45
7/31/2019 02-HSDPA Principle V3.10 http://slidepdf.com/reader/full/02-hsdpa-principle-v310 1/45  © 2007 ZTE Corporation HSDPA Principle PPT Series for Technology Principle Name :××× E-mail :××× WCDMA Product Planning Dept. ZTE Marketing System

02-HSDPA Principle V3.10

Embed Size (px)

Citation preview

Page 1: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 1/45

 © 2007 ZTE Corporation

HSDPA Principle

PPT Series for Technology Principle 

Name :××× 

E-mail :××× 

WCDMA Product Planning Dept.

ZTE Marketing System

Page 2: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 2/45

Modification records 

Edition Date Writer/Modifier Approver Remark 

V3.10 2007-8-30 Dong chuanghong Establish 

Page 3: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 3/45

Agenda

HSDPA Theory

HSDPA Physical Layer

HSDPA Key Technologies

HSDPA RRM

HSDPA Evolution

Page 4: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 4/45

HSDPA  H igh S peed D ownlink P acket Access 

… … 

3G

4G

HSDPA is a new technology introduced in R5 

Goal: To provide a packet-oriented wireless 

broadband access service with high performance 

price ratio, high downlink bandwidth and short 

delay for WCDMA

3GPP R5 standards are frozen in June, 2006 

Small modification to R99/R4 structure 

HSDPA insists on the concept of smooth evolution. HSDPA is the enhancement of R99 

structure with the newly added MAC-hs layer to 

achieve HARQ, scheduling and AMC. It also adds 

three dedicated channels on the physical layer.

Improve the system capacity by applying new 

technologies 

Share channel transmission-Fast Scheduling 

Shorter TTI - Fast retransmission and soft 

combination 

Link Adaptive - Permitting High order modulation 

HSDPA High Performance Price Ratio

Downlink peak rate of single cell: 14.4MbpsMulti-user share of single cell, with 230

users in theory

Low cost:Small modification to R99

Good technical

evolution of WCDMA  

Page 5: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 5/45

HSDPA Protocol Stack 

R99/R4

PHY

MAC

RLC

PHY L1

L2

DSCH

FP

L1

L2

DSCH

FP

MAC-c/sh

L1

L2

DSCHFP

L1

L2

DSCHFP

MAC-d

RLC

Uu Iub Iur

UE Node-B CRNC SRNC

MAC-hs

PHY(3 newCHs)

HS-DSCH

FP

HS-DSCH

FP

HS-DSCH

FP

HS-DSCH

FP

R5 HSDPA

MAC-hs

Uu: New additional 3 Physical layer

Channels, i.e.,HS-PDSCH

(Downlink Data), HS-SCCH

(Downlink Control Signalling), HS-

DPCCH (Uplink Control Signalling)

Additional MAC-hs layer

on Node-B (H-ARQ, AMC

and Scheduling etc) 

Iub, Iur: HS-DSCH

FP (Downlink Data)

Page 6: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 6/45

HSDPA Newly Added Physical Channels 

R99 Channel

HSDPA Channel

 HS-PDSCH:Bearing HS-DSCH,transmitting HSDPA user data (DL)

It is a 2ms subframe with 3 slots, SF=16 and multiple codes permitted. HS-PDSCH

can use two modulations of QPSK and 16QAM.

 HS-SCCH Bearing the signaling information for demodulation of HS-PDSCH (DL)

It is a 2ms subframe with 3 slots and SF=128. HS-SCCH includes the information of modulation,

transport block size, UE identification, etc. It uses QPSK modulation. 

 HS-DPCCH Bearing feedback information transmitted by downlink HS-DSCH (UL)

Includes Hybrid-ARQ ACK/NACK and Channel-Quality Indication (CQI). It is a 2ms subframe with 3

slots and SF=256. First slot is ACK/NACK and the following two slots are CQI.

