018 RF Model Document V2d2

Embed Size (px)

Citation preview

  • 8/18/2019 018 RF Model Document V2d2

    1/91

     

    Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2002 

    UMC 0.18µm 1P6M SALICIDE

    Mixed-Mode/RF CMOS MODEL

    Rev: 2d2

    1.Contents Page

    1.Contents 0

    2.Revision History 1

    3.Description 2

  • 8/18/2019 018 RF Model Document V2d2

    2/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    1

    2.Revision History:

    1. Modify the voltage coefficient of

    MIM model

    2. RESISTOR model

    a. Add absolute value of voltage

    coefficient into model card

     b. Rsh for N+poly=113 ohm/sq

    3. PAD model: add indexa 

    1. The parameter of MOS is modified to

     Nf in ADS

    2. Model name has modified to

    MIMCAPM_RF.

    3. Add Cjgate into MOS model

    4. Add voltage coefficient and temperature

    coefficient into resistor model

    5. Add voltage coefficient in MIM model

    6. Re-extract Inductor and MIS models 

    -

    To

    12/3/2002

    11/30/2002

    11/12/2002

    Date

    1. Different MIM trend for

    HSPICE and ELDO

    2. RESISTOR model

    a. W/O absolute value of voltage

    coefficient

     b. Rsh for N+poly=110 ohm/sq

    3. PAD model: w/o indexa

    2d2

    1. The parameter of MOS is Nf_N

    in ADS

    2. Model name is MIMCAPS_RF

    3. W/O Cjgate in MOS model

    4. W/O voltage coefficient and

    temperature coefficient in

    resistor model

    5. W/O voltage coefficient in MIM

    model

    2d1

    original-2d0

    Remark

    (purpose)

    FromVer.

    4. The range of spiral top metal

    width (W): 6um ~ 25um.

    5. The range of SR Capacitor :

    10um < l, w < 70um and the

    range of MR Capacitor :

    1 < nx, ny < 7

    4. The range of spiral top metal

    width (W): 6um ~ 20um.

    5. The range of SR Capacitor :

    10um

  • 8/18/2019 018 RF Model Document V2d2

    3/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    2

     

    This document provides information on the RF model, including N/P MOSFET(1.8V & 3.3V), Spiral inductor (circular), MIM capacitor (multi-rectangle &

    single-rectangle), MIS varactor, P+/N-Well varactor, Resistor (N+ Poly & P+ Poly& HR Poly), and Shielding Pad (PAD). These devices are fabricated using theUMC 0.18 um 1P6M salicide Mixed-Mode/ RF process.

    Four standard simulators (HSPICE, ELDO, SPECTRE, and ADS) are used toverify the RF models and the accuracy is acceptable for RF modeling. Layoutstructures of the devices are recommended to be the same as those of devices in thePCELL library provided for the purpose of avoiding model characteristicdistortion.

    The models used in this document are described simply as follows:

    1. Description 2

    2. N/P MOSFET 1.8V Model 3

    3. N/P MOSFET 3.3V Model  23

    4. Spiral Inductor Model 40

    5. MIS Varactor Model  506. P+/N-well Varactor Model  57

    7. MIM Capacitor Model 63

    8. N+/P+ non-salicided Poly Resistor Model  70

    9. HR non-salicided Poly Resistor Model  79

    10. Shielding Pad 86

    Appendix  90 

  • 8/18/2019 018 RF Model Document V2d2

    4/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    3

    2. N/P MOSFET 1.8V Model

    2.1 Contents 

    2.1 Contents

    2.2 Criteria of N/P MOSFET model

    2.3 Model Description and Parameters

    2.4 Spice parameter list

    2.5 Model verification

    UMC 0.18 µm RF CMOS Process

    N_L18W500_18_RF/N_PO7W500_18_RF

    P_L18W500_18_RF/P_PO7W500_18_RF

  • 8/18/2019 018 RF Model Document V2d2

    5/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    4

    2.2 Criteria of N/P MOSFET Model

    The 1.8V Model is divided into 4 sections. The first one, N_L18W500_18_RF, is valid for 1.8V

    NMOS devices with scaling gate finger numbers from 5 to 21 at a fixed length of 0.18um and a

    fixed finger width of 5um . The second, N_PO7W500_18_RF, is valid for 1.8V NMOS devices with

    scaling gate lengths from 0.2um to 0.5um at a fixed finger number of 7 and a fixed finger width of

    5um. The third section, P_L18W500_18_RF, is valid for 1.8V PMOS devices with scaling gate

    finger numbers from 5 to 21 at a fixed length of 0.18um and a fixed finger width of  5um. The last

    one, P_PO7W500_18_RF, is valid for 1.8V PMOS devices with scaling gate lengths from 0.2um to

    0.5um  at a fixed finger number of 7 and a fixed finger width of 5um.

    l Specific N/P MOSFET operation description:

    a. Effective frequency range: 100MHz ~10GHz

    b. Effective DC voltage range: |Vg| = 0.6 ~ 1.8V, |Vd| = 0V~1.8V

    c. Effective applicable voltage range of s-parameters: |Vg| = 0.6 ~ 1.8V, |Vd| = 0.6V~1.8V

    d. Gate length tuning range (L): 0.18 µm ~ 0.5 µm

    ** Notice: The recommended gate length range of the N_PO7W500_18_RF/ P_PO7W500_18_RF

    model is from 0.2µ m to 0.5µ m  **

    e. Unit translated gate length (L_um): 0.18 ~ 0.5f. Total gate width (Wtotal = W*NF): 25µm ~ 105µm

    g. Single gate finger width (W): 5.0 µm

    h. Gate finger number range (NF): 5 ~ 21

    i. Empirical scalable formula is used in the standard BSIM3v3.2 RF extension model.

     j. Gate finger numbers can be even or odd. We suggest using an odd number.

    l Extracted parameters and simulation results:

    a. Some specific parameters in this document can be calculated from the scalable formulas

    by giving a specific L (gate length) or NF (finger number).

    b. In this document, the “MOSFET Based Band Models” are released from UMC.

    c. Please ignore the following simulation warning messages:

    Warning: Pd=0 Ps=0 less than W.

    Warning: Noff is too large.

    Warning: Pdiblc2 is negative.

    d. Please use the RMS error function to calculate the errors between the measured and

    simulated data. (See Appendix A)

  • 8/18/2019 018 RF Model Document V2d2

    6/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    5

     

    l Model validation:

    a. “Two port” data is measured by 50 Ùimpedance system.

    b. “One port” is defined as the output port connected to ground.

    c. Simulation frequency is from 100MHz to 10GHz.

  • 8/18/2019 018 RF Model Document V2d2

    7/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    6

    2.3 Device Description and Model Parameters

    2.3.1 Extension equivalent circuit modelThe MOSFET extension equivalent circuit model is based on the BSIM3v3.2 model to extract

    the desired RF model. The results of two-port S-parameters de-embedded with open pad are used

    to extract the model parameters. Different geometry MOSFET devices are measured and the

    results are used to verify the accuracy of the model. The schematic of the extended BSIM3v3 RF

    model is showed in Fig. 2-1. Port1 is connected to poly gate and port2 is connected to drain. The

    intrinsic dc, cv and noise characteristics are modeled by BSIM3v3.2. The passive parasitic

    components and diode elements are described as follows:

    (1) Rgate is used to model the equivalent gate resistance.

    (2) Rsub1, Rsub2 & Rsub3 represent the substrate loss.

    (3) Djdb_area and Djdb_perim are used to model source/drain bottom junction and sidewall

     junction capacitance.

    (4) Djdb_swg and Djsb_swg are used to model source/drain sidewall junction capacitance

    per unit length at gate sidewall.

    (5) Cd & Cgs_ext represent the total equivalent capacitance between drain, source and gate.

    (6) Disable the junction diode in standard BSIM3v3 by setting AD = AS =PD = PS = 0.

    (7) Lsouce and Ldrain are used to model the parasitic inductance effect.

    Fig. 2-1 RF N/P MOSFET Extension Model

    G

    S D

    Rsub2Rsub3

    Rsub1

    Cd

    Rgate

    B

    Cgs_ext

    G

    S D

    Djsb_perim

    Djsb_area

    Rsub2Rsub3

    Rsub1

    Cd

    Rgate

    B

    Cgs_ext

    Lsource Ldrain

    Djsb_swgDjdb_perim

    Djdb_areaDjdb_swg

    G

    S D

    Rsub2Rsub3

    Rsub1

    Cd

    Rgate

    B

    Cgs_ext

    G

    S D

    Djsb_perim

    Djsb_area

    Rsub2Rsub3

    Rsub1

    Cd

    Rgate

    B

    Cgs_ext

    Lsource Ldrain

    Djsb_swgDjdb_perim

    Djdb_areaDjdb_swg

  • 8/18/2019 018 RF Model Document V2d2

    8/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    7

    2.3.2 RF MOSFET layout:

    The layout of the RF MOSFET is shown in Fig. 2-2 and PCell layout is provided in the

    corresponding electronic file. It is important to remember that model parameters are strongly

    dependent on the device layouts at RF band. Therefore, to get the accurate characteristics of the

    demonstrated devices, the layout structures should not be modified. The MOSFET layout has

    some distinguishing characteristics, described as follows:

    (1) Reducing the overlap capacitance between “Gate” and “Source”.

    (2) Reducing the gate resistance by putting parallel metal upon the finger gate.

    (3) Double-ended gate structure is used to reduce RF noise.

    (4) Grounded substrate surrounds the core device and is viewed as a part of RF device.

    (5) Symmetrical S/D structure is used for the modeling purpose.

    Gate

    Bulk 

    Source

    Drain

    Diffusion Dummy Block 

    Gate

    Bulk 

    Source

    Drain

    Diffusion Dummy Block 

     Fig. 2-2 RF N/P MOSFET 1.8V layout

  • 8/18/2019 018 RF Model Document V2d2

    9/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    8

    2.3.3 Simulated RMS errors

    Table 2-1 RMS Errors of measured and simulated S-parameters of N MOSFETs

    L_um*NF*W RMS_S11 (%) RMS_S22 (%) RMS_S21 (%) RMS_S12 (%)

    0.18*5*5 2.643 2.558 1.661 7.196

    0.18*7*5 4.102 3.614 1.647 8.419

    0.18*9*5 5.813 5.066 1.324 10.660

    0.18*13*5 9.011 6.176 0.975 13.770

    0.18*17*5 11.670 6.922 1.776 15.540

    0.18*21*5 13.460 6.812 2.423 16.1000.25*7*5 3.385 2.473 1.105 5.878

    0.35*7*5 3.863 2.160 1.205 5.908

    0.5*7*5 5.209 2.373 1.500 6.596

    Table 2-2 RMS Errors of measured and simulated S-parameters of P MOSFETs

    L_um*NF*WF RMS_S11

    (%)

    RMS_S22

    (%)

    RMS_S21

    (%)

    RMS_S12

    (%)0.18*5*5 1.516 1.022 1.030 2.843

    0.18*7*5 1.960 1.468 0.794 3.492

    0.18*9*5 2.740 1.996 1.399 3.957

    0.18*13*5 3.566 2.987 1.256 6.184

    0.18*17*5 4.498 3.931 1.568 8.230

    0.18*21*5 5.118 4.517 1.822 10.200

    0.25*7*5 2.351 1.295 2.572 3.951

    0.35*7*5 3.207 1.524 3.495 4.403

    0.5*7*5 5.054 1.813 4.768 8.173

  • 8/18/2019 018 RF Model Document V2d2

    10/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    9

    2.3.4 Empirical scaling formula

    Scaling rule is a method for IC designers to predict device performance which has not been

    measured during the modeling extraction. In this document, empirical scaling rule is provided and

    the scaling rule is an optional choice for users. After modeling all of the devices, we use regression

    analysis to obtain the relationship between the model parameters, gate length (L) and gate finger

    number (NF). The scaling formulas are listed in Table 2-3 ~ Table 2-6. Table 2-7 shows the area

    and perimeter parameters of extension S/D junction diodes.

    Table 2-3 Scalable formulas for 1.8V NMOSFETs with different Finger Numbers

    Parameter Scaling formula

    MOSFET N MOSFET BSIM3v3 RF SPICE MODEL

    P_RG (Ù) -0.8966+107.7889/NF-364.622/(NF*NF)

    P_CD (F) (0.9008+0.2570*NF+0.2297*(NF*NF))*1E-15

    P_CGS (F) (-2.0811+1.4629*NF+0.009752*(NF*NF))*1E-15

    P_LD = P_LS (H) (24.8301+396.8130/NF-1112.3751/(NF*NF))*1E-12

    P_RSUB1 (Ù) 120.783-258.189/NF+939.7544/(NF*NF)

    P_RSUB2 = P_RSUB3 (Ù) 2

    P_WR (841.3723+1543.5167/NF-4288.7956/(NF*NF))*1E-3

    Table 2-4 Scalable formulas for 1.8V NMOSFETs with different Gate Lengths

    Parameter Scaling formula

    MOSFET N MOSFET BSIM3v3 RF SPICE MODEL

    P_RG (Ù) 30.0038-10.2118/L_um+0.9998/(L_um*L_um)P_CD (F) (16.3846-30.4825*L_um+21.6092*(L_um*L_um))*1E-15

    P_CGS (F) (0.5460+55.9389*L_um-66.3582*(L_um*L_um))*1E-15

    P_LD = P_LS (H) 5.8E-11

    P_RSUB1 (Ù) 93.1907-8.5107/L_um+1.8334/(L_um*L_um)

    P_RSUB2 = P_RSUB3 (Ù) 2

    P_NLX (475.2494-439.9303*L_um+1066.9945*(L_um*L_um))*1E-9

    P_PCLM 0.1422+0.0846/L_um+0.0043/(L_um*L_um)

  • 8/18/2019 018 RF Model Document V2d2

    11/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    10

    Table 2-5 Scalable formulas for 1.8V PMOSFETs with different Finger Numbers

    Parameter Scaling formula

    MOSFET P MOSFET BSIM3v3 RF SPICE MODEL

    P_RG (Ù) -6.3044+287.3248/NF-996.0158/(NF*NF)

    P_CD (F) (3.0460+2.0138*NF+0.0467*(NF*NF))*1E-15

    P_CGS (F) (0.6197+0.0205*NF+0.0344*(NF*NF))*1E-15

    P_LD = P_LS (H) (52.1818+160.1501/NF+649.7715/(NF*NF))*1E-12

    P_RSUB1 (Ù) 70.5835-147.6535/NF-144.7453/(NF*NF)

    P_RSUB2 = P_RSUB3 (Ù) 1P_WR (808.0254+2116.1626/NF-2687.8868/(NF*NF))*1E-3

    Table 2-6 Scalable formulas for 1.8V PMOSFETs with different Gate Lengths

    Parameter Scaling formula

    MOSFET P MOSFET BSIM3v3 RF SPICE MODEL

    P_RG (Ù) 72.7967-25.7375/L_um+2.8321/(L_um*L_um)

    P_CD (F) (15.8033+4.660*L_um-8.9333*(L_um*L_um))*1E-15P_CGS (F) (3.7967-18.190*L_um+36.7333*(L_um*L_um))*1E-15

