01_Dist_Part_1

Embed Size (px)

Citation preview

  • 7/31/2019 01_Dist_Part_1

    1/22

    Siemens AG 2006

    Distance Protection

    for transmission lines: part 1

    Gustav Steynberg

  • 7/31/2019 01_Dist_Part_1

    2/22

    Page 2 Jul-06

    Siemens AG 2006

    Power Transmission and DistributionAuthor

    Why impedance protection?

    Situation: Meshed network and two infeedsDirectional overcurrent time relays

    0,6s

    0,6s

    0,3s

    0,3s

    0,6s

    0,6s

    0,3s

    0,3s

    non-selective trip

  • 7/31/2019 01_Dist_Part_1

    3/22

    Page 3 Jul-06

    Siemens AG 2006

    Power Transmission and DistributionAuthor

    Localization of short-circuits by means of an impedancemeasurement:

    fault on the protected line

    fault outside the protected line

    Z1

    relay A

    selectivity

    relay A

    Z2

    Basic principle of impedance protection

  • 7/31/2019 01_Dist_Part_1

    4/22

    Page 4 Jul-06

    Siemens AG 2006

    Power Transmission and DistributionAuthor

    Distance measurement (principle)

    6 loops: 3 phase- phase loops and3 phase- ground loops

    phase- phase -loop:

    The same applies to the remaining loops

    UL1-L2 =

    ZL (

    IL1 -

    IL2)

    Measured current

    measured voltage

    06.08.97dtgerdis3

    ZL = RL + j XL

    ZE = RE +j XE

    IL1

    IL2

    IL3

    IE

    Z

    L

    Z

    EUL1UL2UL3

  • 7/31/2019 01_Dist_Part_1

    5/22

    Page 5 Jul-06

    Siemens AG 2006

    Power Transmission and DistributionAuthor

    phase-ground-loop:UL1 = L1 ( RL + j XL )- E ( RE +j XE)

    L1, E measured current

    UL1 measured voltage

    06.08.97dtgerdis3

    The same applies to the remaining loops

    Distance measurement (principle)

    IL1

    IL2

    IL3

    IE

    ZL

    ZE

    UL1UL2UL3

    ZL = RL + j XL

    ZE =

    RE +j

    XE

  • 7/31/2019 01_Dist_Part_1

    6/22

    Page 6 Jul-06

    Siemens AG 2006

    Power Transmission and DistributionAuthor

    Load and short-circuit impedances

    ZLZLF1

    ZLF2

    RF RF

    ZLoadD

    F1 F2

    X

    R

    ZL

    ZLF2

    j SC1j SC2

    j L

    RR

    ZF1

    ZF2

    RR

    ZLoad

    ZLF1

    Fault area

    distance relayoperating

    characteristic

    Fault in

    reverse

    direction Load area

    Minimum Load Impedance:Minimum voltage 0,9 Un

    Maximum current 1,1 In

    Maximum angle 30

    Phase - Phase Fault

    RR RF / 2

    Phase - Earth Fault

    RR RF /(1 + RE/RL)

  • 7/31/2019 01_Dist_Part_1

    7/22Page 7 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    Principle of (analog) distance relaying

    ISC

    E

    comparator

    ZL

    ZSC

    ZReplica (line replica impedance)

    (corresponds to the set zone reach)

    U1= k1 USC= k1 ISCZSC.

    U2=k2

    ISCZReplica

    ZS

    Relay design:operation if

    U1< U2i.e. ZSC< ZReplica

    ZReplicaX

    R

    Ext. fault

    Internal fault

    A B

  • 7/31/2019 01_Dist_Part_1

    8/22Page 8 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    Typical distance zone-characteristic

    MHO-circle

    shifted circle

    polarisedMHO-circle quadrilateral

    ZR

    ZSC

    ZSC'

    externalfault

    internalfault

    X

    R

    X

    R

    ZS = 0

    ZS small

    ZS high ZS

    RF

    ZL

    X

    R

    centre

    ZSC

    '

    ZSC

    settable arccompensation

    X

    XA

    ZSC-L Rarc

    RRA

  • 7/31/2019 01_Dist_Part_1

    9/22Page 9 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    Graded distance zones

    time

    D1 D2 D3

    t1

    t2

    t3

    Z1

    Z2

    Z3

    distance

    t = grading time

    A CB D

    Z1 = 0,85 ZAB

    Z2 = 0,85 (ZAB + 0,85 ZBC)

    Z3 = 0,85 (ZAB + 0,85 (ZBC + 0,85 ZCD))

    Safety margin is 15%: line error

    CT, VT error

    measuring error

    Grading rules:

  • 7/31/2019 01_Dist_Part_1

    10/22Page 10 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    2nd Zone: It must initially allow the 1st zone on the neighbouring feeder(s) to clear the fault.The grading time therefore results from the addition of the following times:

    operating time of the neighbouring feeder mechanical 25 - 80 msstatic: 15 - 40digital: 15 - 30

    +circuit breaker operating time HV / EHV: 60 ms (3 cycles) / 40 ms (2 cycles)MV up to about 80 ms (4 cycles)

    +distance relay reset time mechanical: approx. 60-100 msstatic: approx. 30 msdigital: approx. 20 ms.

    +errors of the distance relay internal timers mechanical: 5% of the set time, minimum 60-100 msstatic: 3% of the set time, minimum 10 msdigital: 1% of the set time, minimum 10 ms

    +distance protection starting time *) mechanical: O/C starter: 10 ms, impedance starter: 25 msstatic: O/C stater: 5 ms, impedance starter: 25 ms

    digital: generally 15 ms

    + safety margin (ca.) grading; mechanical-mechanical: 100 msstatic/digital-mechanical or vice versa: 75 msdigital-digital or static-static 50 ms

    *) only relevant if the set relay times relate to the instant of fault detection / zone pick-up. This is the case withall Siemens relays. There are other relays where the time is adapted by software to relate to the instant of faultinception. In the latter case the starting time has to be dropped.