HS - DPCCH 

HS - PDSCH 

H S - S C C H UE 

DPCH 

DCCH (Signaling) + UL DTCH (PS Service) 

DL DTCH ( P S Service) 

CN UTRAN 

Page 7: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 7/457 

HS-PDSCH Physical Channel Structure 

HS-PDSCH can use QPSK or 16QAM modulation. M is the bit represented by each 

modulation symbol. For example, M=2 stands for QPSK and M=4 stands for 16QAM.

All layer1 signaling are transmitted by affiliated HS-SCCH. HS- PDSCH doesn’t carry any 

layer 1 signaling.

Slot #0  Slot#1  Slot #2 

T slot = 2560 chips, M*10*2 k  bits (k=4) 

Data N data 1 bits 

1 HS - PDSCH subframe: T f  = 2 ms 

HS-PDSCH Frame Format

Physical Channel Slot Format

Slot format #1Channel 

BitRate 

Channel 

Symbol Rate SF 

Bit/HS-DSCH Sub- 

frame Bits/Slot N data 

0(QPSK) 480kbps 240kbps 16 960 320 320 

1(16QAM) 960kbps 240kbps 16 1920 640 640 

Page 8: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 8/458 

HS-SCCH Physical Channel Structure 

HS-SCCH adopts fixed code rate (60 kbps, SF=128), bearing the related downlink signaling for demodulation of HS-PDSCH 

Slot #0  Slot#1  Slot #2 

T slot = 2560 chips, 40 bits

Data 

N data 1 bits 

1 subframe: T f  = 2 ms 

HS-SCCH Frame Format

HS-SCCH

HS-PDSCH

3Tslot 7680 chips

HS-PDSCH (2Tslot 5120 chips)

3Tslot 7680 chips

HS-DSCH sub-frame

Timeslot relation of HS-SCCH and HS-PDSCH

HS-PDSCH begins after HS-SCCH starting 2  Tslot = 5120 chips 

Page 9: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 9/459 

HS-DPCCH Physical Channel Structure 

HS-DPCCH carries the feedback signaling transmitted by downlink HS-DSCH. The 

feedback signaling includes HARQ-ACK and CQI.

Each 2ms subframe includes 3 slots with 2560 chips per slot, same as the normal 

DPCCH. HARQ-ACK is at the first slot of HS-DPCCH subframe. CQI is at the second and 

third slots.

HS-DPCCH: SF=256, each slot has 10bits.

Normally one wireless link has a HS-DPCCH and it must exist with one certain uplink DPCCH.

Subframe #0 Subframe #i Subframe #4

HARQ-ACK CQI

One radio frame Tf  = 10 ms

One HS-DPCCH subframe (2 ms)

2 Tslot = 5120 chipsTslot = 2560 chips

HS-DPCCH Frame Format

Slot 

format #1

Channel 

Bit Rate 

Channel 

Symbol Rate SF 

Bit/HS-DSCH 

Sub-frame Bits/Slot 

Transmitted slot per 

sub-frame 

0 15kbps 15kbps 256 30 10 3 

HS-DPCCH Slot Format

Page 10: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 10/4510 

HSDPA Newly Introduced Physical Channels’ Timing Relation 

HS-

PDSCH

HS-SCCH

HS-DPCCH (ACK/NACK and/or CQI)

HS-SCCH

2 TS 7.5 TS +/- 128 Chip N TS

1 TS = 2560 Chip

The starting point of first HS-

SCCH subframe is the same asthe starting point of P-CCPCH

Page 11: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 11/4511

HSDPA Work Procedure 

HS-DSCH deploys fixed spreading factor with SF 16. According to the CQI reported by

UE, Node B decides the size of data block, modulation, coding rate and the number of

code channels of HS-DSCH so that Node B can be quickly adaptive to the transmission

loss and channel fading when the data is transmitting.