    P_LD = P_LS (H) 9E-11

    P_RSUB1 (Ù) 157.35-17.0875/L_um+1.3563/(L_um*L_um)

    P_RSUB2 = P_RSUB3 (Ù) 1

    P_NLX (616.3333-1840*L_um+2266.6670*(L_um*L_um))*1E-9

    P_PCLM 2.7030-0.6375/L_um+0.1313/(L_um*L_um)

  • 8/18/2019 018 RF Model Document V2d2

    12/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    11

    Table 2-7 Junction Diode parameters

    Parameter Definition

    P_Djdb_area Drain bottom junction diode area

    P_Djdb_perim Drain sidewall junction diode perimeter

    P_Djdb_swg Drain gate sidewall junction diode perimeter

    P_Djsb_area Source bottom junction diode area

    P_Djsb_perim Source sidewall junction diode perimeter

    P_Djsb_swg Source gate sidewall junction diode perimeter

    # Bottom junction diode area per source/drain region = 0.85 µm *5.0 µm# Source/Drain sidewall junction diode perimeter Refer to the following parameter list

    # Source/Drain gate sidewall junction diode perimeter = 5.0 µm * finger number

  • 8/18/2019 018 RF Model Document V2d2

    13/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    12

    2.4 Spice model parameter list

    # UMC_18_NMOS_1p8 RF BSIM3v3 SPICE MODEL# Scalable with Finger Number

    **1= Drain 2=Gate 3= Source 4=Bulk*.SUBCKT N_L18W500_18_RF 1 2 3 4 NF=21*** #### Define Bsim3v3 Model Variable #####*.PARAM P_WR='(841.3723+1543.5167/NF-4288.7956/(NF*NF))*1E-3'** #### Define RF Extension Model Variable #####*

    .PARAM P_RG='-0.8966+107.7889/NF-364.622/(NF*NF)'

    .PARAM P_CD='(0.9008+0.2570*NF+0.2297*(NF*NF))*1E-15'

    .PARAM P_CGS='(-2.0811+1.4629*NF+0.009752*(NF*NF))*1E-15'

    .PARAM P_LD='(24.8301+396.8130/NF-1112.3751/(NF*NF))*1E-12'

    .PARAM P_LS='(24.8301+396.8130/NF-1112.3751/(NF*NF))*1E-12'

    .PARAM P_DJDB_A='(4.25*((NF+1)/2))*1E-12'

    .PARAM P_DJDB_P='(1.7*((NF+1)/2)+5)*1E-6'

    .PARAM P_DJDB_G='(5*NF)*1E-6'

    .PARAM P_DJSB_A='(4.25*((NF+1)/2))*1E-12'

    .PARAM P_DJSB_P='(1.7*((NF+1)/2)+5)*1E-6'

    .PARAM P_DJSB_G='(5*NF)*1E-6'

    .PARAM P_RSUB1='120.783-258.189/NF+939.7544/(NF*NF)'.PARAM P_RSUB2=2

    .PARAM P_RSUB3=2** --------- Gate network ------------------------------Cgs_ext 21 30 P_CGSRgate 2 21 P_RG** --------- Drain network -----------------------------Ldrain 1 11 P_LDLsource 30 3 P_LSCd 11 30 P_CD

    ** --------- Substrate network -------------------------* Diodes are for n-type MOS transistors*Djdb_area 12 11+ bsim_diode_area+ AREA = P_DJDB_ADjdb_perim 12 11+ bsim_diode_perim+ AREA = P_DJDB_PDjdb_swg 12 11

    + bsim_diode_swg+ AREA = P_DJDB_G

  • 8/18/2019 018 RF Model Document V2d2

    14/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    13

    *Djsb_area 31 30+ bsim_diode_area+ AREA = P_DJSB_ADjsb_perim 31 30

    + bsim_diode_perim+ AREA = P_DJSB_PDjsb_swg 31 30+ bsim_diode_swg+ AREA = P_DJSB_G*RSUB2 12 40 P_RSUB2RSUB3 31 40 P_RSUB3RSUB1 40 4 P_RSUB1** --------- Ideal mos transistor ----------------------

    MAIN 11 21 30 40+ bsim_mos_transistor+ L = 1.8E-07+ W = 5E-6+ AD = 0+ AS = 0+ PD = 0+ PS = 0+ M = NF** -------- DIODES & NMOSFET SPICE PARAMETERS ------------*.MODEL bsim_diode_area D+ CJ0 = 0.00103 VJ = 0.813 M = 0.443 IS = 1E-06 N = 1*.MODEL bsim_diode_perim D+ CJ0 = 1.34E-10 VJ = 0.88 M = 0.33 IS = 7E-11 N = 1*.MODEL bsim_diode_swg D+ CJ0 = 5E-10 VJ = 0.88 M = 0.33 IS = 7E-11 N = 1*.model bsim_mos_transistor NMOS+ LEVEL = 49 VERSION = 3.2 BINUNIT = 1 MOBMOD = 1

    + CAPMOD = 2 NQSMOD = 0 NOIMOD = 2 TOX = 4.2E-09+ TOXM = 4.2E-09 XJ = 1.6E-07 NCH = 3.745E+17 RSH = 8+ NGATE = 1E+23 VTH0 = 0.3075 K1 = 0.4578 K2 = -0.02638+ K3 = -10.88 K3B = 0.2379 W0 = -8.813E-08 NLX = 4.279E-07+ DVT0 = 0.4042 DVT1 = 0.3237 DVT2 = -0.8602 DVT0W = 0.383+ DVT1W = 6E+05 DVT2W = -0.025 LINT = 1.587E-08 WINT = 1.022E-08+ DWG = -3.396E-09 DWB = 1.346E-09 U0 = 332.1 UA = -1.17E-09+ UB = 2.407E-18 UC = 4.355E-11 VSAT = 8.1E+04 A0 = 1.93+ AGS = 0.5072 B0 = 1.486E-06 B1 = 9.064E-06 KETA = 0.01752+ A1 = 0 A2 = 1 VOFF = -0.1208 NFACTOR = 1.038+ CIT = -0.001511 CDSC = 0.002175 CDSCD = 0 CDSCB = 0.0008241

    + ETA0 = 0.005504 ETAB = -0.001459 DSUB = 0.001592 PCLM = 0.741+ PDIBLC1 = 0.005061 PDIBLC2 = 0.006001 PDIBLCB = 0 DROUT = 0.001592+ PSCBE1 = 4.866E+08 PSCBE2 = 3E-08 PVAG = -0.2958 RDSW = 9.905

  • 8/18/2019 018 RF Model Document V2d2

    15/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    14

    + PRWG = 1.1 PRWB = 0 WR = P_WR ALPHA0 = 0+ ALPHA1 = 0 BETA0 = 30 XPART = 1 CGSO = 1.55E-10+ CGDO = 1.55E-10 CGBO = 0 CGSL = 3E-11 CGDL = 3E-11+ CKAPPA = 0.6 CF = 2.33E-11 CLC = 1E-07 CLE = 0.6+ DLC = 4E-08 DWC = 0 VFBCV = -1 NOFF = 1

    + VOFFCV = 0 ACDE = 1 MOIN = 15 NOIA = 1.31826E+19+ NOIB = 1.44544E+05 NOIC = -1.24516E-12 EM = 4.1E+07 AF = 1+ EF = 0.92 KF = 0 LMIN = 1.8E-07 LMAX = 1.805E-07+ WMIN = 5E-06 WMAX = 1.05E-04 XL = -1.05E-08 XW = 0+ JS = 1E-06 JSW = 7E-11 CJ = 0.00103 MJ = 0.443+ PB = 0.813 CJSW = 1.34E-10 MJSW = 0.33 TNOM = 25+ UTE = -1.286 KT1 = -0.2255 KT1L = -4.175E-09 KT2 = -0.02527+ UA1 = 2.153E-09 UB1 = -2.673E-18 UC1 = -3.832E-11 AT = 1.449E+04+ PRT = -46.18 XTI = 3 WL = 0 WLN = 1+ WW = 7.262E-16 WWN = 1 WWL = 0 LL = -1.062E-15+ LLN = 1 LW = 2.996E-15 LWN = 1 LWL = 0

    + LLC = -6.64E-15 LWC = 0 LWLC = 0 WLC = 0+ WWC = 0 WWLC = 0 LVTH0 = -0.0001 WVTH0 = 0.06027+ PVTH0 = 0 LNLX = -2.854E-08 WNLX = 0 PNLX = 0+ LNFACTOR = 0.032 WUA = -1.88E-11 WU0 = 0.54 PUB = 3.8E-20+ PW0 = 1.3E-09 LUA = 1.5E-11 LUB = 9.76E-20 WRDSW = 0+ WETA0 = 0 WETAB = 0 LETA0 = 0.001574 LETAB = 0+ PETA0 = 0 PETAB = 0 WPCLM = 0 WVOFF = -0.0004078+ LVOFF = -0.004208 PVOFF = -0.0003788 WA0 = -0.04731 LA0 = -0.4667+ PA0 = -0.02649 WAGS = 0.004242 LAGS = 0.3028 PAGS = 0+ WKETA = 0 LKETA = -0.01942 PKETA = 0 WUTE = 0.06373+ LUTE = 0 PUTE = 0 WVSAT = 5066 LVSAT = 0+ PVSAT = 0 LPDIBLC2 = -0.004752 WAT = 7067 WPRT = 0+ ACM = 3 LDIF = 8E-08 HDIF = 2.6E-07 N = 1+ PHP = 0.88 CJGATE = 5E-10 CTP = 0.000914 PTP = 0.000924+ CTA = 0.000919 PTA = 0.00158 ELM = 5 TLEVC = 1.ENDS*# UMC_18_NMOS_1p8 RF BSIM3v3 SPICE MODEL# Scalable with Gate Length**1= Drain 2=Gate 3= Source 4=Bulk.SUBCKT N_PO7W500_18_RF 1 2 3 4 L=0.5u*

    .PARAM L_um='L*1E6'** #### Define Bsim3v3 Model Variable #####*.PARAM P_NLX='(475.2494-439.9303*L_um+1066.9945*(L_um*L_um))*1E-9'.PARAM P_PCLM='0.1422+0.0846/L_um+0.0043/(L_um*L_um)'** #### Define RF Extension Model Variable #####*.PARAM P_RG='30.0038-10.2118/L_um+0.9998/(L_um*L_um)'.PARAM P_CD='(16.3846-30.4825*L_um+21.6092*(L_um*L_um))*1E-15'.PARAM P_CGS='(0.5460+55.9389*L_um-66.3582*(L_um*L_um))*1E-15'

    .PARAM P_LD=5.8E-11

    .PARAM P_LS=5.8E-11

  • 8/18/2019 018 RF Model Document V2d2

    16/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    15

    .PARAM P_DJDB_A='(4.25*((7+1)/2))*1E-12'

    .PARAM P_DJDB_P='(1.7*((7+1)/2)+5)*1E-6'

    .PARAM P_DJDB_G='(5*7)*1E-6'

    .PARAM P_DJSB_A='(4.25*((7+1)/2))*1E-12'

    .PARAM P_DJSB_P='(1.7*((7+1)/2)+5)*1E-6'

    .PARAM P_DJSB_G='(5*7)*1E-6'

    .PARAM P_RSUB1='93.1907-8.5107/L_um+1.8334/(L_um*L_um)'

    .PARAM P_RSUB2=2

    .PARAM P_RSUB3=2** --------- Gate network ------------------------------Cgs_ext 21 30 P_CGSRgate 2 21 P_RG** --------- Drain network -----------------------------Ldrain 1 11 P_LD

    Lsource 30 3 P_LSCd 11 30 P_CD** --------- Substrate network -------------------------* Diodes are for n-type MOS transistors*Djdb_area 12 11+ bsim_diode_area+ AREA = P_DJDB_ADjdb_perim 12 11+ bsim_diode_perim+ AREA = P_DJDB_PDjdb_swg 12 11+ bsim_diode_swg+ AREA = P_DJDB_G*Djsb_area 31 30+ bsim_diode_area+ AREA = P_DJSB_ADjsb_perim 31 30+ bsim_diode_perim+ AREA = P_DJSB_PDjsb_swg 31 30

    + bsim_diode_swg+ AREA = P_DJSB_G*RSUB2 12 40 P_RSUB2RSUB3 31 40 P_RSUB3RSUB1 40 4 P_RSUB1** --------- Ideal mos transistor ----------------------MAIN 11 21 30 40+ bsim_mos_transistor+ L = L

    + W = 5u+ AD = 0+ AS = 0

  • 8/18/2019 018 RF Model Document V2d2

    17/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    16

    + PD = 0+ PS = 0+ M = 7** -------- DIODES & NMOSFET SPICE PARAMETERS ------------

    *.MODEL bsim_diode_area D+ CJ0 = 0.00103 VJ = 0.813 M = 0.443 IS = 1E-06 N = 1*.MODEL bsim_diode_perim D+ CJ0 = 1.34E-10 VJ = 0.88 M = 0.33 IS = 7E-11 N = 1*.MODEL bsim_diode_swg D+ CJ0 = 5E-10 VJ = 0.88 M = 0.33 IS = 7E-11 N = 1*.model bsim_mos_transistor NMOS

    + LEVEL = 49 VERSION = 3.2 BINUNIT = 1 MOBMOD = 1+ CAPMOD = 2 NQSMOD = 0 NOIMOD = 2 TOX = 4.2E-09+ TOXM = 4.2E-09 XJ = 1.6E-07 NCH = 3.745E+17 RSH = 8+ NGATE = 1E+23 VTH0 = 0.3075 K1 = 0.4578 K2 = -0.02638+ K3 = -10.88 K3B = 0.2379 W0 = -8.813E-08 NLX = P_NLX+ DVT0 = 0.4042 DVT1 = 0.3237 DVT2 = -0.8602 DVT0W = 0.383+ DVT1W = 6E+05 DVT2W = -0.025 LINT = 1.587E-08 WINT = 1.022E-08+ DWG = -3.396E-09 DWB = 1.346E-09 U0 = 332.1 UA = -1.17E-09+ UB = 2.407E-18 UC = 4.355E-11 VSAT = 8.1E+04 A0 = 1.93+ AGS = 0.5072 B0 = 1.486E-06 B1 = 9.064E-06 KETA = 0.01752+ A1 = 0 A2 = 1 VOFF = -0.1208 NFACTOR = 1.038+ CIT = -0.001511 CDSC = 0.002175 CDSCD = 0 CDSCB = 0.0008241+ ETA0 = 0.005504 ETAB = -0.001459 DSUB = 0.001592 PCLM = P_PCLM+ PDIBLC1 = 0.005061 PDIBLC2 = 0.006001 PDIBLCB = 0 DROUT = 0.001592+ PSCBE1 = 4.866E+08 PSCBE2 = 3E-08 PVAG = -0.2958 RDSW = 9.905+ PRWG = 1.1 PRWB = 0 WR = 0.97 ALPHA0 = 0+ ALPHA1 = 0 BETA0 = 30 XPART = 0 CGSO = 1.35E-10+ CGDO = 1.35E-10 CGBO = 0 CGSL = 2E-11 CGDL = 2E-11+ CKAPPA = 0.6 CF = 1.533E-10 CLC = 1E-07 CLE = 0.6+ DLC = 4E-08 DWC = 2E-07 VFBCV = -1 NOFF = 1+ VOFFCV = 0 ACDE = 1 MOIN = 15 NOIA = 1.31826E+19+ NOIB = 1.44544E+05 NOIC = -1.24516E-12 EM = 4.1E+07 AF = 1+ EF = 0.92 KF = 0 LMIN = 2E-07 LMAX = 5E-07

