05 Force Stress

Embed Size (px)

Citation preview

  • 7/29/2019 05 Force Stress

    1/15

    Force vs stress Copyright Prof Schierle 2011 1

    Cause:exter

    nalforceP

    Effect:internalst

    ressf

    Uplift Force generates fabric Stress

  • 7/29/2019 05 Force Stress

    2/15

    Force vs stress Copyright Prof Schierle 2011 2

    Type of Force

    1 Axial (tension / compression)

    2 Shear 3 Bending

    4 Torsion

    5 Images

    6 Symbol (+ -)

    A Tension (elongates +)

    B Compression (shortens -)

    C Shear (clockwise couple +)D Bending (concave + convex -)

    E Torsion (right-hand rule +)

    Tension elongatesCompression shortens

    Shear tends to slide

    Bending (+) top compression

    bottom tensionTorsion twists (right-hand +)

  • 7/29/2019 05 Force Stress

    3/15

    Force vs stress Copyright Prof Schierle 2011 3

    Force vs. Stress

    Force P (external action)

    Stress f = P/A (internal reaction)

    Force P (absolute)

    US units pound (lb, #)

    kip (k) = 1000 pounds

    SI units N (Newton)

    kN (kilo Newton = 1000 Newton)

    Stress f = P/A (relative allows to compare material)

    US units psi (pound / square inch)

    ksi (kip / square inch)

    SI units Pa (Pascal = N/m2)

    kPa (kilo Pascal = 1000 Pascal)

    Note:

    SI units (System International = metric units)

    Stress f = P/A (force / area, helps to compare)

    f F fa = axial-; fb = bending-; fv = shear-stress

    f = actual stress

    F = allowable stress

  • 7/29/2019 05 Force Stress

    4/15

    Force vs stress Copyright Prof Schierle 2011 4

    Shear

    Shear stress tends to slide

    1 Single shear (1 shear plane)

    2 End-block shear

    3 Double shear (2 bolted shear planes)4 Double shear (2 glued shear planes)

    5 Double shear (twin beam / column)

    6 Shear wall

    A Shear plane(s)

    B Shear crack (diagonal)

    P Load

  • 7/29/2019 05 Force Stress

    5/15

    Force vs stress Copyright Prof Schierle 2011 5

    Bending

    1 Simple beam

    2 Deformed beam under load

    3 Bending stress

    Bending moment

    M = w L2/ 8

    where

    L = span

    w = uniform load

    Bending stress

    f = M / S

    where

    S = Section Modulus

    Note:

    Derivations will be introduced later

    Gravity load causes:

    Concave bending (+)

    Top shortens in compression

    Neutral axis has zero stress

    Bottom elongates in tension

  • 7/29/2019 05 Force Stress

    6/15Force vs stress Copyright Prof Schierle 2011 6

    Torsion

    1 Door handle

    P = Forcee = lever arm

    M = P e (torsion moment)

    2 Building subject to torsion, caused by

    Seismic force & eccentric resistance.

    Shear wall at B but one side open;

    (tuck-under parking)

    Assume: P = 12 k

    e = 10

    Torsion moment:

    M = P e = 12k x 10 M = 120 k

  • 7/29/2019 05 Force Stress

    7/15Force vs stress Copyright Prof Schierle 2011 7

    Compression / tension

    1 Wood column Fa = 1200 psi

    P = 800 #

    A = 2x2 A = 4 in2

    f = P/A = 800/4 f = 200 psi

    200 < 1200, ok

    2 Steel rod ( ) Fa = 30 ksi

    P = 5 k

    A=r2 = 3.14 x 0.252 A = 0.2 in2

    f = P/A = 5 / 0.2 f = 25 ksi

    25 < 30, ok

    3 Heel

    Allowable cross-fiber stress F = 400 psi

    Impact load P = 200 #

    A = 0.2 x 0.2 A = 0.04 in2

    f = P/A = 200 / 0.04 f = 5,000 psi

    5,000 > 400

    Not ok

    Heel would sink into wood due to overstress

  • 7/29/2019 05 Force Stress

    8/15Force vs stress Copyright Prof Schierle 2011 8

    Compression

    Wood column / concrete footing

    Assume:

    Allowable soil pressure Fs = 2000 psfColumn 6 x 6 (nominal, 5.5x5.5 actual)