Node B RNCUE

5) ACK/NACK on HS-DPCCH

6)Data packet+retransmit(if need) On HS-DSCH

Data Packet

2) Schedule and determine HS-DSCHparameter

3) Send HS-DSCH Parameter on HS-SCCH and Data on HS-DSCH

4) Check HS-DSCH parameter, If Ok, Receive,

Store data and demodulate

1) CQI on HS-DPCCH

Page 12: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 12/45

Agenda

HSDPA Theory

HSDPA Physical Layer

HSDPA Key Technologies

HSDPA RRM

HSDPA Evolution

Page 13: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 13/4513 

HS-DSCH Transport Channel 

Only exists on the downlink channel 

Number of transport block always equals to 1

One HS-DSCH handle one CCTrCH, decoding from one CCTrCH 

One UE corresponds to the only one CCTrCH 

CCTrCH can be mapping to one or several physical channels 

One CCTrCH has only one HS-DSCH 

Always accompanying DPCH and one or more share physical control 

channels (HS-SCCHs) 

Quality balance of different HS-DSCH channels

Static data match (Two rate matches in HARQ) 

Transport block cascade

The number of transport block is 1 forever and as well as the number of transport

channel, and each CCTrCH only corresponds to one HS-DSCH, so the followingsdon’t exist: 

Page 14: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 14/4514 

HS- DSCH’s coding and multiplexing  

CRC check: same as normal CRC, 24bit in L1

Bit scramble: The bit after CRC check is scrambled by bit 

scrambler 

Code block segment: same as R99, Turbo coding, Z=5114 

Channel encode: same as R99, using 1/3 Turbo code 

HARQ: Bits after adjusting channel encoding match with 

the total bits mapping from HS-SDCH to HS-PDSCH 

Physical channel segment: When using multiple HS- 

PDSCH, the physical channels are segmented.

Interleave: progressed independently according to each 

physical channel 

16QAM constellation recomposition: This function is 

transparent to QPSK 

Physical channel mapping 

CRC attachment a im1 ,a im2 ,a im3 ,...a imA 

Code block segmentation 

Channel Coding 

Physical channel segmentation 

PhCH#1  PhCH#P 

Physical Layer Hybrid-ARQ functionality 

d im1 ,d im2 ,d im3 ,...d imB 

o ir1 ,o ir2 ,o ir3 ,...o irK 

c i1 ,c 

i2 ,c 

i3 ,...c 

i E 

v p,1 ,v p,2 ,v p,3 ,...v p,U 

u p,1 ,u p,2 ,u p,3 ,...u p,U 

w 1 ,w 2 ,w 3 ,...w R 

HS-DSCH Interleaving 

Physical channel mapping 

Constellation re-arrangement 

for 16 QAM r p,1 ,r p,2 ,r p,3 ,...r p,U 

Bit Scrambling b 

im1 ,b 

im2 ,b 

im3 ,...b 

imB 

Bit scramble is to guarantee the synchronization of receiving

data and transmitting data, without introducing the time

deviation. Bit Scramble is to encrypt the data bits and it does

not change the bit length of the data.

Page 15: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 15/4515 

HARQ and Rate Matching 

Systematic

bits

Parity 1

bits

Parity2

bits

RM_P1_1

RM_P2_1

RM_P1_2

RM_P2_2

RM_S

First Rate Matching Second Rate MatchingVirtual IR Buffer

Nsys

N

p1

Np2

Nt,sys

N

t,p1

Nt,p2

bitseparation

NTTI

bitcollection

N

data

C W

HARQ function block adjusts the bits after channel encoding and the total bits

mapping from HS-SDCH to HS-PDSCH to be matched. HARQ function block is controlled by the parameter of redundancy version (RV).

The output bits of HARQ function block is determined by input bits, output bits

and RV parameter.

HARQ function block is composed of two rate matcher and one virtual buffer

Page 16: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 16/4516 

First Rate Matching and Second Rate Matching 

The algorithm of first rate matching is almost the same with Rel99. Bits of encoder 

output match with the bits of virtual IR buffer input. Virtual buffer capacity N IR  is 

given by the high layers. Encode bit N TTI  is derived from the high layer signaling 

and the signaling parameters of HS-SCCH of each TTI.