    + WMIN = 5E-06 WMAX = 3.5E-05 XL = -1.05E-08 XW = 0+ JS = 1E-06 JSW = 7E-11 CJ = 0.00103 MJ = 0.443+ PB = 0.813 CJSW = 1.34E-10 MJSW = 0.33 TNOM = 25+ UTE = -1.286 KT1 = -0.2255 KT1L = -4.175E-09 KT2 = -0.02527+ UA1 = 2.153E-09 UB1 = -2.673E-18 UC1 = -3.832E-11 AT = 1.449E+04+ PRT = -46.18 XTI = 3 WL = 0 WLN = 1+ WW = 7.262E-16 WWN = 1 WWL = 0 LL = -1.062E-15+ LLN = 1 LW = 2.996E-15 LWN = 1 LWL = 0+ LLC = -6.64E-15 LWC = 0 LWLC = 0 WLC = 0+ WWC = 0 WWLC = 0 LVTH0 = -0.0001 WVTH0 = 0.06027+ PVTH0 = 0 LNLX = -2.854E-08 WNLX = 0 PNLX = 0

    + LNFACTOR = 0.032 WUA = -1.88E-11 WU0 = 0.54 PUB = 3.8E-20+ PW0 = 1.3E-09 LUA = 1.5E-11 LUB = 9.76E-20 WRDSW = 0+ WETA0 = 0 WETAB = 0 LETA0 = 0.001574 LETAB = 0

  • 8/18/2019 018 RF Model Document V2d2

    18/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    17

    + PETA0 = 0 PETAB = 0 WPCLM = 0 WVOFF = -0.0004078+ LVOFF = -0.004208 PVOFF = -0.0003788 WA0 = -0.04731 LA0 = -0.4667+ PA0 = -0.02649 WAGS = 0.004242 LAGS = 0.3028 PAGS = 0+ WKETA = 0 LKETA = -0.01942 PKETA = 0 WUTE = 0.06373+ LUTE = 0 PUTE = 0 WVSAT = 5066 LVSAT = 0

    + PVSAT = 0 LPDIBLC2 = -0.004752 WAT = 7067 WPRT = 0+ ACM = 3 LDIF = 8E-08 HDIF = 2.6E-07 N = 1+ PHP = 0.88 CJGATE = 5E-10 CTP = 0.000914 PTP = 0.000924+ CTA = 0.000919 PTA = 0.00158 ELM = 5 TLEVC = 1.ENDS*# UMC_18_PMOS_1p8 RF BSIM3v3 SPICE MODEL# Scalable with Finger Number**1= Drain 2=Gate 3= Source 4=Bulk*.SUBCKT P_L18W500_18_RF 1 2 3 4 NF=21

    *** #### Define Bsim3v3 Model Variable #####*.PARAM P_WR='(808.0254+2116.1626/NF-2687.8868/(NF*NF))*1E-3'** #### Define RF Extension Model Variable #####*.PARAM P_RG='-6.3044+287.3248/NF-996.0158/(NF*NF)'.PARAM P_CD='(3.0460+2.0138*NF+0.0467*(NF*NF))*1E-15'.PARAM P_CGS='(0.6197+0.0205*NF+0.0344*(NF*NF))*1E-15'.PARAM P_LD='(52.1818+160.1501/NF+649.7715/(NF*NF))*1E-12'.PARAM P_LS='(52.1818+160.1501/NF+649.7715/(NF*NF))*1E-12'

    .PARAM P_DJDB_A='(4.25*((NF+1)/2))*1E-12'.PARAM P_DJDB_P='(1.7*((NF+1)/2)+5)*1E-6'

    .PARAM P_DJDB_G='(5*NF)*1E-6'

    .PARAM P_DJSB_A='(4.25*((NF+1)/2))*1E-12'

    .PARAM P_DJSB_P='(1.7*((NF+1)/2)+5)*1E-6'

    .PARAM P_DJSB_G='(5*NF)*1E-6'

    .PARAM P_RSUB1='70.5835-147.6535/NF-144.7453/(NF*NF)'

    .PARAM P_RSUB2=1

    .PARAM P_RSUB3=1** --------- Gate network ------------------------------Cgs_ext 21 30 P_CGSRgate 2 21 P_RG*

    * --------- Drain network -----------------------------Ldrain 1 11 P_LDLsource 30 3 P_LSCd 11 30 P_CD** --------- Substrate network -------------------------* Diodes are for p-type MOS transistors*Djdb_area 11 12+ bsim_diode_area+ AREA = P_DJDB_ADjdb_perim 11 12+ bsim_diode_perim

    + AREA = P_DJDB_PDjdb_swg 11 12+ bsim_diode_swg

  • 8/18/2019 018 RF Model Document V2d2

    19/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    18

    + AREA = P_DJDB_G*Djsb_area 30 31+ bsim_diode_area+ AREA = P_DJSB_ADjsb_perim 30 31+ bsim_diode_perim+ AREA = P_DJSB_PDjsb_swg 30 31+ bsim_diode_swg+ AREA = P_DJSB_G*RSUB2 12 40 P_RSUB2RSUB3 31 40 P_RSUB3RSUB1 40 4 P_RSUB1** --------- Ideal mos transistor ----------------------MAIN 11 21 30 40+ bsim_mos_transistor

    + L = 1.8E-07+ W = 5E-6+ AD = 0+ AS = 0+ PD = 0+ PS = 0+ M = NF** -------- DIODES & PMOSFET SPICE PARAMETERS ------------*.MODEL bsim_diode_area D+ CJ0 = 0.00114 VJ = 0.762 M = 0.395 IS = 3E-06 N = 1*.MODEL bsim_diode_perim D+ CJ0 = 1.74E-10 VJ = 0.665 M = 0.324 IS = 4.12E-11 N = 1*.MODEL bsim_diode_swg D+ CJ0 = 4.2E-10 VJ = 0.665 M = 0.324 IS = 4.12E-11 N = 1*.model bsim_mos_transistor PMOS+ LEVEL = 49 MOBMOD = 3 VERSION = 3.2 CAPMOD = 2+ BINUNIT = 1 NQSMOD = 0 NOIMOD = 2 TOX = 4.2E-09+ TOXM = 4.2E-09 XJ = 1E-07 NCH = 6.131E+17 NGATE = 1E+23+ VTH0 = -0.4325 K1 = 0.5704 K2 = 0.006973 K3 = -2.833+ K3B = 1.326 W0 = -1.943E-07 NLX = 2.56E-07 DVT0 = 0.4885+ DVT1 = 0.09578 DVT2 = 0.1287 DVT0W = -0.1261 DVT1W = 2.479E+04+ DVT2W = 0.6915 LINT = -1.041E-08 WINT = -1.525E-07 DWG = -1.151E-07

    + DWB = -1.039E-07 U0 = 90 UA = 1.49E-09 UB = 4.646E-19+ UC = -0.09587 VSAT = 4.75E+04 A0 = 1.35 AGS = 0.3818+ B0 = -3.088E-07 B1 = 0 KETA = 0.01044 A1 = 0+ A2 = 1 VOFF = -0.1073 NFACTOR = 0.984 CIT = -0.001067+ CDSC = 0.0007578 CDSCD = 0 CDSCB = 0.0001 ETA0 = 1.071+ ETAB = -0.9291 DSUB = 1.919 PCLM = 0.553 PDIBLC1 = 0.007+ PDIBLC2 = 0.008005 PDIBLCB = 0 DROUT = 0.157 PSCBE1 = 4.866E+08+ PSCBE2 = 2.8E-07 PVAG = -0.888 RDSW = 202.1 PRWG = 1.2+ PRWB = 0 WR = P_WR ALPHA0 = 0 ALPHA1 = 0+ BETA0 = 30 CGDO = 1.254E-10 CGBO = 0 CGSO = 1.254E-10+ XPART = 0 CF = 1.533E-10 DLC = 7.01E-08 CGSL = 2E-11+ CGDL = 2E-11 CKAPPA = 0.6 CLC = 1E-07 CLE = 0.6+ DWC = 2.3E-07 VFBCV = -1 NOFF = 1 VOFFCV = 0+ ACDE = 1 MOIN = 15 NOIA = 4.6E+17 NOIB = 2.5E+03+ NOIC = 2.6126E-11 EM = 4.1E+07 AF = 1 EF = 1.1388+ KF = 0 LMIN = 1.8E-07 LMAX = 1.805E-07 WMIN = 5E-06

  • 8/18/2019 018 RF Model Document V2d2

    20/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    19

    + WMAX = 1.05E-04 XL = -2E-09 XW = 0 JS = 3E-06+ JSW = 4.12E-11 CJ = 0.00114 MJ = 0.395 PB = 0.762+ CJSW = 1.74E-10 MJSW = 0.324 TNOM = 25 UTE = -0.4484+ KT1 = -0.2194 KT1L = -8.204E-09 KT2 = -0.009487 UA1 = 4.571E-09+ UB1 = -6.026E-18 UC1 = -0.0985 AT = 1.203E+04 PRT = 0+ XTI = 3 WW = 1.236E-14 LW = -2.873E-16 LL = 6.635E-15+ WL = 0 WLN = 1 WWN = 1 WWL = 0+ LLN = 1 LWN = 1 LWL = 0 LLC = -1.31E-14+ LWC = 0 LWLC = 0 WLC = 0 WWC = 0+ WWLC = 0 LVTH0 = 0.0057 WVTH0 = -0.0148 LU0 = -3+ LNFACTOR = 0.03 PVTH0 = 0.0031 LNLX = -1.584E-08 WRDSW = 10.07+ WETA0 = 0 WETAB = 0 WPCLM = 0 WUA = 2.7E-09+ LUA = -2.37E-10 PUA = 5.855E-11 WUB = 0 LUB = 0+ PUB = 0 WUC = 0 LUC = 0 PUC = 0+ WVOFF = -0.009816 LVOFF = -0.0009871 PVOFF = -9.833E-05 WA0 = -0.04807+ LA0 = -0.281 PA0 = 0.08661 WAGS = -0.04177 LAGS = 0.04454+ PAGS = -0.04076 WKETA = 0 LKETA = -0.012 PKETA = 0+ WUTE = -0.2682 LUTE = 0 PUTE = 0 WVSAT = -1.42E+04+ LVSAT = 0 PVSAT = -350 LPDIBLC2 = 0.003012 WAT = -6405

    + WPRT = 216.6 N = 1 PHP = 0.665 CTA = 0.001+ CTP = 0.000753 PTA = 0.00155 PTP = 0.00124 ACM = 3+ LDIF = 8E-08 RSH = 8 RD = 0 RSC = 0+ RDC = 0 HDIF = 2.6E-07 RS = 0.ENDS*# UMC_18_PMOS_1p8 RF BSIM3v3 SPICE MODEL# Scalable with Gate Length**1= Drain 2=Gate 3= Source 4=Bulk*.SUBCKT P_PO7W500_18_RF 1 2 3 4 L=0.5u*

    .PARAM L_um='L*1E6'** #### Define Bsim3v3 Model Variable #####*.PARAM P_NLX='(616.3333-1840*L_um+2266.6670*(L_um*L_um))*1E-9'.PARAM P_PCLM='2.7030-0.6375/L_um+0.1313/(L_um*L_um)'** #### Define RF Extension Model Variable #####*.PARAM P_RG='72.7967-25.7375/L_um+2.8321/(L_um*L_um)'.PARAM P_CD='(15.8033+4.660*L_um-8.9333*(L_um*L_um))*1E-15'

    .PARAM P_CGS='(3.7967-18.190*L_um+36.7333*(L_um*L_um))*1E-15'.PARAM P_LD=9E-11

    .PARAM P_LS=9E-11

    .PARAM P_DJDB_A='(4.25*((7+1)/2))*1E-12'

    .PARAM P_DJDB_P='(1.7*((7+1)/2)+5)*1E-6'

    .PARAM P_DJDB_G='(5*7)*1E-6'

    .PARAM P_DJSB_A='(4.25*((7+1)/2))*1E-12'

    .PARAM P_DJSB_P='(1.7*((7+1)/2)+5)*1E-6'

    .PARAM P_DJSB_G='(5*7)*1E-6'

    .PARAM P_RSUB1='157.35-17.0875/L_um+1.3563/(L_um*L_um)'

    .PARAM P_RSUB2=1

    .PARAM P_RSUB3=1** --------- Gate network ------------------------------

  • 8/18/2019 018 RF Model Document V2d2

    21/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    20

    Cgs_ext 21 30 P_CGSRgate 2 21 P_RG** --------- Drain network -----------------------------Ldrain 1 11 P_LD

    Lsource 30 3 P_LSCd 11 30 P_CD** --------- Substrate network -------------------------* Diodes are for p-type MOS transistors*Djdb_area 11 12+ bsim_diode_area+ AREA = P_DJDB_ADjdb_perim 11 12+ bsim_diode_perim

    + AREA = P_DJDB_PDjdb_swg 11 12+ bsim_diode_swg+ AREA = P_DJDB_G*Djsb_area 30 31+ bsim_diode_area+ AREA = P_DJSB_ADjsb_perim 30 31+ bsim_diode_perim+ AREA = P_DJSB_PDjsb_swg 30 31+ bsim_diode_swg+ AREA = P_DJSB_G*RSUB2 12 40 P_RSUB2RSUB3 31 40 P_RSUB3RSUB1 40 4 P_RSUB1** --------- Ideal mos transistor ----------------------MAIN 11 21 30 40+ bsim_mos_transistor+ L = L

    + W = 5u+ AD = 0+ AS = 0+ PD = 0+ PS = 0+ M = 7** -------- DIODES & PMOSFET SPICE PARAMETERS ------------*.MODEL bsim_diode_area D+ CJ0 = 0.00114 VJ = 0.762 M = 0.395 IS = 3E-06 N = 1

    *.MODEL bsim_diode_perim D+ CJ0 = 1.74E-10 VJ = 0.665 M = 0.324 IS = 4.12E-11 N = 1

  • 8/18/2019 018 RF Model Document V2d2

    22/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    21

    *.MODEL bsim_diode_swg D+ CJ0 = 4.2E-10 VJ = 0.665 M = 0.324 IS = 4.12E-11 N = 1*.model bsim_mos_transistor PMOS