    Determination of grading times(With numerical relays 250 ms is possible)

  • 7/31/2019 01_Dist_Part_1

    11/22Page 11 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    SC

    Current area forforward faults

    SC

    Current area forreverse faults

    SC

    USC

    R

    ZSC

    Z'SC

    Impedance area forforward faults

    Impedance area forreverse faults

    X

    SC

    Determination of fault direction

    current / voltage diagram impedance diagram

    Fault location Where is the fault ?

    The impedance also shows the direction, but ....

  • 7/31/2019 01_Dist_Part_1

    12/22Page 12 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    direction may be determined together with the impedance measurementbut: problems may arise in certain cases (e.g. close-in faults)

    separate directional determination required!

    Why impedance measurement and directional determination separately?

    line characteristic

    fault with arc resistancein forward direction

    fault in forward direction

    fault in reversedirection

    close-in fault

    X

    R

    A B

    Impedance measurement and directional determination

  • 7/31/2019 01_Dist_Part_1

    13/22Page 13 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    Alternatives for the directional measurement

    faulty phase voltage

    Vf

    If

    VL2

    VL3

    voltage memory(pre-fault voltage)

    If

    VL2VL3

    VL1

    healthy-phase voltage(phase to phase voltage)

    If

    Vf

    VL2-L3 VL2VL3

    ~~

    ~

    ~~

    ~

    ~~

    ~

    ZlineZgrid relay

    fault L1-E

    Method 1 Method 2

    VL1

    VL1Vf

  • 7/31/2019 01_Dist_Part_1

    14/22Page 14 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    Directional measurementSummery of all 3 methods

    uRI

    = uL2-L3

    uf= uL1

    Distance measurement

    Direction measurementwith voltage memory

    Direction measurementwith unfaulted voltage

    if(t)u

    L1

    if

    if

    if

    uL2-L3

    uL1

    06.08.97dtgerdis9

    Measuringwindow

  • 7/31/2019 01_Dist_Part_1

    15/22Page 15 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    Fault detection techniques

    Over-current fault detectionVoltage dependantover-current fault detection

    Voltage and

    angle dependantover-currentfault detection

    I

    U

    I >>I > I >

    R

    X

    Impedancefaultdetection

    Not in 7SA522

  • 7/31/2019 01_Dist_Part_1

    16/22Page 16 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    110 kVnet SCC(3)" = 1500 MVA

    40 MVAuSC = 15 %20 kV

    400/1 A

    l

    I>start = 1,5 IN = 600 A

    D

    OH-line95/15 Al/St

    Z'L = 0,483 /km

    ' l)

    10 20 30 40 50 60

    I>start= 600 A

    0,5

    1,0

    1,5

    2,0

    2,5

    ISC(2)[kA]

    l [km]

    ISC(2)=UN 1,1

    2 (ZS +ZS +ZL

    reach of OC starterapprox. 32 km

    N T

    Reach of over-current fault detection

    ph-ph fault as an example

    There is a limitation

    to the reach

  • 7/31/2019 01_Dist_Part_1

    17/22

    Page 17 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    II>>I>

    UI>>

    UI>

    UN

    Udigital

    electro-mechanical

    Powersystem

    Relay

    line

    E

    E

    ZSUSC

    ZSCISC

    USC

    SC

    USC

    G

    G

    Voltage controlled overcurrent fault detection

  • 7/31/2019 01_Dist_Part_1

    18/22

    Page 18 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    Voltage and angle controlled overcurrent fault detection(U-I- -starting)

    50 %

    100 %

    U/UN

    I/IN1 2 3

    I> I> I>>

    U(I>) U(I>>)

    X X

    R R

    2

    11

    2

    This method is used in Germany

  • 7/31/2019 01_Dist_Part_1

    19/22

    Page 19 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    X

    R

    LoadLoad

    Z1

    Z2

    Z4

    Z3

    Z1B

    Z5

    Line

    Impedance zones of digital relays (7SA6 and 7SA52)

    Distance zones

    Inclined with line angle

    Angle a prevents overreach of

    Z1 on faults with fault

    resistance that are fed from

    both line ends

    Fault detection

    no fault detection polygon: the

    largest zone determinesthe fault detection

    characteristic

    simple setting of load

    encroachment area with

    Rmin and Load

  • 7/31/2019 01_Dist_Part_1

    20/22

    Page 20 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    Zone grading chart, radial feeder

    D

    A

    D

    B

    D

    C

    >>

    D

    >t

    ZT

    Z1

    Z2

    Z3

    Z1 = 0.85 ZA-B

    Z3 = 0.85 [ ZA-B + 0.85 (ZB-C+ 0.85 ZC-D) ]

    Z2 = 0.85 (ZA-B + 0.85 ZB-C)

    Grading according

    the recommendation

    with the safety margin

    of 15%.

  • 7/31/2019 01_Dist_Part_1

    21/22

    Page 21 Jul-06

    Siemens AG 2006Power Transmission and DistributionAuthor

    Ring feeder: with grading against opposite end

    0.6

    0.3

    grading time(s)

    The same grading from both sides

  • 7/31/2019 01_Dist_Part_1

    22/22

    Page 22 Jul 06

    Siemens AG 2006Power Transmission and DistributionAuthor

    Grading in a branched radial system

    L2

    L3

    L4

    L1

    Z2

    Z1

    Z3

    The impedances of the Z2 and Z3 must be grading with the shortest impedance