N IR ≥ N TTI  then first rate matching is transparent.

N IR < N TTI  then punch for N TTI bit.

First Rate Matching

Second rate matching lets the output bits after first rate matching match with the physical

channel bits provided by the HS-PDSCH set in one TTI. The parameters of second rate

matching is controlled by RV parameters.

Second rate matching execute the punch again according to the value of s and r of the RV

parameters. The punched data can be put into different data sets and different data sets

correspond to different RV parameters. Only one data set is transmitted in any fixed time

segment.

Second Rate Matching

Page 17: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 17/4517 

HARQ Rate Matching and IR Method 

During the second rate matching, the data set formed by punch are displayed by different 

gray levels  Deep, Medium, Low 

Deploy different RV and punch method when retransmitting data 

When 16QAM is deployed, different RV methods correspond to not only different punch 

methods but also different constellation versions or reforming.

IR buffer size 10bit

Raw data 4bit,1/3 Turbo encoder

Page 18: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 18/4518 

HS-SCCH Physical Procedure 

Channel code set (7 bits): Code group indicator and 

offset indicator 

Modulation mode (1 bit): QPSK and16QAM 

Size of transport block (6 bits): Index Mapping 

Hybrid-ARQ progress (3 bits): Index Mapping 

Redundancy and constellation version (3 bits): 

Eight choices 

New data indicator (1 bit) 

UE Identification (16 bits)  HS-DSCH radio network 

identifier  H-RNTI) 

HS-SCCH carries following signaling info

16bit CRC+UE Identification

Convolution code

Rate matching by punching at fixed place

Physical channel mapping

ChannelCoding 1

HS-SCCH

Physicalchannelmapping

Ratematching 1

mux mux

Xccs Xms

Xue

X1X2

Xtbs Xhap

XrvXnd

Y

ChannelCoding 2

Ratematching 2

UEspecificmasking

Z1Z2

S1

R1 R2

Xue

RVcoding

r s b

UE specificCRC

attachment

CodeSet

Modulation

TransportFormat HARQ New Data

RV

UE Identification

Page 19: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 19/4519 

HS-DPCCH Physical Procedure 

HARQ-ACK/NACK encode  10bit full “1” and full“0”  

CQI encode  adopting (20, 5) code, 20bits CQI info bit encode 

Create corresponding 0  30 total 31 CQI value  HS-DPCCH and other uplink channels make frequency 

spreading in parallel. If the max. number of DPDCH is even,

then HS-DPCCH is mapping to route I, otherwise it is mapping 

to route Q.

HS of HS-DPCCH is derived from the power offset informed by 

ACK, NACK and  CQI 

Physical channel mapping 

Channel Coding Channel coding 

PhCH 

b 0 ,b 1 ...b 19 

Physical channel mapping 

HARQ-ACK  CQI 

a 0 ,a 1 ...a 4 

PhCH 

w 0 ,w 1 ,w ,...w 9 

HARQ-ACK and CQI handle the encode in parallelDoing multiplexing at different times

I

 

 j

cd,1 d

Sdpch,n 

I+jQ

DPDCH1

Q

cd,3 d

DPDCH3

cd,5 d

DPDCH5

cd,2 d

DPDCH2

cd,4 d

cc c

DPCCH 

 

S

CHSHS-DPCCH(If Nmax-dpdch

=odd) 

DPDCH4

CHSHS-DPCCH(If Nmax-dpdch

=even) 

HS

  we e

HS

  we e

cd,6 d

DPDCH6

Page 20: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 20/45

Agenda

HSDPA Theory

HSDPA Physical Layer

HSDPA Key Technologies

HSDPA RRM

HSDPA Evolution

Page 21: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 21/4521

HSDPA Introduced Key Technologies 

AMC Fast Scheduling

16QAMFixed SF16, 2ms short frame

Shared channelHARQ

1 2

3 4

5 6

① Adopt 2ms short frame, fixed SF, TDM

and CDM between the users at the

same time

② Introduce 16QAM high order

modulation, providing higher

modulation efficiency

③ AMC makes the data transport well

adaptive to the changes of radiochannels

④ Fast scheduling makes multi-user

share the radio resource.