    + LEVEL = 49 MOBMOD = 3 VERSION = 3.2 CAPMOD = 2+ BINUNIT = 1 NQSMOD = 0 NOIMOD = 2 TOX = 4.2E-09+ TOXM = 4.2E-09 XJ = 1E-07 NCH = 6.131E+17 NGATE = 1E+23+ VTH0 = -0.4325 K1 = 0.5704 K2 = 0.006973 K3 = -2.833+ K3B = 1.326 W0 = -1.943E-07 NLX = P_NLX DVT0 = 0.4885+ DVT1 = 0.07578 DVT2 = 0.1287 DVT0W = -0.1261 DVT1W = 2.479E+04+ DVT2W = 0.6915 LINT = -1.041E-08 WINT = -1.525E-07 DWG = -1.151E-07+ DWB = -1.039E-07 U0 = 113 UA = 1.54E-09 UB = 6.46E-20+ UC = -0.09587 VSAT = 4.55E+04 A0 = 1.35 AGS = 0.3818+ B0 = -3.088E-07 B1 = 0 KETA = 0.01044 A1 = 0+ A2 = 1 VOFF = -0.1073 NFACTOR = 0.984 CIT = -0.001067

    + CDSC = 0.0007578 CDSCD = 0 CDSCB = 0.0001 ETA0 = 1.071+ ETAB = -0.9291 DSUB = 1.919 PCLM = P_PCLM PDIBLC1 = 0.005+ PDIBLC2 = 0.01401 PDIBLCB = 0 DROUT = 1.457 PSCBE1 = 4.866E+08+ PSCBE2 = 2.8E-07 PVAG = 1.162 RDSW = 202.1 PRWG = 0+ PRWB = 0 WR = 1 ALPHA0 = 0 ALPHA1 = 0+ BETA0 = 30 CGDO = 1.254E-10 CGBO = 0 CGSO = 1.254E-10+ XPART = 0 CF = 1.533E-10 DLC = 7.01E-08 CGSL = 2E-11+ CGDL = 2E-11 CKAPPA = 0.6 CLC = 1E-07 CLE = 0.6+ DWC = 0 VFBCV = -1 NOFF = 1 VOFFCV = 0+ ACDE = 1 MOIN = 15 NOIA = 4.6E+17 NOIB = 2.5E+03+ NOIC = 2.6126E-11 EM = 4.1E+07 AF = 1 EF = 1.1388+ KF = 0 LMIN = 2E-07 LMAX = 5E-07 WMIN = 5E-06+ WMAX = 3.5E-05 XL = -2E-09 XW = 0 JS = 3E-06+ JSW = 4.12E-11 CJ = 0.00114 MJ = 0.395 PB = 0.762+ CJSW = 1.74E-10 MJSW = 0.324 TNOM = 25 UTE = -0.4484+ KT1 = -0.2194 KT1L = -8.204E-09 KT2 = -0.009487 UA1 = 4.571E-09+ UB1 = -6.026E-18 UC1 = -0.0985 AT = 1.203E+04 PRT = 0+ XTI = 3 WW = 1.236E-14 LW = -2.873E-16 LL = 6.635E-15+ WL = 0 WLN = 1 WWN = 1 WWL = 0+ LLN = 1 LWN = 1 LWL = 0 LLC = -1.31E-14+ LWC = 0 LWLC = 0 WLC = 0 WWC = 0+ WWLC = 0 LVTH0 = 0.0057 WVTH0 = -0.0148 LU0 = -3+ LNFACTOR = 0.03 PVTH0 = 0.0031 LNLX = -1.584E-08 WRDSW = 10.07

    + WETA0 = 0 WETAB = 0 WPCLM = 0 WUA = 2.7E-09+ LUA = -2.37E-10 PUA = 5.855E-11 WUB = 0 LUB = 0+ PUB = 0 WUC = 0 LUC = 0 PUC = 0+ WVOFF = -0.009816 LVOFF = -0.0009871 PVOFF = -9.833E-05 WA0 = -0.04807+ LA0 = -0.281 PA0 = 0.08661 WAGS = -0.04177 LAGS = 0.04454+ PAGS = -0.04076 WKETA = 0 LKETA = -0.012 PKETA = 0+ WUTE = -0.2682 LUTE = 0 PUTE = 0 WVSAT = -1.42E+04+ LVSAT = 0 PVSAT = -350 LPDIBLC2 = 0.003012 WAT = -6405+ WPRT = 216.6 N = 1 PHP = 0.665 CTA = 0.001+ CTP = 0.000753 PTA = 0.00155 PTP = 0.00124 ACM = 3+ LDIF = 8E-08 RSH = 8 RD = 0 RSC = 0

    + RDC = 0 HDIF = 2.6E-07 RS = 0.ENDS* 

  • 8/18/2019 018 RF Model Document V2d2

    23/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    22

    2.5 Model Validation:

    Please refer to the attachment.

  • 8/18/2019 018 RF Model Document V2d2

    24/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    23

    3. N/P MOSFET 3.3V Model

    3.1 Contents

    3.1 Contents

    3.2 Criteria of N/P MOSFET model

    3.3 Model Description and Parameters

    3.4 Spice parameter list

    3.5 Model verification

    UMC 0.18 µm RF CMOS Process

    N_L34W500_33_RF/N_PO7W500_33_RF

    P_L34W500_33_RF/P_PO7W500_33_RF

  • 8/18/2019 018 RF Model Document V2d2

    25/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    24

    3.2 Criteria of N/P MOSFET Model

    The 3.3V Model is divided into 4 sections. The first one, N_L34W500_33_RF, is valid for 3.3V

    NMOS devices with scaling gate finger number from 5 to 21 at a fixed length of 0.34um and a

    fixed finger width of  5um . The second one, N_PO7W500_33_RF, is valid for 3.3V NMOS devices

    with scaling gate lengths from 0.34um  to 0.8um  at a fixed finger number of 7 and a fixed finger

    width of 5um. The third section, P_L34W500_33_RF, is valid for 3.3V PMOS devices with scaling

    gate finger number from 5 to 21 at a fixed length of 0.34um . The last one, P_PO7W500_33_RF, is

    valid for 3.3V PMOS devices with scaling gate lengths from 0.34um  to 0.8um at a fixed finger

    number of 7 and a fixed finger width of 5um.

    .

    l Specific N/P MOSFET operation description:

    a. Effective frequency range: 100MHz ~10GHz

    b. Effective DC voltage range: |Vg| = 0.8 ~ 3.3V |Vd| = 0V~3.3V

    c. Effective applicable voltage range of s-parameters: |Vg| = 08~3.3V |Vd| = 0.8~3.3V

    d. Gate length tuning range (L): 0.34 µm ~ 0.8 µm

    e. Unit translated gate length (L_um): 0.34 ~ 0.8

    f. Total gate width (Wtotal = W*NF): 25µm ~ 105µmg. Single gate finger width (W): 5.0 µm

    h. Gate finger number range (NF): 5 ~ 21

    i. Empirical scalable formula is used in the standard BSIM3v3.2 RF extension model.

     j. Gate finger numbers can be even or odd. We suggest using an odd number.

    l Extracted parameters and simulation results:

    a. Some specific parameters in this document can be calculated from the scalable formulas

    by giving a specific L (gate length) or NF (finger number).

    b. In this document, the “MOSFET Based Band Models” are released from UMC.

    c. Please ignore the following simulation warning messages:

    Warning: Pd=0 Ps=0 less than W.

    Warning: Noff is too large.

    d. Please use the RMS error function to calculate the errors between the measured and

    simulated data. (See Appendix A)

  • 8/18/2019 018 RF Model Document V2d2

    26/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    25

    l Model validation:

    a. “Two port” data is measured by 50 Ùimpedance system.

    b. “One port” is defined as the output port connected to ground.

    c. Simulation frequency is from 100MHz to 10GHz.  

  • 8/18/2019 018 RF Model Document V2d2

    27/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    26

    3.3 Device Description and Model Parameters

    3.3.1 Extension equivalent circuit modelThe MOSFET extension equivalent circuit model is based on the BSIM3v3.2 model to extract

    the desired RF model. The results of two-port S-parameters de-embedded with open pad are used

    to extract the model parameters. Different geometry MOSFET devices are measured and the

    results are used to verify the accuracy of the model. The schematic of the extended BSIM3v3 RF

    model is showed in Fig. 3-1. Port1 is connected to poly gate and port2 is connected to drain. The

    intrinsic dc, cv and noise characteristics are modeled by BSIM3v3.2. The passive parasitic

    components and diode elements are described as follows:

    (1) Rgate is used to model the equivalent gate resistance.

    (2) Rsub1, Rsub2 & Rsub3 represent the substrate loss.

    (3) Djdb_area and Djdb_perim are used to model source/drain bottom junction and

    sidewall junction capacitance.

    (4) Djdb_swg, and Djsb_swg are used to model source/drain sidewall junction

    capacitance per unit length at gate sidewall.

    (5) Cd & Cgs_ext represent the total equivalent capacitance between drain, source and

    gate

    (6) Disable the junction diode in standard BSIM3v3 by setting AD= AS=PD= PS= 0.(7) Lsouce and Ldrain are used to model the parasitic inductance effect.

    Fig. 3-1 RF N/P MOSFET Extension Model

    G

    S D

    Rsub2Rsub3

    Rsub1

    Cd

    Rgate

    B

    Cgs_ext

    G

    S D

    Djsb_perim

    Djsb_area

    Rsub2Rsub3

    Rsub1

    Cd

    Rgate

    B

    Cgs_ext

    Lsource Ldrain

    Djsb_swgDjdb_perim

    Djdb_areaDjdb_swg

    G

    S D

    Rsub2Rsub3

    Rsub1

    Cd

    Rgate

    B

    Cgs_ext

    G

    S D

    Djsb_perim

    Djsb_area

    Rsub2Rsub3

    Rsub1

    Cd

    Rgate

    B

    Cgs_ext

    Lsource Ldrain

    Djsb_swgDjdb_perim

    Djdb_areaDjdb_swg

  • 8/18/2019 018 RF Model Document V2d2

    28/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    27

    3.3.2 RF MOSFET layout:

    The layout of the RF MOSFET is shown in Fig. 3-2 and PCell layout is provided in the

    corresponding electronic file. It is important to remember that model parameters are strongly

    dependent on the device layouts at RF band. Therefore, to get the accurate characteristics of the

    demonstrated devices, the layout structures should not be modified. The MOSFET layout has

    some distinguishing characteristics, described as follows:

    (1) Reducing the overlap capacitance between “Gate” and “Source”.

    (2) Reducing the gate resistance by putting parallel metal upon the finger gate.

    (3) Double-ended gate structure is used to reduce RF noise.

    (4) Grounded substrate surrounds the core device and is viewed as a part of RF device.

    (5) Symmetrical S/D structure is used for the modeling purpose.

    Gate

    Bulk 

    Source

    Drain

    Diffusion Dummy Block 

    Gate

    Bulk 

    Source

    Drain

    Diffusion Dummy Block 

     Fig.3-2 RF N/P MOSFET 3.3V layout

  • 8/18/2019 018 RF Model Document V2d2

    29/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    28

    3.3.3 Simulated RMS errors

    Table 3-1 RMS Errors of measured and simulated S-parameters of N MOSFETs

    L_um*NF*W RMS_S11 (%) RMS_S22 (%) RMS_S21 (%) RMS_S12 (%)

    0.34*5*5 0.645 1.594 2.882 2.002

    0.34*7*5 0.751 1.635 2.925 2.419

    0.34*9*5 1.801 2.261 3.993 3.974

    0.34*13*5 1.432 3.546 3.582 4.111

    0.34*17*5 2.037 5.033 4.451 5.694

    0.34*21*5 2.291 5.437 4.068 6.4040.34*7*5 0.973 3.096 2.283 2.432

    0.5*7*5 1.836 1.91 5.379 3.029

    0.8*7*5 3.973 3.837 8.06 8.422

    Table 3-2 RMS Errors of measured and simulated S-parameters of P MOSFETs

    L_um*NF*W RMS_S11(%) RMS_S22(%) RMS_S21(%) RMS_S12(%)

    0.34*5*5 1.799 1.311 1.35 2.284

    0.34*7*5 2.392 2.131 1.209 2.307

    0.34*9*5 2.895 3.700 1.578 4.33

    0.34*13*5 4.086 5.824 1.844 4.067

    0.34*17*5 4.973 5.885 2.306 5.500

    0.34*21*5 5.655 7.909 2.922 8.053

    0.34*7*5 3.002 5.031 1.466 2.227

    0.5*7*5 3.539 4.884 2.548 2.785

    0.8*7*5 4.962 4.478 4.723 3.916

  • 8/18/2019 018 RF Model Document V2d2

    30/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    29

    3.3.4 Empirical scaling formula

    Scaling rule is a method for IC designers to predict device performance that has not been

    measured during the modeling process. In this document, empirical scaling rule is provided and

    the scaling rule is an optional choice for users. After modeling all of the devices, we use regression

    analysis to obtain the relationship between the model parameters, gate length (L) and gate finger

    number (NF). The scaling formulas are listed in Table 3-3 and Table 3-6. Table 3-7 shows the area

    and perimeter parameters of extension S/D junction diodes.

    Table 3-3 Scalable formulas for 3.3V NMOSFETs with different Finger Numbers

    Parameter Scaling formula

    MOSFET N MOSFET BSIM3v3 RF SPICE MODEL

    P_RG (Ù) -7.0913+216.04/NF-411.06/(NF*NF)

    P_CD (F) (0.306+0.1838*NF+0.0049*(NF*NF))*1E-15

    P_RSUB1 (Ù) 70.9+224.53/NF-396.9/(NF*NF)

    Table 3-4 Scalable formulas for 3.3V NMOSFETs with different Gate LengthsParameter Scaling formula

    MOSFET N MOSFET BSIM3v3 RF SPICE MODEL

    P_RG (Ù) 33.476-13.353/L_um+2.0572/(L_um*L_um)

    P_CD (F) (20.609-34.728*L_um+19.022*(L_um*L_um))*1E-15

    Table 3-5 Scalable formulas for 3.3V PMOSFETs with different Finger Numbers

    Parameter Scaling formulaMOSFET P MOSFET BSIM3v3 RF SPICE MODEL

    P_RG (Ù) 2.9978+41.357/NF-36.796/(NF*NF)

    P_CD (F) (9.4819-0.5777*NF+0.0508*(NF*NF))*1E-15

    P_RSUB1 (Ù) 20.979+437.18/NF-705.05/(NF*NF)

  • 8/18/2019 018 RF Model Document V2d2

    31/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    30

    Table 3-6 Scalable formulas for 3.3V PMOSFETs with different Gate Lengths

    Parameter Scaling formulaMOSFET P MOSFET BSIM3v3 RF SPICE MODEL

    P_RG (Ù) 192.37-151.74/L_um+30.28/(L_um*L_um)

    P_CD (F) (33.148-64.815*L_um+37.037*(L_um*L_um))*1E-15

    Table 3-7 Junction Diode parameters

    Parameter Definition

    P_Djdb_area Drain bottom junction diode areaP_Djdb_perim Drain sidewall junction diode perimeter