    Allowable stress Fa =1000 psi

    3x3x1 concrete footing @ 150 pcf

    Load P = 15,000 #Column analysis

    A = 5.5 x 5.5 A = 30 in2

    f = P/A = 15000/30 f = 500 psi

    500 < 1000, ok

    Footing analysisDL = 150 pcf x 3x 3 x 1 DL = 1350 #

    Load on soil

    Ps = P+ DL = 15,000 + 1,350 Ps = 16,350 #

    Soil pressuref = Ps/A = 16350 / (3x3) f =1817 psf

    1817 < 2000, ok

    Note:

    Ignore light column DL but not footing DL

  • 7/29/2019 05 Force Stress

    9/15Force vs stress Copyright Prof Schierle 2011 9

    Compression

    Concrete slab, CMU wall

    8 slab, L = 20, DL=100 psf, LL=40 psf

    8 nominal CMU wall, 8 high, 80 psf

    2 x 1 concrete footing @ 150 pcf

    Allowable soil pressure Fs = 1500 psf

    Allowable CMU stress Fa = 80 psi

    Analyze 1 ft wide strip

    Slab weight on wallw = (100+40) x 20 / 2 w = 1400 plf

    CMU wall (8 nominal = 7 5/8 = 7.625)

    w = 80 psf x 8 w = 640 plf

    Wall area (per foot)A = 12 x 7.625(per linear foot) A = 92 in2

    Wall stress

    f = P/A = (1400+640) / 92 f = 21 psi

  • 7/29/2019 05 Force Stress

    10/15Force vs stress Copyright Prof Schierle 2011 10

    Tension

    1 Cable ( strand)

    Assume:

    Allowable cable stressFa = Fy/3 = 210 ksi/3 Fa = 70 ksi

    Load P = 8 k

    Metallic area (70% metallic)

    Am = .7r2= .7 0.252 Am = 0.14 in2

    Stress

    f = P/A = 8 / 0.14 f = 57 ksi

  • 7/29/2019 05 Force Stress

    11/15Force vs stress Copyright Prof Schierle 2011 11

    Shear1 Single shear

    Assume:

    Load P=3k2x4 woodbarswith bolt

    Allowablebolt shear stress Fv =20ksi

    Shear area (bolt crosssection)

    A= r2

    = (0.5/2)2

    A=0.2 in2

    Shear stress

    fv = P / A = 3/ 0.2 f v = 15 ksi

    15 < 20, ok

    2 Check end shear block (A)Assume: P=3000#

    Length of shear blockA e=6

    Allowable wood shear stress Fv = 85 psi

    Endblock shear areaA=2x2 x6 A=24 in2

    Shear stress

    fv = P/A = 3000 # / 24 f v=125 psi

    125 > 85, NOT OK

    Required block length

    e = 6 x 125/85 = 8.8 use e = 9

  • 7/29/2019 05 Force Stress

    12/15Force vs stress Copyright Prof Schierle 2011 12

    Shear

    3 Bolted double shear

    Assume:Load P = 22 k

    2 5/8 bolts, allowable stress Fv = 20 ksi

    Shear area

    A = 4 r2 = 4 (0.625/2)2 A = 1.2 in2

    Shear stressfv = P / A = 22 / 1.2 f v = 18 ksi

    18 < 20, ok

    4 Glued double shearAssume:

    Load P = 6000 #

    Wood bars, allowable stress Fv = 95 psi

    Shear areaA = 2 x 4 x 8 A = 64 in2

    Shear stress

    fv = P / A = 6000 / 64 f v =94 psi

    94 < 95, ok

  • 7/29/2019 05 Force Stress

    13/15Force vs stress Copyright Prof Schierle 2011 13

    Shear

    5 Twin beam double shear

    Assume: P=R=12k

    2bolts, Fv =20ksi

    Shear area

    A=4 r2 =4 (0.5/2)2 A=0.79 in2

    Shear stressfv =P/A=12/ 0.79 f v =15ksi

    15

  • 7/29/2019 05 Force Stress

    14/15Force vs stress Copyright Prof Schierle 2011 14

    Shear walls:1 Plywood on wood studs2 Plywood on metal studs3 Reinforced concrete wall4 Reinforced CMU wall

    Twin bolts at double shear

  • 7/29/2019 05 Force Stress

    15/15Force vs stress CopyrightProfSchierle 2011 15

    d o n e