⑤ HARQ quickly adjust the channel rate

according to the status of radio link

and achieve the error correction andretransmission of the data.

⑥ Shared channel makes the number of

access users not limited by the code

resources.

Page 22: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 22/4522 

Key Technology 1 2ms radio frame 

Share channel resources are dynamically assigned in every 

2ms TTI 

HARQ fast feedback retransmission based on 2ms TTI 

2ms TTI makes scheduling response much faster and in time 

10 ms

20 ms

40 ms

80 ms

Earlier releases

2 ms

Rel 5 (HS-PDSCH, HS-SCCH, HS-DPCCH)

“sub-frames” (2560 chips/slot, 3Slots) 

Standard Frame length Channel feedback delay Remark 

R99 10ms >100ms Scheduling feedback is in 

RNC 

HSDPA 2ms 5ms ( 7.5 Slots ) 

Continuous feedback 

supported, R5 still support 

the 10ms frame of R99 

Decrease the loop time effectively, improve the link adaptive ability highly

Page 23: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 23/45

23 

Key Technology 2  16QAM 

HSDPA Modulation 

QPSK 

16QAM 

Page 24: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 24/45

24 

Key Technology 3  AMC 

Adaptive Modulation and Coding 

( AMC )is a technique which changes 

modulation, encode mode and size of 

code block (TFRC) according to the 

changes of channel situation. It makes 

the data transmission changing 

according to the channel situation. It is 

a better link self-adaptive technique.

The feature of AMC is adaptive to the 

changes of interference and fading 

through changes of TFRC but not 

through changes of transmission power.

Standar 

AMC Remark 

R99   - Deployed fast power control 

HSDPA used Can satisfy the 15dB SIR 

dynamic range 

Page 25: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 25/45

25 

Key Technology 3  AMC 

Modulation adaptiveGood channel condition: 16QAM

Bad channel condition: QPSK

Code efficiency adaptiveGood channel condition: ¾ code rate

Bad channel condition: 1/3 code rate

Code channel number adaptiveGood channel condition: more code channels

Bad channel condition: less code channels

Full use of channel conditions to transmit user data effectively

Good channel condition: High user data rate transmission

Bad channel condition: Low user data rate transmission

The combination of different parameters such as modulation mode, coding

mode, number of code channels, size of transport block, RV matching has

thousands of configuration choice. This makes AMC technique higher

efficiently and more flexible.

Page 26: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 26/45

26 

Key Technology 4  Fast Packet Scheduling 

Scheduling based on time and code channel

Scheduling principle 

Fair scheduling algorithm: Round 

Robin (RR) 

Max. C/I scheduling algorithm (Max 

C/I) 

Part fair scheduling algorithm (PF) 

   5 

  c  o   d  e  s

TTI 1

TDM

TTI 2 TTI 3 TTI 4

 C D M 

UE CNode B

UE A

UE B

HS-PDSCH

TTI1 TTI2 TTI3

TTI1

TTI2

TTI2

TTI3

TTI3

Page 27: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 27/45

27 

Key Technology 5  HARQ 

Wrong Packet A

Packet A

Packet A

Wrong Packet A1

Packet A1

Packet A2

Packet A1

Packet A

Drop Reserved

FullRetransmission

Only retransmit

redundant info

Soft

Combination

Packet BPacket B

Node B UE Node B UE

Packet A2

Traditional ARQ, retransmission

mechanism inRNC

Low efficency, long delay

HARQ, retransmission mechanism in Node B

High efficency, short delay

Page 28: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 28/45

28 

Key Technology 6  Shared Channel 

User1 User2 User3

DCH1

DCH2

DCH3

Shared

HS-DSCH

UMTSR99

HSDPA

Saved for Other Users

“Shared fat-pipe” 