    P_Djdb_swg Drain gate sidewall junction diode perimeter

    P_Djsb_area Source bottom junction diode area

    P_Djsb_perim Source sidewall junction diode perimeter

    P_Djsb_swg Source gate sidewall junction diode perimeter

    # Bottom junction diode area per source/drain region = 0.85 µm *5.0 µm

    # Source/Drain sidewall junction diode perimeter Refer to the following parameter list

    # Source/Drain gate sidewall junction diode perimeter = 5.0 µm * finger number

  • 8/18/2019 018 RF Model Document V2d2

    32/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    31

    3.4 Spice model parameter list

    # UMC_18_NMOS_3p3 RF BSIM3v3 SPICE MODEL# Scalable with Finger Number

    **1= Drain 2=Gate 3= Source 4=Bulk*.SUBCKT N_L34W500_33_RF 1 2 3 4 NF=21** #### define RF Extension Model Varable #####*.PARAM P_RG='-7.0913+216.04/NF-411.06/(NF*NF)'.PARAM P_CD='(0.306+0.1838*NF+0.0049*(NF*NF))*1E-15'.PARAM P_CGS=2E-15.PARAM P_LD=1E-11.PARAM P_LS=6E-11

    .PARAM P_DJDB_A='(4.25*((NF+1)/2))*1E-12'

    .PARAM P_DJDB_P='(1.7*((NF+1)/2)+5)*1E-6'

    .PARAM P_DJDB_G='(5*NF)*1E-6'

    .PARAM P_DJSB_A='(4.25*((NF+1)/2))*1E-12'

    .PARAM P_DJSB_P='(1.7*((NF+1)/2)+5)*1E-6'

    .PARAM P_DJSB_G='(5*NF)*1E-6'

    .PARAM P_RSUB1='70.9+224.53/NF-396.9/(NF*NF)'

    .PARAM P_RSUB2=2

    .PARAM P_RSUB3=2** --------- Gate network ------------------------------

    Cgs_ext 21 30 P_CGSRgate 2 21 P_RG** --------- Drain network -----------------------------Ldrain 1 11 P_LDLsource 30 3 P_LSCd 11 30 P_CD** --------- Substrate network -------------------------*Djdb_area 12 11+ bsim_diode_area+ AREA = P_DJDB_ADjdb_perim 12 11+ bsim_diode_perim+ AREA = P_DJDB_PDjdb_swg 12 11+ bsim_diode_swg+ AREA = P_DJDB_G*Djsb_area 31 30+ bsim_diode_area+ AREA = P_DJSB_A

    Djsb_perim 31 30+ bsim_diode_perim

  • 8/18/2019 018 RF Model Document V2d2

    33/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    32

    + AREA = P_DJSB_PDjsb_swg 31 30+ bsim_diode_swg+ AREA = P_DJSB_G*

    *Rsub2 12 40 P_RSUB2Rsub3 31 40 P_RSUB3Rsub1 40 4 P_RSUB1** --------- Ideal mos transistor ----------------------MAIN 11 21 30 40+ bsim_mos_transistor+ L = 3.4E-07+ W = 5E-06+ AD = 0

    + AS = 0+ PD = 0+ PS = 0+ M = NF*

    .MODEL bsim_diode_area D+ CJ0 = 0.0007673 VJ = 0.7131 M = 0.3299 IS = 1E-05 N = 1*.MODEL bsim_diode_perim D+ CJ0 = 1.089E-10 VJ = 0.7131 M = 0.1037 IS = 5.1E-11 N = 1*.MODEL bsim_diode_swg D+ CJ0 = 2.9E-10 VJ = 0.7131 M = 0.1037 IS = 5.1E-11 N = 1*.model bsim_mos_transistor NMOS+ LEVEL = 49 VERSION = 3.2 MOBMOD = 1 BINUNIT = 2+ CAPMOD = 3 NQSMOD = 0 TOX = 7E-09 XJ = 2.5E-07+ NCH = 1.7E+17 RSH = 8 LINT = 0 WINT = 0+ DWG = 3.553E-15 DWB = 6.2E-09 VTH0 = 0.5924 K1 = 0.7138+ K2 = -0.02583 K3 = 62 DVT0 = 4.75 DVT1 = 0.634+ DVT2 = -0.1139 DVT0W = 0.15 DVT1W = 5.95E+05 DVT2W = 0+ NLX = 1.372E-07 W0 = 5.68E-06 K3B = 32 VSAT = 1.052E+05

    + UA = -4.855E-10 UB = 2.265E-18 UC = 5.518E-11 U0 = 0.03913+ A0 = 0.651 KETA = 0.005 A1 = 0.1 A2 = 0.99 AGS = 0.06+ B0 = 2E-08 B1 = 9E-07 VOFF = -0.1361 NFACTOR = 1+ CIT = 0 CDSC = 0.00024 CDSCB = 0 CDSCD = 0+ ETA0 = 0.02 ETAB = -0.0015 DSUB = 0.201 PCLM = 1.21+ PDIBLC1 = 0.025 PDIBLC2 = 0.002 PDIBLCB = 0 DROUT = 0.46+ PSCBE1 = 4.04E+08 PSCBE2 = 1E-05 PVAG = 0.2 DELTA = 0.02+ RDSW = 495.9 PRWB = 0.05715 PRWG = 0.088 WR = 1.01+ ALPHA0 = 0 ALPHA1 = 0 BETA0 = 30 CGDO = 2.7E-10+ CGSO = 2.7E-10 CGBO = 0 XPART = 0 CF = 1.392E-10+ XL = 2.5E-08 XW = 0 CJ = 0.0007673 MJ = 0.3299

    + PB = 0.7131 CJSW = 1.089E-10 MJSW = 0.1037 JS = 1E-05+ JSW = 5.1E-11 TNOM = 27 KT1 = -0.3166 KT2 = -0.04461+ AT = 500 UTE = -1.601 UA1 = 4.203E-11 UB1 = 3.8E-19

  • 8/18/2019 018 RF Model Document V2d2

    34/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    33

    + UC1 = 2.8E-11 KT1L = 0 PRT = -271.3 LLN = 1+ LWN = 1 WLN = 1 WWN = 1 LL = 1.214E-14 LW = 0+ LWL = -2.886E-22 WL = 0 WW = -2.01E-16 WWL = -1.502E-21+ ACM = 3 LDIF = 0 HDIF = 3.2E-07 LNFACTOR = 1E-07+ LU0 = 0 LVSAT = -0.0045 LUA = 0 LUB = 0 PHP = 0.4347

    + CTA = 0.001082 CTP = 0.0007482 PTA = 0.001822 PTP = 0.002009+ ELM = 5 CJGATE = 2.9E-10 TLEVC = 1 NOFF = 50 DWC = 0+ LMIN = 3.4E-07 LMAX = 3.405E-07 WMIN = 5E-06 WMAX = 1.05E-04+ NOIMOD= 2 NOIA= 1.2386E+21 NOIB= 44531.5473+ NOIC= -1.05E-14 EF= 0.9396 EM= 2063059.9427** ##### End of RF NMOSFET Structure #####*.ENDS* # UMC_18_NMOS_3p3 RF BSIM3v3 SPICE MODEL

    # Scalable with Gate Length**1= Drain 2=Gate 3= Source 4=Bulk*.SUBCKT N_PO7W500_33_RF 1 2 3 4 L=0.8u*.PARAM L_um='L*1E6'** #### define RF Extension Model Varable #####*.PARAM P_RG='33.476-13.353/L_um+2.0572/(L_um*L_um)'.PARAM P_CD='(20.609-34.728*L_um+19.022*(L_um*L_um))*1E-15'

    .PARAM P_CGS=2E-15.PARAM P_LD=1E-11

    .PARAM P_LS=6E-11

    .PARAM P_DJDB_A='(4.25*((7+1)/2))*1E-12'

    .PARAM P_DJDB_P='(1.7*((7+1)/2)+5)*1E-6'

    .PARAM P_DJDB_G='(5*7)*1E-6'

    .PARAM P_DJSB_A='(4.25*((7+1)/2))*1E-12'

    .PARAM P_DJSB_P='(1.7*((7+1)/2)+5)*1E-6'

    .PARAM P_DJSB_G='(5*7)*1E-6'

    .PARAM P_RSUB1=70

    .PARAM P_RSUB2=2

    .PARAM P_RSUB3=2** --------- Gate network ------------------------------Cgs_ext 21 30 P_CGSRgate 2 21 P_RG** --------- Drain network -----------------------------Ldrain 1 11 P_LDLsource 30 3 P_LSCd 11 30 P_CD** --------- Substrate network -------------------------

    *Djdb_area 12 11

  • 8/18/2019 018 RF Model Document V2d2

    35/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    34

    + bsim_diode_area+ AREA = P_DJDB_ADjdb_perim 12 11+ bsim_diode_perim+ AREA = P_DJDB_P

    Djdb_swg 12 11+ bsim_diode_swg+ AREA = P_DJDB_G*Djsb_area 31 30+ bsim_diode_area+ AREA = P_DJSB_ADjsb_perim 31 30+ bsim_diode_perim+ AREA = P_DJSB_PDjsb_swg 31 30

    + bsim_diode_swg+ AREA = P_DJSB_G*Rsub2 12 40 P_RSUB2Rsub3 31 40 P_RSUB3Rsub1 40 4 P_RSUB1** --------- Ideal mos transistor ----------------------MAIN 11 21 30 40+ bsim_mos_transistor+ L = L+ W = 5u+ AD = 0+ AS = 0+ PD = 0+ PS = 0+ M = 7** -------- DIODES & NMOSFET SPICE PARAMETERS ------------*.MODEL bsim_diode_area D+ CJ0 = 0.0007673 VJ = 0.7131 M = 0.3299 IS = 1E-05 N = 1*

    .MODEL bsim_diode_perim D+ CJ0 = 1.089E-10 VJ = 0.7131 M = 0.1037 IS = 5.1E-11 N = 1*.MODEL bsim_diode_swg D+ CJ0 = 2.9E-10 VJ = 0.7131 M = 0.1037 IS = 5.1E-11 N = 1*.MODEL bsim_mos_transistor NMOS+ LEVEL = 49 VERSION = 3.2 MOBMOD = 1 BINUNIT = 2+ CAPMOD = 3 NQSMOD = 0 TOX = 7E-09 XJ = 2.5E-07+ NCH = 1.7E+17 RSH = 8 LINT = 0 WINT = 0 DWG = 3.553E-15+ DWB = 6.2E-09 VTH0 = 0.6124 K1 = 0.7138 K2 = -0.02583 K3 = 62

    + DVT0 = 4.75 DVT1 = 0.634 DVT2 = -0.1139 DVT0W = 0.15+ DVT1W = 5.95E+05 DVT2W = 0 NLX = 1.372E-07 W0 = 5.68E-06+ K3B = 32 VSAT = 1.052E+05 UA = -4.855E-10 UB = 2.065E-18

  • 8/18/2019 018 RF Model Document V2d2

    36/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    35

    + UC = 5.518E-11 U0 = 0.03913 A0 = 1.042 KETA = 0.005+ A1 = 0.1 A2 = 0.99 AGS = 0.1603 B0 = 2E-08+ B1 = 9E-07 VOFF = -0.1361 NFACTOR = 1 CIT = 0+ CDSC = 0.00024 CDSCB = 0 CDSCD = 0 ETA0 = 0.02+ ETAB = -0.0015 DSUB = 0.201 PCLM = 1.01 PDIBLC1 = 0.025

    + PDIBLC2 = 0.002 PDIBLCB = 0 DROUT = 0.46 PSCBE1 = 4.04E+08+ PSCBE2 = 1E-05 PVAG = 0 DELTA = 4.441E-19 RDSW = 495.9+ PRWB = 0.05715 PRWG = 0.088 WR = 1.01 ALPHA0 = 0+ ALPHA1 = 0 BETA0 = 30 CGDO = 2.7E-10 CGSO = 2.7E-10+ CGBO = 0 XPART = 0 CF = 1.392E-10 XL = 2.5E-08+ XW = 0 CJ = 0.0007673 MJ = 0.3299 PB = 0.7131+ CJSW = 1.089E-10 MJSW = 0.1037 JS = 1E-05 JSW = 5.1E-11+ TNOM = 27 KT1 = -0.3166 KT2 = -0.04461 AT = 500+ UTE = -1.601 UA1 = 4.203E-11 UB1 = 3.8E-19 UC1 = 2.8E-11+ KT1L = 0 PRT = -271.3 LLN = 1 LWN = 1 WLN = 1+ WWN = 1 LL = 1.214E-14 LW = 0 LWL = -2.886E-22 WL = 0

    + WW = -2.01E-16 WWL = -1.502E-21 ACM = 3 LDIF = 0+ HDIF = 3.2E-07 LNFACTOR = 1E-07 LU0 = 0 LVSAT = -0.0045+ LUA = 0 LUB = 0 PHP = 0.4347 CTA = 0.001082+ CTP = 0.0007482 PTA = 0.001822 PTP = 0.002009 ELM = 5+ CJGATE = 2.9E-10 TLEVC = 1 NOFF = 50 DWC = 1E-07+ LMIN = 3.4E-07 LMAX = 8E-07 WMIN = 5E-06 WMAX = 3.5E-05+ NOIMOD= 2 NOIA= 1.2386E+21 NOIB= 44531.5473+ NOIC= -1.05E-14 EF= 0.9396 EM= 2063059.9427** ##### End of RF NMOSFET Structure #####*.ENDS* # UMC_18_PMOS_3p3 RF BSIM3v3 SPICE MODEL# Scalable with Finger Number* *1= Drain 2=Gate 3= Source 4=Bulk*.SUBCKT P_L34W500_33_RF 1 2 3 4 NF=21*** #### define RF Extension Model Varable #####*.PARAM P_RG='2.9978+41.357/NF-36.796/(NF*NF)'

    .PARAM P_CD='(9.4819-0.5777*NF+0.0508*(NF*NF))*1E-15'.PARAM P_CGS=1E-15

    .PARAM P_LD=1E-11

    .PARAM P_LS=6E-11

    .PARAM P_DJDB_A='(4.25*((NF+1)/2))*1E-12'

    .PARAM P_DJDB_P='(1.7*((NF+1)/2)+5)*1E-6'

    .PARAM P_DJDB_G='(5*NF)*1E-6'

    .PARAM P_DJSB_A='(4.25*((NF+1)/2))*1E-12'

    .PARAM P_DJSB_P='(1.7*((NF+1)/2)+5)*1E-6'

    .PARAM P_DJSB_G='(5*NF)*1E-6'

    .PARAM P_RSUB1='20.979+437.18/NF-705.05/(NF*NF)'

    .PARAM P_RSUB2=2

    .PARAM P_RSUB3=2*

    * --------- Gate network ------------------------------Cgs_ext 21 30 P_CGS

  • 8/18/2019 018 RF Model Document V2d2

    37/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    36

    Rgate 2 21 P_RG** --------- Drain network -----------------------------Ldrain 1 11 P_LDLsource 30 3 P_LSCd 11 30 P_CD** --------- Substrate network -------------------------* Diodes are for p-type MOS transistors*Djdb_area 11 12+ bsim_diode_area+ AREA = P_DJDB_ADjdb_perim 11 12+ bsim_diode_perim+ AREA = P_DJDB_PDjdb_swg 11 12+ bsim_diode_swg+ AREA = P_DJDB_G

