equally spaced radii, stemming

    from the center

    The length of the spike is proportional to the value of

    the respective attribute

    The first spike/attribute

    is to the right

    Subsequent spikesare counter-clockwise

    The ends of the rays

    are connected by a line

  • 8/10/2019 05 Visual Mappings

    41/45

    Weiskopf/Machiraju/Mller 41

    Glyphs

    Sun ray plots

    Similar to star glyphs/plots

    Underlying star-shaped structure

  • 8/10/2019 05 Visual Mappings

    42/45

    Weiskopf/Machiraju/Mller 42

    Glyphs

    Chernoff faces/icons[H. Chernoff (1973). The use of faces to represent points in k-dimensional space

    graphically. Journal of the American Statistical Association , 68 :361-368]

    Each facial feature represents one variable

    Human ability to

    distinguish small

    features in faces

  • 8/10/2019 05 Visual Mappings

    43/45

    Weiskopf/Machiraju/Mller 43

    Glyphs

    Chernoff faces/icons

    Possible assignment in the decreasing order of importance: Area of the face

    Shape of the face

    Length of the nose Location of the mouth

    Curve of the smile

    Width of the mouth

    Location, separation, angle, shape, and width of the eyes

    Location of the pupil

    Location, angle, and width of the eyebrows

    Coding of 15 attributes

    Additional variables could be encoded by making faces

    asymmetric

  • 8/10/2019 05 Visual Mappings

    44/45

    Weiskopf/Machiraju/Mller 44

    Glyphs

    Chernoff faces/icons

  • 8/10/2019 05 Visual Mappings

    45/45

    Weiskopf/Machiraju/Mller 45

    Glyphs

    Face morphing [Alexa 98]