10ms

TTI = 2ms TimeMultiplexing

Code Multiplexing

Dedicated

TTI: Transmission Time Interval

Page 29: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 29/45

29 

Comparison of HSDPA and R99/R4 

Item R99  HSDPA 

Capacity  Mbps  2.688  14.4  

Frequency spectrum 

efficiency (kbit/(MHz*Cell)) 537.6  2795.2  

Handover Hard handover / Soft handover / 

Softer handover / Intersystem handover (to GSM) Hard handover in HS-PDSCH  

Power Control Open loop / Close loop / external loop 

Fast speed/ Low speed 

Low speed power control or no power 

control in HS-PDSCH  

Modulation QPSK  QPSK  16QAM  

Link Adaptive Fast power control/ soft handover AMC  HARQ  short frame and fast 

channel feedback  

Bit Scramble and Descramble N/A Only used in HS-PDSCH  

MAC-hs N/A Used for fast scheduling  

HSDPA

HSDPA is to adjust data rate

according to channel condition when

ensuring the power

Constant power Changing

data rate  

R99/R4

R99/R4 is to adjust power according

to channel condition when ensuring

service rate

Constant data rate, changing

power  

Page 30: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 30/45

Agenda

HSDPA Theory

HSDPA Physical Layer

HSDPA Key Technologies

HSDPA RRM

HSDPA Evolution

Page 31: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 31/45

31

RNC Radio Resource Management Summary 

Code resource management

HSDPAchannelization

code

HSDPAscrambling code

Power resource management

HSDPA total powerresource management

Service amount measurement/ Dedicated measurement

Dynamic radio carrier control

ChannelAssignment

ChannelHandover

Access control

DPCH

channelization code

Channel

Handover

Mobile management

Congestion control

Load control

Handovermeasurement

Power control

Physical channel power control

Load balance

Dedicatedmeasurement

R4

Common

Measurement

HSDPA

Common

Measurement

Assignment of HSDPAresource for each cell

User resource assignmentand management

Page 32: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 32/45

32 

Code Resource Management 

Assignment method of HS-PDSCH channelization code: 

Continuous assignment from right to left of the code tree

Assignment method of HS-SCCH channelization code: 

Not need continuous assignment, adopting the assignment method of DPCH

channelization code

Assignment method of DPCH channelization code: 

Try to keep the highest use rate of code list

Assignment method of HS-PDSCH+HS-SCCH scrambling code: 

Can assign primary scrambling code and secondary scrambling code. Use primary

scrambling code in the first stage, secondary scrambling code in the later stage

Channelization codesallocated for HS-DSCH 

SF=16

SF=8

SF=4

SF=2

SF=1

Channelization codesallocated for DPCH Channelization codes

allocated for CCH 

Page 33: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 33/45

33 

Power Control 

HSDPA Physical control includes: HS-PDSCH, HS-SCCH and HS-DPCCH: 

HS-PDSCHPower control

HS-SCCHPower control

HS-DPCCHPower control

Support open loop power control, configurationMeasurement Power Offset

Support open loop and internal loop power controlHS-SCCH Power Offset can be dynamically adjusted

Support open loop and internal loop power control, configuration

ACK ,NACK and CQI,and can be dynamically adjusted accordingto link status

HS-PDSCH and HS-SCCH dynamically adjust HS-PDSCH and HS-SCCH total power according

to the resource occupancy of system excluding HS-PDSCH and HS-SCCH.

For HS-DPCCH, its transmission power is determined by DPCCH. UE determine the

transmission power of HS-DPCCH according to gain factor HS.

Page 34: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 34/45

34 

Access Control 

Because HS-PDSCH physical channel is shared resource, access control of HSDPA is different than the access control

of dedicated channel.

During the access control, the characteristics of streaming, interactive, background services and the working feature of

HS-DSCH must be fully considered. The high speed feature of HS-DSCH shared channel must be fully developed during

the access control.