    *Djsb_area 30 31+ bsim_diode_area+ AREA = P_DJSB_ADjsb_perim 30 31+ bsim_diode_perim+ AREA = P_DJSB_PDjsb_swg 30 31+ bsim_diode_swg+ AREA = P_DJSB_G*Rsub2 12 40 P_RSUB2Rsub3 31 40 P_RSUB3Rsub1 40 4 P_RSUB1** --------- Ideal mos transistor ----------------------MAIN 11 21 30 40+ bsim_mos_transistor+ L = 3.4E-7+ W = 5E-6+ AD = 0+ AS = 0+ PD = 0+ PS = 0+ M = NF*.MODEL bsim_diode_area D

    + CJ0 = 0.0012 MJSW = 0.4097 VJ = 0.7618 IS = 9E-05 N = 1*.MODEL bsim_diode_perim D+ CJ0 = 2.243E-10 VJ = 0.7618 MJSW = 0.4745 IS = 4.9E-12 N = 1*.MODEL bsim_diode_swg D+ CJ0 = 4.2E-10 VJ = 0.7618 MJSW = 0.4745 IS = 4.9E-12 N = 1*.model bsim_mos_transistor PMOS+ LEVEL = 49 VERSION = 3.2 MOBMOD = 1 CAPMOD = 3+ NQSMOD = 0 TOX = 7E-09 XJ = 1.8E-07 NCH = 4.31E+17+ RSH = 8 LINT = 2.24E-08 WINT = 3.361E-08 DWG = -1.437E-08+ DWB = 5.984E-09 VTH0 = -0.7104 K1 = 0.7667 K2 = 0.05429+ K3 = 2.089 DVT0 = 7.395 DVT1 = 0.6635 DVT2 = 0.007805+ DVT0W = 1.797 DVT1W = 2.876E+06 DVT2W = 0.1026 NLX = 5E-08+ W0 = 2.125E-07 K3B = 1.003 VSAT = 9.09E+04 UA = -8E-13

  • 8/18/2019 018 RF Model Document V2d2

    38/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    37

    + UB = 1.82E-18 UC = -3.65E-11 U0 = 0.008064 A0 = 0.8+ KETA = -0.01035 A1 = 0.01 A2 = 0.99 AGS = 0.3138+ B0 = 0 B1 = 1E-06 VOFF = -0.1239 NFACTOR = 0.4964+ CIT = 0.0005334 CDSC = 0.003166 CDSCB = 0.002463 CDSCD = 0+ ETA0 = 0.2 ETAB = -0.01893 DSUB = 0.9052 PCLM = 0.8+ PDIBLC1 = 0.03524 PDIBLC2 = 0.02018 PDIBLCB = 0.1478 DROUT = 0.5+ PSCBE1 = 4.643E+08 PSCBE2 = 1.07E-05 PVAG = 0 DELTA = 0.02+ RDSW = 467 PRWB = 0 PRWG = 0 WR = 1.1+ ALPHA0 = 0 BETA0 = 30 CGDO = 2.6E-10 CGSO = 2.6E-10+ CGBO = 0 XPART = 0 CF = 1.392E-10 XL = -2E-08+ XW = 0 CJ = 0.0012 MJ = 0.4097 PB = 0.7618 CJSW = 2.243E-10+ MJSW = 0.4745 JS = 9E-05 JSW = 4.9E-12 TNOM = 27+ KT1 = -0.3346 KT2 = -0.05747 AT = 4.95E+04 UTE = -1.128+ UA1 = 1.402E-09 UB1 = -3.417E-18 UC1 = -1.393E-10 KT1L = 1E-08+ PRT = 0 LLN = 1 LWN = 1 WLN = 1 WWN = 1+ LL = 0 LW = 0 LWL = 0 WL = 0+ WW = 0 WWL = 0 LMIN = 3.4E-07 LMAX = 3.405E-07+ WMIN = 5E-06 WMAX = 1.05E-04 LUA = 0 LUB = 0+ WUA = 0 LPCLM = 0 LVTH0 = 0 PHP = 0.9297

    + CTA = 0.0009969 CTP = 0.0007119 PTA = 0.001504 PTP = 0.001216+ ELM = 10 TLEVC = 1 ACM = 3 HDIF = 3.2E-07+ LU0 = 0.0004 WVSAT = 0 LVSAT = 0 WU0 = 0.001+ VOFFCV = 0 DWC = 1E-07 NOFF = 20+ NOIMOD = 2 NOIA= 4.8632E+19 NOIB= 142700+ NOIC= 1.04E-11 EF= 1.117 EM= 5015000.ENDS**# UMC_18_PMOS_3p3 RF BSIM3v3 SPICE MODEL# Scalable with Gate Length* *1= Drain 2=Gate 3= Source 4=Bulk

    * .SUBCKT P_PO7W500_33_RF 1 2 3 4 L=0.8u**.PARAM L_um='L*1E6'** #### define RF Extension Model Varable #####*.PARAM P_RG='192.37-151.74/L_um+30.28/(L_um*L_um)'.PARAM P_CD='(33.148-64.815*L_um+37.037*(L_um*L_um))*1E-15'.PARAM P_CGS=1E-15.PARAM P_LD=1E-11.PARAM P_LS=6E-11

    .PARAM P_DJDB_A='(4.25*((7+1)/2))*1E-12'.PARAM P_DJDB_P='(1.7*((7+1)/2)+5)*1E-6'

    .PARAM P_DJDB_G='(5*7)*1E-6'

    .PARAM P_DJSB_A='(4.25*((7+1)/2))*1E-12'

    .PARAM P_DJSB_P='(1.7*((7+1)/2)+5)*1E-6'

    .PARAM P_DJSB_G='(5*7)*1E-6'

    .PARAM P_RSUB1=70

    .PARAM P_RSUB2=2

    .PARAM P_RSUB3=2** --------- Gate network ------------------------------Cgs_ext 21 30 P_CGSRgate 2 21 P_RG*

    * --------- Drain network -----------------------------Ldrain 1 11 P_LDLsource 30 3 P_LS

  • 8/18/2019 018 RF Model Document V2d2

    39/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    38

    Cd 11 30 P_CD** --------- Substrate network -------------------------* Diodes are for p-type MOS transistors*Djdb_area 11 12+ bsim_diode_area+ AREA = P_DJDB_ADjdb_perim 11 12+ bsim_diode_perim+ AREA = P_DJDB_PDjdb_swg 11 12+ bsim_diode_swg+ AREA = P_DJDB_G*Djsb_area 30 31+ bsim_diode_area+ AREA = P_DJSB_ADjsb_perim 30 31

    + bsim_diode_perim+ AREA = P_DJSB_PDjsb_swg 30 31+ bsim_diode_swg+ AREA = P_DJSB_G*Rsub2 12 40 P_RSUB2Rsub3 31 40 P_RSUB3Rsub1 40 4 P_RSUB1** --------- Ideal mos transistor ----------------------MAIN 11 21 30 40+ bsim_mos_transistor+ L = L+ W = 5u+ AD = 0+ AS = 0+ PD = 0+ PS = 0+ M = 7** -------- DIODES & PMOSFET SPICE PARAMETERS ------------*.MODEL bsim_diode_area D+ CJ0 = 0.0012 MJSW = 0.4097 VJ = 0.7618 IS = 9E-05 N = 1*.MODEL bsim_diode_perim D

    + CJ0 = 2.243E-10 VJ = 0.7618 MJSW = 0.4745 IS = 4.9E-12 N = 1*.MODEL bsim_diode_swg D+ CJ0 = 4.2E-10 VJ = 0.7618 MJSW = 0.4745 IS = 4.9E-12 N = 1*.model bsim_mos_transistor PMOS+ LEVEL = 49 VERSION = 3.2 MOBMOD = 1 CAPMOD = 3 NQSMOD = 0+ TOX = 7E-09 XJ = 1.8E-07 NCH = 4.31E+17 RSH = 8+ LINT = 2.24E-08 WINT = 3.361E-08 DWG = -1.437E-08 DWB = 5.984E-09+ VTH0 = -0.7104 K1 = 0.7667 K2 = 0.05429 K3 = 2.089+ DVT0 = 7.395 DVT1 = 0.6635 DVT2 = 0.007805 DVT0W = 1.797+ DVT1W = 2.876E+06 DVT2W = 0.1026 NLX = 5E-08 W0 = 2.125E-07+ K3B = 1.003 VSAT = 1.209E+05 UA = -8E-13 UB = 1.82E-18+ UC = -3.65E-11 U0 = 0.008064 A0 = 1.2 KETA = -0.01035+ A1 = 0.01 A2 = 0.99 AGS = 0.3138 B0 = 0+ B1 = 1E-06 VOFF = -0.1239 NFACTOR = 0.4964 CIT = 0.0005334

  • 8/18/2019 018 RF Model Document V2d2

    40/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    39

    + CDSC = 0.003166 CDSCB = 0.002463 CDSCD = 0 ETA0 = 0.2+ ETAB = -0.01893 DSUB = 0.9052 PCLM = 0.8 PDIBLC1 = 0.03524+ PDIBLC2 = 0.02018 PDIBLCB = 0.1478 DROUT = 0.5 PSCBE1 = 4.643E+08+ PSCBE2 = 1.07E-05 PVAG = 0 DELTA = 0.02 RDSW = 467+ PRWB = 0 PRWG = 0 WR = 1.1 ALPHA0 = 0+ BETA0 = 30 CGDO = 2.6E-10 CGSO = 2.6E-10 CGBO = 0+ XPART = 0 CF = 1.392E-10 XL = -2E-08 XW = 0+ CJ = 0.0012 MJ = 0.4097 PB = 0.7618 CJSW = 2.243E-10+ MJSW = 0.4745 JS = 9E-05 JSW = 4.9E-12 TNOM = 27+ KT1 = -0.3346 KT2 = -0.05747 AT = 4.95E+04 UTE = -1.128+ UA1 = 1.402E-09 UB1 = -3.417E-18 UC1 = -1.393E-10 KT1L = 1E-08+ PRT = 0 LLN = 1 LWN = 1 WLN = 1 WWN = 1+ LL = 0 LW = 0 LWL = 0 WL = 0 WW = 0+ WWL = 0 LMIN = 3.4E-07 LMAX = 8E-07 WMIN = 5E-06+ WMAX = 3.5E-05 LUA = 0 LUB = 0 WUA = 0 LPCLM = 0+ LVTH0 = 0 PHP = 0.9297 CTA = 0.0009969 CTP = 0.0007119+ PTA = 0.001504 PTP = 0.001216 ELM = 10 TLEVC = 1+ ACM = 3 HDIF = 3.2E-07 LU0 = 0.0004 WVSAT = 0+ WU0 = 0.001 VOFFCV = 0 DWC = 1E-07 NOFF = 20

    + NOIMOD = 2 NOIA= 4.8632E+19 NOIB= 142700+ NOIC= 1.04E-11 EF= 1.117 EM= 5015000** ##### End of RF PMOSFET Structure #####*.ENDS** 

    3.5 Model Validation:

    Please refer to the attachment.

  • 8/18/2019 018 RF Model Document V2d2

    41/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    40

    4. Circular Spiral Inductor Model

    4.1 Contents 

    4.1 Contents

    4.2 Criteria of Inductor Model

    4.3 Model Description and Parameters

    4.4 SPICE parameter list

    4.5 Model verification

    UMC 0.18µm RF CMOS Process

    L_SLCR20K_RF

  • 8/18/2019 018 RF Model Document V2d2

    42/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    41

    4.2 Criteria of Inductor Model 

    l Specific Inductor operation description:

    a. Empirical scalable formula is used to model the spiral inductor with different

    geometries.

    b. Operating frequency range: 100MHz ~ 10GHz .

    The proper usage range should be below its corresponding self-resonance

    frequency(Fsr). Please check Table 4-1 for detail.

    c. Effective inductance range: 1nH ~ 12.0 nH at the frequency below 300MHz.

    * *Noti ce: Choose imaginary part of Z_One_port method to calculate the inductance

    value.

    * * “ Z_One_Port ” is defi ned as the Z-parameter of one port structur e

    d. Geometry variables: W (top metal width), D (inner diameter) and N (turn number).

    e. The range of spiral top metal width (W) : 6µm ~ 20µm.

    f. The range of spiral inner diameter (D) : 126µm ~ 238µm.

    g. The range of spiral turn number (N) : 1.5 ~ 5.5 (N is limited by 1.5, 2.5, 3.5 4.5, 5.5).

    h. The range of spiral metal spacing (S) : fixed at 2µm.

    i. The top metal thickness is 20KA.

     j. Unit translated spiral top metal width (W_um): W*1e6

    k. Unit translated spiral inner diameter (D_um): (D/2)*1e6l. Unit translated spiral metal spacing (S_um): 2

    m. Unit translated spiral top metal thickness (T_um): 2

    n. The using range in (e, f, g) must be limited by the real geometry listed in Table 4-1.

    o. Parameter units: W(Meter), D(Meter), S(Meter), Rs(Ù), Ls(H), Cp(F), Cox(F), Csub(F),

    Rsub(Ù).

    p. The Inductors have been modeled as three port component.

    The node number of the third port in the model card is 999.

    l

    Specific inductor structure description:a. Port1 (top spiral metal, M6) is defined as the input port, and Port2 (underpass line, M5)

    acts as the output port. (see Fig. 4-2).

    b. Inductor substrate is connected to ground around the border with 30 µm spacing.

    c. Q is defined as (imaginary part  / real part)  of Z_One_port input impedance.

  • 8/18/2019 018 RF Model Document V2d2

    43/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    42

    4.3 Model Description and Parameters

    4.3.1 Lump element equivalent circuit model

    The lump element equivalent circuit model is used to model the spiral inductors based on

    two-port S-parameter measurement. The results of two-port S-parameters de-embedded with

    open pad are used to extract the model parameters. The equivalent circuit model of the spiral

    inductor is shown in Fig. 4-1, where port1 is connected to spiral top metal M6 and port2 is defined

    as underpass M5. The intrinsic inductor is represented by Ls. Rs is the series resistance of the

    spiral metal and Cp models the fringing capacitance between metal strips and the overlap

    capacitance between the spiral metal and underpass line. Cox1 and Cox2 represent the

    capacitance between metal layer and grounded substrate. Rsub1, Rsub2, Csub1 and Csub2

    describe the associated substrate loss while the inductor is operated at RF band.

    Fig. 4-1 Inductor Equivalent Circuit Model.

    L

    C

    1 2R 

    Cox Cox

    Rsub RsubCsub Csub

    999 999 999 999

  • 8/18/2019 018 RF Model Document V2d2

    44/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    43

    4.3.2 Inductor layout

    Fig. 4-2 Typical spiral circular inductor layout (N = 3.5)

    D

    D+  W+  S 

     S 

    W

    M6M5

    N=3.5

    Port1Port2

    GND

    Diffusion Dumm

  • 8/18/2019 018 RF Model Document V2d2

    45/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    44

    4.3.3 Measured and Simulation characteristics of specific inductors

    Table 4-1 Measured characteristics and geometry parameters of circular spiral inductors W D N S Inductance(nH ) Measurement Quality Factor FsrDevice

    (um ) (um ) (um ) 2.4GHz 5.0GHz Qmax f@Qmax 2.4GHz 5.0GHz (GHz)

    IND_C1 20 238 1.5 2 1.294 1.326 10.798 6.5 7.686 10.646 >20

    IND_C2 20 136 2.5 2 1.737 1.826 10.010 4.9 8.093 9.969 16.5

    IND_C3 18 136 2.5 2 1.738 1.816 10.140 4.9 7.941 10.126 17.3

    IND_C4 18 168 2.5 2 2.147 2.307 9.879 3.9 8.488 9.664 14.7

    IND_C5 15 195 2.5 2 2.540 2.768 9.644 3.9 8.432 9.243 13.8

    IND_C6 15 126 3.5 2 3.058 3.416 8.854 3.3 8.369 7.895 12.5IND_C7 13 141 3.5 2 3.413 3.832 8.708 3.9 8.129 7.952 12.3

    IND_C8 10 163 3.5 2 4.245 4.896 8.365 3.2 7.874 7.398 11.4

    IND_C9 10 180 3.5 2 4.503 5.298 8.226 3.1 7.927 6.809 10.8

    IND_C10 8 194 3.5 2 4.986 5.873 8.256 3.3 7.856 7.045 10.8

    IND_C11 8 131 3.5 2 3.214 3.438 9.364 4.5 7.730 9.354 15.3

    IND_C12 8 138 4.5 2 5.543 6.589 7.962 3.0 7.723 6.566 10.6

    IND_C13 8 144 4.5 2 5.815 7.019 7.917 3.0 7.787 6.275 10.2

    IND_C14 8 160 4.5 2 6.556 8.290 7.909 2.5 7.893 5.496 9.3IND_C15 6 164 4.5 2 6.833 8.440 7.600 3.0 7.395 5.979 9.8

    IND_C16 6 177 4.5 2 7.488 9.579 7.465 2.7 7.412 5.359 9.2

    IND_C17 6 128 5.5 2 7.725 9.756 7.600 2.6 7.554 4.015 9.4

    IND_C18 6 144 5.5 2 8.856 11.886 7.411 2.4 7.411 4.499 8.5

    IND_C19 6 159 5.5 2 9.989 14.337 7.180 2.3 7.177 3.660 7.7

    IND_C20 6 180 5.5 2 11.711 18.585 6.961 2.0 6.770 2.606 6.9

    IND_C21 6 210 5.5 2 14.479 25.501 6.594 1.8 6.087 1.380 5.9

  • 8/18/2019 018 RF Model Document V2d2

    46/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    45

    Table 4-2 Simulation characteristics and geometry parameters of circular spiral inductors W D N S Inductance(nH ) Simulation Quality Factor Fsr

    Device(um ) (um ) (um ) 2.4GHz 5.0GHz Qmax f@Qmax 2.4GHz 5.0GHz (GHz)

    IND_C1 20 238 1.5 2 1.230 1.288 11.461 6.5 6.970 11.087 >20IND_C2 20 136 2.5 2 1.720 1.860 10.288 4.5 8.268 10.132 15.8

    IND_C3 18 136 2.5 2 1.694 1.814 10.307 4.8 7.914 10.264 17

    IND_C4 18 168 2.5 2 2.159 2.379 10.025 3.9 8.772 9.422 14.3

    IND_C5 15 195 2.5 2 2.563 2.846 9.764 3.7 8.715 8.995 13.8

    IND_C6 15 126 3.5 2 3.145 3.610 9.393 2.9 9.177 7.359 12

    IND_C7 13 141 3.5 2 3.489 4.013 9.184 2.9 8.967 7.172 12

    IND_C8 10 163 3.5 2 4.073 4.693 8.832 3.1 8.489 7.131 12

    IND_C9 10 180 3.5 2 4.600 5.462 8.650 2.8 8.518 6.377 10.9IND_C10 8 194 3.5 2 5.068 6.005 8.347 3.1 8.023 6.608 11

    IND_C11 8 131 3.5 2 3.114 3.371 9.212 4.5 7.335 9.050 16.1

    IND_C12 8 138 4.5 2 5.646 6.793 8.263 2.6 8.215 5.642 10.5

    IND_C13 8 144 4.5 2 5.937 7.253 8.193 2.5 8.177 5.337 10.1

    IND_C14 8 160 4.5 2 6.743 8.618 8.014 2.3 8.005 4.565 9.2

    IND_C15 6 164 4.5 2 6.913 8.522 7.715 2.8 7.554 5.555 10

    IND_C16 6 177 4.5 2 7.618 9.738 7.539 2.7 7.481 4.959 9.3

    IND_C17 6 128 5.5 2 7.890 10.014 7.633 2.4 7.633 4.546 9.4IND_C18 6 144 5.5 2 9.084 12.254 7.423 2.2 7.388 3.732 8.4

    IND_C19 6 159 5.5 2 10.279 14.814 7.232 2.1 7.088 3.035 7.7

    IND_C20 6 180 5.5 2 12.089 19.351 6.983 1.9 6.596 2.156 6.8

    IND_C21 6 210 5.5 2 14.993 27.144 6.658 1.6 5.831 1.061 5.9

  • 8/18/2019 018 RF Model Document V2d2

    47/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    46

    4.3.4 Simulated RMS errors

    Table 4-3 RMS errors of measured and simulated s-parameters of circular spiral inductorsDevice RMS_S11(%) RMS_S12(%) RMS_S21(%) RMS_S22(%)

    IND_C1 7.614 1.652 1.753 8.03

    IND_C2 8.1 2.635 2.615 8.3

    IND_C3 7.141 1.61 1.61 7.328

    IND_C4 6.49 2.705 2.688 6.79

    IND_C5 4.73 1.75 1.78 4.96

    IND_C6 5.81 4.25 4.23 6.3

    IND_C7 4.46 3.16 3.15 4.75IND_C8 3.095 1.802 1.742 3.186

    IND_C9 3.46 2.53 2.47 3.39

    IND_C10 1.8 2.08 2 1.75

    IND_C11 2.368 1.124 1.107 2.36

    IND_C12 1.937 1.916 1.842 2.088

    IND_C13 1.82 2.14 2.07 1.93

    IND_C14 1.609 2.86 2.79 1.745

    IND_C15 1.245 2.895 2.831 1.155

    IND_C16 1.164 3.566 3.509 1.11

    IND_C17 1.075 2.89 2.83 1.3

    IND_C18 1.593 4.314 4.264 1.455

    IND_C19 1.377 5.58 5.54 1.218

    IND_C20 1.037 7.43 7.396 1.028

    IND_C21 1.37 8.16 8.27 0.902

  • 8/18/2019 018 RF Model Document V2d2

    48/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    47

    4.3.5 Scalable formula list

    Table 4-4 Scalable formulas of spiral inductor scaling with D, N, W

    Parameter Scaling formulaL_spiral 0.5*(N*3.14159*(2*(2*D_um+W_um)+(2*N-1)*(W_um+S_um)))+(N+0.5)*(W_um+S_um)

    d_plus (W_um+S_um)*(3*N-2*(N-0.5)-1)*(N+0.5)/(3*(2*N-N-0.5))

    p_lsef log(2*L_spiral/(W_um+T_um))-0.2

    p_M_neg 0.4418*N

    p_M_d1 log(sqrt(1+(L_spiral/(4*N*d_plus))*(L_spiral/(4*N*d_plus)))+L_spiral/(4*N*d_plus))

    p_M_d2 sqrt(1+(4*N*d_plus/L_spiral)*(4*N*d_plus/L_spiral))-4*N*d_plus/L_spiral

    p_ls (2*L_spiral*(p_lsef-p_M_neg+0.97*(N-1)*(p_M_d1-p_M_d2))+2923-3700*n+507*n*n)*1e-

    p_rs 1+0.02*(L_spiral/W_um)+N*(0.34-0.0002273*L_spiral)p_cp (0.0402*(N-0.5)*W_um*W_um)*1e-15

    p_cox (0.0019725*(2*L_spiral*W_um+3.14159*W_um*W_um))*1e-15

    p_csub1 ((0.24+0.098*N)*D_um)*1e-15

    p_csub2 ((0.2205+0.055*N)*D_um)*1e-15

    p_rsub1 530+49153/(D_um*N)

    p_rsub2 680+55465/(D_um*N)'

  • 8/18/2019 018 RF Model Document V2d2

    49/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    48

    4.4 SPICE Model List 

    .SUBCKT L_SLCR20K_RF 1 2 999 D=148u N=5.5 W=6u

    .PARAM D_um='(D/2)*1e6'.PARAM W_um='W*1e6'

    .PARAM S_um='2'

    .PARAM T_um='2'

    .PARAM

    L_spiral='0.5*(N*3.14159*(2*(2*D_um+W_um)+(2*N-1)*(W_um+S_um)))+(N+0.5)*(W_um+S_um

    )'

    .PARAM d_plus='(W_um+S_um)*(3*N-2*(N-0.5)-1)*(N+0.5)/(3*(2*N-N-0.5))'

    .PARAM p_lsef='log(2*L_spiral/(W_um+T_um))-0.2'

    .PARAM p_M_neg='0.4418*N'

    .PARAM

    p_M_d1='log(sqrt(1+(L_spiral/(4*N*d_plus))*(L_spiral/(4*N*d_plus)))+L_spiral/(4*N*d_plus))'

    .PARAM p_M_d2='sqrt(1+(4*N*d_plus/L_spiral)*(4*N*d_plus/L_spiral))-4*N*d_plus/L_spiral'

    .PARAM

    p_ls='(2*L_spiral*(p_lsef-p_M_neg+0.97*(N-1)*(p_M_d1-p_M_d2))+2923-3700*n+507*n*n)*1e-13'

    .PARAM p_rs='1+0.02*(L_spiral/W_um)+N*(0.34-0.0002273*L_spiral)'

    .PARAM p_cp='(0.0402*(N-0.5)*W_um*W_um)*1e-15'

    .PARAM p_cox='(0.0019725*(2*L_spiral*W_um+3.14159*W_um*W_um))*1e-15'

    .PARAM p_csub1='((0.24+0.098*N)*D_um)*1e-15'

    .PARAM p_csub2='((0.2205+0.055*N)*D_um)*1e-15'

    .PARAM p_rsub1='530+49153/(D_um*N)'

    .PARAM p_rsub2='680+55465/(D_um*N)'

    *

    * --------- Equivalent network -------------------

    Rs 1 777 p_rs

    Ls 2 777 p_lsCp 1 2 p_Cp

    Cox1 1 771 p_Cox

    Cox2 2 881 p_Cox

    Rsub1 771 999 p_rsub1

    Rsub2 881 999 p_rsub2

    Csub1 771 999 p_csub1

    Csub2 881 999 p_csub2

    .ends

  • 8/18/2019 018 RF Model Document V2d2

    50/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    49

    4.4 Model verification plot

    Please refer to the attachment

  • 8/18/2019 018 RF Model Document V2d2

    51/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    50

    5. MIS Varactor Model

    5.1 Contents 

    5.1 Contents

    5.2 Criteria of MIS Varactor Model

    5.3 Model Description and Parameters

    5.4 SPICE parameter list

    5.5 Model verification

    UMC 0.18 µm RF CMOS Process

    VARMIS_RF

  • 8/18/2019 018 RF Model Document V2d2

    52/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    51

    5.2 Criteria of MIS Varactor Model

    l Specific MIS varactor operation description:

    a. The C-V formula of standard BSIM3v3 model is used to extract the characteristics of the

    N+/NWell MIS varactor.

    b. Two large resistors are added to terminate S/D behavior of BSIM 3v3 standard model.

    c. Gate and bulk bias can be applied separately to get the accurate two port characteristics

    of the varactor.

    d. Gate finger length is fixed at 1.0 µm, gate finger width is fixed at 5.0 µm

    e. Finger number (NF): 24 ~ 120

    f. Effective bias range: VB = 0V, Vg = 1.8 V ~ -1.8V

    g. Effective bias range: VG = 0V, Vb = 0 V ~ 1.8V

    ** Notice: The recommended bias range is VG-VB = -1V ~ 1V

    h. Frequency range: 100MHz ~10GHz

    i. The MIS varactors have been modeled as three port component.

    The node number of the third port in the model card is 999.

    l Model validation:a. “Two port” data is measured by 50 Ùimpedance system.

    b. “One port” is defined as the output port connected to ground.

    c. Simulation frequency is from 100MHz to 10GHz

  • 8/18/2019 018 RF Model Document V2d2

    53/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    52

    5.3 Model Description and Parameters

    5.3.1 Extension equivalent circuit model 

    The C-V model equation of the standard BSIM3v3 model is used to model the RF MIS

    varactor in this document. The results of two-port S-parameters measurement with open pad are

    used to extract the model parameters. The schematic of extended MIS varactor model is showed in

    Fig. 5-1 where port1 (Gate) is poly gate and port2 (Bulk) is N-Well. Fig. 5-2 shows the cross section

    of MIS varactor and Fig 5-3 shows the typical layout. The descriptions of the MIS varactor model

    parameters are as follows:

    (1)Lg and Rg model the equivalent poly gate inductance and resistance.

    (2)Lb and Rb model the equivalent serial inductance and resistance.

    (3)Rdiso and Rsiso are resistors used to terminate “Drain port” and “Source port” effects in

    BSIM3v3 standard model.

    (4)Cbox, Rsub and Csub represent the varactor’ s substrate loss at RF band.

    (5)Disable the junction diode in standard BSIM3v3 by setting AD = AS =PD = PS = 0

    (6)D_n_sub models the diode characteristics of N-Well/Psub.