H  S 

D P A 

A  c  c  e s  s  c  on t  r  ol   

UE support HSDPA

Number of HSDPA user

Power resource

Data throughput carried by HSDPA

DPCH channelizationcode resource

A  c  c  e s  s D  e c i   s i   on

Node B support HSDPA

Page 35: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 35/45

35 

Dynamic Radio Carrier 

 C h  ann el   

 s  s i   gnm en t  

CS real time service

PS non-real time service

PS real time service

Choose DCH

Prefer FACH and HS-DSCH

Choose FACH and DCH

Choose DCH and HS-DSCH

Cell support HSDPA

Cell does not support HSDPA

Page 36: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 36/45

36 

HSDPA Channel Handover 

HSDPA handover includes service cell change and channelhandover of HS-DSCH

Same frequency service cell change between Node B

First release the HS-DSCH resource of the old cell of source Node B, then

establish the same HS-DSCH resource as old cell in the new cell of Target

Node B.

Correspond to perform hard handover for HS-DSCH. The HS-DSCH transportchannel and radio carrier parameter do not change during the handover

procedure.

UE execute reassignment of physical channels. When the reassignment of

physical channel is valid, MAC-hs entity of UE needs to be reset and UE doesn’t

receive HSDPA service channel.

The valid time of physical channel reassignment of UE corresponds to the valid

time of radio link reassignment of Node B. At the valid time, the MAC-hs entity

of Source Node B releases and the MAC-hs entity of Target Node B establish.

The two Node Bs are not transmitting at this time. So the service is interrupted

instantaneously during the reassignment time.

Same frequency service cell

change inside Node B

Similar with the change of same

frequency service cell inside

Node B

The difference is that only one

Node B are controlling. Thus

MAC-hs entity of Node B does

not change and MAC-hs entity of

UE does not need to be reset. But

the service is interrupted at the

valid time of physical channel

reassignment.

Page 37: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 37/45

37 

Channel Handover Transfer Figure 

1. Traffic Trigger

2. Transmission Power Trigger

3. Congestion Trigger

DCH

FACH

HS-DSCH

PCH

1. Traffic Trigger

2. Movement Trigger

1. Traffic Trigger

2. Movement Trigger

1 .T r  af  f  i   c T r i   g g e

1 .T r  af  f  i   c T r i   g g e

2 . C  on g e s  t  i   onT r i   g

 g er 

1 .T r  af  f  i   c T r i   g g er 

2 .L  o a d T r i   g g er 

1 .T r  af  f  i   c T r i   g g er 

 3 . C  on g e s  t  i   onT r i   g

 g er 

1. Traffic Trigger

1. Traffic Trigger

HS-DSCH  DCH 

HS-DSCH  FACH 

HS-DSCH  PCH 

DCH  DCH 

DCH  FACH 

FACH  PCH 

Page 38: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 38/45

38 

HSDPA Congestion Control 

HSDPA congestion control means how to mitigate resource congestion under the condition of HSDPA

system resource congestion.

The resource of HSDPA is shared and utilized in the maximum. Thus the method of congestion control is slightly different from R99 cell. HS-DSCH resource congestion includes: 

Power resource congestion 

Limited HS-DSCH traffic 

Data through congestion 

Code resource congestion of accompanying DPCH 

channelization code 

Congestion control methodof HSDPA

Occupy in advance:When resource is congested, the high-priority user can occupy the resource in advance from the

low-priority user. It guarantees high-priority user can be always assigned resources.

Queue:The users who has no ability to occupy in advance but has the queue ability can be put into the queue and try

to access the resource again.

Decrease load:The policy of decreasing load is decreasing the speed. That is to decrease the rate of users who has

high background or interactive services for spare resources

HSDPA resource adjustment:Adjust the code resource or power resource of HSDPA to meet the requirements of users

R  e s  o ur  c  e c  on g e s  t  i   on

Occupyin advance

Queue

Decreaseload

HSDPAresourceadjustment

I  m pr  ov  e c  al  l   s  u c  c  e s  s r  a t   e ,

I  n c r  e a s  e s  y  s  t   em  c  a p a c i   t   y 

Page 39: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 39/45

39 

HSDPA Load Control 

Decrease usable power of HSDPA Its ultimate goal is decreasing the PS data 

throughput.