    Fig. 5-1 MIS Varactor Equivalent Circuit Model

    Gate Bulk 

    L R

    Rdiso

    Cbox

    CsuRsu

    Rsiso D n su

    Rb Lb

      999 999 999 999

    999

  • 8/18/2019 018 RF Model Document V2d2

    54/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    53

    5.3.2 MIS varactor cross section and layout:

    Fig. 5-2 Cross section of MIS varactor

    Fig. 5-3 MIS varactor layout

    N+ N+N+ N+

     N-Well

    Gate

    Bulk

    Gate

    Well

    Well

    SUB

  • 8/18/2019 018 RF Model Document V2d2

    55/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    54

    5.3.3 Simulated RMS errors

    Table 5-1 RMS Errors of measured and simulated S-parameters of MIS varactorDevice RMS_S11 (%) RMS_S21 (%) RMS_S22 (%) RMS_S12(%)

    MIS_24 2.154 2.716 2.856 1.499

    MIS_48 2.574 2.567 2.688 1.551

    MIS_72 4.156 2.01 2.222 2.946

    MIS_96 3.969 1.847 1.926 2.343

    MIS_120 4.436 3.027 3.118 1.907

    5.3.4 Scalable formula list

    Table 5-2 MIS Varactor scaling with nf

    Parameter Scaling formula

    p_l (10.25+0.3854*nf)*1e-12

    p_r (0.9850+0.0038*nf)

    p_cp (-5.8082+0.4911*nf)*1e-15

    p_cbox (19.9+3.9733*nf)*1e-15p_csub (-56.4685+57.8069*log(nf))*1e-15

    p_rsub (150.7322-27.8594*log(nf))

    p_sub_area ((10.14+(nf-1)*1.84)*17.94)*1e-12'

    p_sub_pj 2*((10.14+(nf-1)*1.84)+17.94)*1e-6

  • 8/18/2019 018 RF Model Document V2d2

    56/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    55

    5.4: SPICE Model List

    .subckt VARMIS_18_RF 1 2 999 nf=24.param dt='temper-25'

    .param p_l='(10.25+0.3854*nf)*1e-12'

    .param p_r='(0.9850+0.0038*nf)'

    .param p_cp='(-5.8082+0.4911*nf)*1e-15'

    .param p_cbox='(19.9+3.9733*nf)*1e-15'

    .param p_csub='(-56.4685+57.8069*log(nf))*1e-15'

    .param p_rsub='(150.7322-27.8594*log(nf))'

    .param p_sub_area='((10.14+(nf-1)*1.84)*17.94)*1e-12'

    .param p_sub_pj='2*((10.14+(nf-1)*1.84)+17.94)*1e-6'

    lgate 1 11 p_l

    rgate 11 111 p_r

    cp 11 999 p_cp

    lbulk 2 22 p_l

    rbulk 22 222 p_r

    cbox 22 333 p_cbox

    rsub 333 999 p_rsub

    csub 333 999 p_csubrd 3 999 1e+09

    rs 4 999 1e+09

    main 3 111 4 222 mosmode l=1u w=5u m=nf

    d2 999 22 d_sub

    *************************************************

    * PMOS model

    ************************************************

    .model mosmode pmos+ level=49 version=3.2 capMod=3

    + tox=4.17e-09 xj=1.5e-07 a0=1.35

    + ags=0.3818 b0=-3.088e-07 b1=1.4e-08

    + keta=0.1044 voff=-0.08 vth0=-0.4075

    + nch=6.5e+16 nlx=5.717e-06 k1=0.8563

    + k2=-0.02497 k3=80 dvt0=2.2

    + dvt1=0.53 dvt2=-0.032 dsub=0.56

    + eta0=0.08 etab=-0.07 u0=0.025+ ua=2.25e-09 ub=5.87e-19 uc=-4.65e-11

  • 8/18/2019 018 RF Model Document V2d2

    57/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    56

    + vsat=80000 delta=0.01 wr=1

    + pclm=1.3 pdiblc1=0.39 pdiblc2=0.0086

    + pdiblcb=0 pscbe1=4.24e+08 pscbe2=1e-05

    + drout=0.56 nfactor=1 cdsc=0.00024+ beta0=30 clc=1e-07 cle=0.6

    + cgso=0 cgdo=0 ckappa=0.6

    + cf=1.00394e-10 acde='1.165-0.0016*dt' moin=15

    + toxm=4.17e-09 kt1=0.085 kt1l=0

    + kt2=0 ute=-0.4484 ua1=4.57e-09

    + ub1=-6.026e-18 uc1=-0.0985 xl = 2.3e-9

    + xw = 7e-9 dwc=2.1e-7

    *

    .model d_sub d

    + level = 3 area = 'p_sub_area' pj = 'p_sub_pj'

    + is = 4.204e-06 jsw = 3.231e-12 n = 1.02

    + rs = 9.223e-06 ik = 400 ikr = 3.4e+04

    + bv = 14.38 ibv = 1e-3 tlevc = 1

    + tlev = 1 eg = 1.17 xti = 3

    + trs = 0.00249 cj = 0.000107 mj= 0.458

    + pb = 0.75 cjsw = 2.4e-11 mjsw = 0.384

    + php = 0.75.ends

    5.4: Model verification plot

    Please refer to the attachment

  • 8/18/2019 018 RF Model Document V2d2

    58/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    57

    6.P+ / N-Well Varactor Model

    6.1 Contents 

    6.1 Contents

    6.2 Criteria of P+ / N-Well varactor

    6.3 Model Description and Parameters

    6.4 SPICE parameter list

    6.5 Model verification

    UMC 0.18 µm RF CMOS Process

    VARDIOP_RF

  • 8/18/2019 018 RF Model Document V2d2

    59/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    58

    6.2 Criteria of P+ / N-Well Varactor Model

    l Specific P+ / N-Well varactor operation description:

    a. The standard diode model is used to predict P+ / N-Well varactor characteristics.

    b. The extra components are added to the diode model to describe the well loss at RF band.

    c. PN junction area: lf=2um, wf=5um /per finger.

    Please refer to Fig 6.1 for detail def in i tion .

    d. Recommend bias range: -3V~0.1V

    e. Number of PN junctions: 30 < nf

  • 8/18/2019 018 RF Model Document V2d2

    60/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    59

    6.3 Model Description and Parameters:

    6.3.1 Extension equivalent circuit model

    The standard diode model is used to model the finger-type P+/N-Well junction varactor. The

    results of two-port S-parameters de-embedded with open pad are used to extract the model

    parameters. The equivalent extension model for P+/N-Well varactor is shown in Fig. 6-1(a). Port1

    is connected to P+ poly and port2 is connected to N-Well. L1 & L2 are used to precisely model the

    effective capacitance of P+/N-Well varactor. Cox, Csub, and Rsub represent the well loss at RF

    band.

    Fig. 6-1 P+/N-Well varactor Extension equivalent circuit (a) and Layout (b)

    (a)

    (b)

    L1 P+   N-Well L2 

    Diode 

    Rsub 

    C2 

    D_n_sub

    Csub

    PLUS 

    MINUS 

  • 8/18/2019 018 RF Model Document V2d2

    61/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    60

    6.3.2 Simulated RMS errors

    Table 6-1 RMS errors of measured and simulated s-parameters of P+ /N-Well varactorsnf RMS_S11(%) RMS_S21(%) RMS_S22(%) RMS_S12(%)30 2.823 2.925 2.892 2.095

    45 3.867 2.775 2.747 2.154

    60 1.792 2.685 2.655 1.371

    90 1.516 2.23 2.213 1.275

    120 1.623 2.956 3.031 1.504

    6.3.3 Scalable formula list

    Table 6-2 Scalable formulas of P+/NWell Varactors scaling with nf

    Parameter Scaling formula

    p_nf_30 nf/30p_L1 (15.2*p_nf_30)*1e-12

    p_L2 1.31e-11

    p_C2 (86.62*p_nf_30)*1e-15

    p_CSUB (12.19*2*p_nf_30)*1e-15

    p_RSUB 143.3/p_nf_30

    p_DIODE_AREA nf*(2*5)*1e-12

    p_DIODE_PJ nf*(2*(2+5))*1e-6

    p_SUB_AREA ((39.94*int(nf/15)+(nf-(int(nf/15)*15)*1.5)*1.5+1.94)*8.88)*1e-12p_SUB_PJ 2*((39.94*int(nf/15)+(nf-(int(nf/15)*15)*1.5)*1.5+1.94)+8.88)*1e-6

  • 8/18/2019 018 RF Model Document V2d2

    62/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    61

    6.4 SPICE Model List.subckt VARDIOP_RF 1 2 nf=60

    .param p_nf_30='nf/30'

    .PARAM p_L1='(15.2*p_nf_30)*1e-12'.PARAM p_L2='1.31e-11'

    .PARAM p_C2='(86.62*p_nf_30)*1e-15'

    .PARAM p_CSUB='(12.19*2*p_nf_30)*1e-15'

    .PARAM p_RSUB='143.3/p_nf_30'

    .PARAM p_DIODE_AREA='nf*(2*5)*1e-12'

    .PARAM p_DIODE_PJ='nf*(2*(2+5))*1e-6'

    .PARAM p_SUB_AREA='((39.94*int(nf/15)+(nf-(int(nf/15)*15)*1.5)*1.5+1.94)*8.88)*1e-12'

    .PARAM p_SUB_PJ='2*((39.94*int(nf/15)+(nf-(int(nf/15)*15)*1.5)*1.5+1.94)+8.88)*1e-6'

    l1 1 11 p_L1

    l2 2 22 p_L2

    c2 22 223 p_C2

    csub 223 0 p_CSUB

    rsub 223 0 p_RSUB

    d1 11 22 diode

    .model diode d

    + level = 3 area = 'p_DIODE_AREA' pj = 'p_DIODE_PJ'

    + is = 1.12e-7 xti = 3 tlevc = 1+ jsw = 5e-15 bv = 11.75 ibv = 125

    + rs = 9.355e-10 cjo = 1.136e-3 pb = 0.6599

    + mj = 0.3307 cjsw = 1.56E-10 php = 0.665

    + mjsw = 0.324 fc = 0.5 eg = 1.165

    + cta = 7.3e-4 tpb = 1.2e-4 tm1 = 0.001

    + n = 1 ik = 3.383e+7

    d2 0 22 d_sub

    .model d_sub d+ level = 3 area = 'p_ SUB_AREA ' pj = 'p_ SUB_PJ'

    + is = 4.204e-06 jsw = 3.231e-12 n = 1.02

    + rs = 9.223e-06 ik = 400 ikr = 3.4e+04

    + bv = 14.38 ibv = 1e-3 tlevc = 1

    + tlev = 1 eg = 1.17 xti = 3

    + trs = 0.00249 cj = 0.000107 mj= 0.458

    + pb = 0.75 cjsw = 2.4e-11 mjsw = 0.384

    + php = 0.75.ends

  • 8/18/2019 018 RF Model Document V2d2

    63/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    62

    6.5 Model verification plot

    Please refer to the attachment

  • 8/18/2019 018 RF Model Document V2d2

    64/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    63

    7. MIM Capacitor Model (with grounded M1 shield) 

    7.1 Contents 

    7.1 Contents

    7.2 Criteria of MIM Capacitor model

    7.3 Model Description and Parameters

    7.4 Spice parameter list

    7.5 Model Validation

    UMC 0.18 µm RF CMOS Process

    MIMCAPM_RF

  • 8/18/2019 018 RF Model Document V2d2

    65/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    64

    7.2 Criteria of MIM Capacitor Model (with grounded M1 shield)

    l Specific MIM operation description:

    a. The scalable formula is used to calculate the model parameters of single-rectangle (SR)

    type & multi-rectangle (MR) type MIM capacitors.

    b. Operating frequency range: 100MHz ~10GHz

    c. Variable parameters:

    l (Length of MMC)

    w (Width of MMC)

    nx (Number of multi-rectangle MMC in x axis)

    ny (Number of multi-rectangle MMC in y axis)

    d. The range of SR Capacitor: 10um

  • 8/18/2019 018 RF Model Document V2d2

    66/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    65

    7.3 Model Description and Parameters:

    7.3.1 Lump element equivalent circuit modelThe lump element equivalent circuit model is used to model the single rectangle-type and

    multi-rectangle type of Metal-Insulator-Metal (MIM) capacitors. Fig. 7-1 shows the equivalent

    circuit of the MIM capacitor model. The results of two-port S-parameters de-embedded with open

    pad are used to extract the model parameters. The cross section and layout of the MIM capacitor

    model are shown in Fig. 7-2. Port1 is connected to top metal of MMC and Port2 is connected to

    bottom metal (M5).

    The intrinsic MIM capacitor is represented by Cs. Ls and Rs are the parasitic inductor and

    resistor resulted from the electrodes. There should be a parasitic capacitor, here denoted by Cox,

    which exists between the bottom metal and the field oxide.

    Fig. 7-1 MIM capacitor equivalent circuit model

    1

    Cox1 Cox2

    Cs Rs  Ls

    2

    999

  • 8/18/2019 018 RF Model Document V2d2

    67/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    66

    7.3.2 MIM Capacitor cross-section and layout:

    Fig. 7-2 MIM Capacitor cross section

    Fig. 7-3 MIM Capacitor layout MR (left) & SR (right)

    PORT1 (M6)PORT2 (M6)

    MMCVIA5

    l

    n =3

    Diffusion Dumm

    Metal 1 GND

    Metal 6

    MMC

    MMC

    nx=3

  • 8/18/2019 018 RF Model Document V2d2

    68/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    67

    7.3.3 Simulated RMS errors 

    Table 7-1 RMS errors of measured and simulated of Multi-Rectangle MIM capacitors

    Device RMS_S11

    (%)

    RMS_S12

    (%)

    RMS_21

    (%)

    RMS_S22

    (%)

    A10X10X1 111.8m 451.5m 404.1m 169.9m

    A10X10X4 531.0m 558.7m 658.9m 994.4m

    A10X10X9 1.25 613.7m 679.1m 917.5m

    A10X10X16 1.731 513.4m 560.3m 1.135

    A10X10X25 2.111 475.7m 521.3m 1.300

    A10X10X36 2.441 447.4m 491.6m 1.441

    A10X10X49 2.290 388.1m 424.3m 1.469

    Table 7-2 RMS errors of S-parameters Single-Rectangle MIM capacitors

    Device RMS_S11

    (%)

    RMS_S12

    (%)

    RMS_21

    (%)

    RMS_S22

    (%)

    A10X10X1 111.8m 451.5m 404.1m 169.9mA10X20X1 745.2m 536.9m 475.6m 1.125

    A10X40X1 634.2m 329.8m 393.9m 1.391

    A10X80X1 613.3m 253.3m 333.2m 1.192

    A20X20X1 539.3m 353.6m 352.4m 928m

    A20X40X1 643.0m 355.1m 428.0m 703.8m

    A30X30X1 676.8m 351.7m 421.5m 646.8m

    A40X40X1 1.103 336.9m 396.2m 623.2m

    A50X50X1 1.317 321.3m 369.4m 758.4mA60X60X1 1.625 330.8m 371.7m 984.7m

    A70X70X1 1.858 362.8m 396.2m 1.295

    A80X40X1 1.311 301.5m 350.8m 743.8m

    A80X80X1 2.050 373.3m 419.5m 1.359

  • 8/18/2019 018 RF Model Document V2d2

    69/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    68

    7.3.4 Scalable formula

    All parameters in the formulas are consistent with EDR’ s value. For process variation issue,

    we need to add some fixing ratios in capacitance per square um during modeling extraction period.

    However, the scaling formulas, which are listed in Table 7-3, are centered to EDR’ s value without

    consideration of process variation.

    Table 7-3 MIM capacitor scaling formulas 

    Formula

    Cs n*(l*w*0.001+1.5e-10*(l+w))*(1+3e-5*dt+1e-8*dt*dt)*(1.0027-0.0002*v+3e-5*v^2)

    Rs 2.0667e-2*leb/wb

    Ls 1e-7*leb/F*(0.0074*(leb/wb)+0.2399+0.7363/(leb/wb))

    Cox1/Cox2 (leb*wb*cox+3.382e-11*(leb+wb))/2

    Remark dt=temp-25

    n=nx*ny

    leb=ny*(l+1.7e-6)+4.3e-6

    wb=nx*(w+1.7e-6)+4.3e-6

    F=1/(log(2*(1+sqrt(k1))/(1-sqrt(k1))))'

    k1=sqrt(1-k*k)

    k=wb/(wb+2*(1-4-wb/2-3.25e-5))

  • 8/18/2019 018 RF Model Document V2d2

    70/91

     Doc. No: 04U1-02034

    Rev.:2d2 Approved Date: 12 / 3 / 2003 

    69

    7.4 Spice parameter lis