Decrease PS data throughput  Decrease the PS data rate on DCH. Delete macro diversity link  Decrease the radio link of overload cell to decrease the load.

Forced handover to another carrier or GSM system  Inter-frequency handover and 

intersystem handover can be used as the method for load transfer to decrease the load 

of overload cell.

Force some low-priority users to drop their calls.

The goal of load control is to guarantee the system stability.

If the system is appropriately planned, then the access control

and packet scheduling can avoid the overload of the resources

but can not avoid the situation that the system is overload

induced by suddenly user power increasing when the wireless

environment is deteriorated. Thus radio resource management

needs to adopt load control to let the system to be stable.

For the load control, the difference between HSDPA and R99 is only

at the downlink. Thus only the downlink load control method is

described here. The policy of decreasing load includes: 

 O v e r l   o a  d 

Decrease overall power of 

HSDPA 

Decrease PS data throughput 

Delete macro diversity link  

Forced handover 

E n s  ur  e  t  h  e  s  y s  t   e m

 s  t   a  b i  l  i   t   y

Page 40: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 40/45

40 

Influence of HSDPA to R99 RRM Algorithm 

By introducing HSDPA, the related HSDPA physical channels are

added. Thus R99 RMM algorithm is needed to be upgrade:  Add special handling of HS-PDSCH and HS-SCCH code resource

management

Add access control method of HS-DSCH

Add power control method of HSDPA

Add dynamic radio carrier control policy after introducing HS-DSCH

The introducing of HSDPA cell and handover characteristics of HSDPA

physical channel affect the mobile handover decision policy and handling.

Add load balancing characteristics for cells. Affect the selection of load

balanced destination cell and later handling, eg., accompanying the transfer

between HS-DSCH and DCH

Update in congestion control

Update in load control

Page 41: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 41/45

Agenda

HSDPA Theory

HSDPA Physical Layer

HSDPA Key Technologies

HSDPA RRM

HSDPA Evolution

Page 42: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 42/45

42 

Mobile Communication Development 

  Mobile communication is developed from 2G→3G→3.9G. It is

developed from mobile voice service to high speed data service. Currently it is developed to 3.5G. For WCDMA, commercial R5

version and trial R6 version can be provided now.

3GPP is working on the standards of R7/HSPA+ and R8/LTE. It is

estimated that R7 will be finalized on 2007 and R8 will be finalized

on 2008.

The development of radio technology pays more attention to the

requirement of operator — NGMN organization proposed the system

development goal.

Page 43: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 43/45

43 

Mobile Communication Technology Evolution 

2 G  2 . 5 G  3 G  3 . 5 G  3 . 75 G  3 . 9 G 2 . 75 G 

GSMWCDMA

R99GPRS

EDGE

HSDPA HSUPA

HSPA+

LTE

IS-95CDMA20001X EV-DO

CDMA2000 1X

EV-DORev. A

EV-DORev. B

AIE

CDMA20001X EV-DV

Page 44: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 44/45

44 

WCDMA Roadmap 

GSM

GPRS/EDGE

3GR99

3G+HSDPADownlink

Enhanced

3GHSDPA/HSUP

A

Downlink/UplinkEnhanced

GSM(GPRS/EDGE)

3G

Enhanced UMTS

Optimized UMTS

NGMN

NGMN(LTE,…) Broadband radio

IP based wideband

Peer to Peer

2002-3 2003-4 2005-6 2007-9 After 2009Year

DL

throughput

64-144kbps 64-384kbps 384kbps-4Mbps 384kbps-7Mbps 20-50Mbps

Page 45: 02-HSDPA Principle V3.10

7/31/2019 02-HSDPA Principle V3.10

http://slidepdf.com/reader/full/02-hsdpa-principle-v310 45/45

© 2007 ZTE Corporation