3
IEEE Transactions on Magnetics vel. MAC-13, NO. 5, September 1977 1125 FINITE ELEMENT ANALYSIS OF THE SKIN EFFECT IN CURRENT CARRYING CONDUCTORS M.V.K. Chari and Z.J. Csendes General Electric Company Schenectady, New York 12301 Abstract 4. The permeability of the iron parts is single valued The c u r r e n t d e n s i t y d i s t r i b u t i o n in a conductorof finite size is affected by the presence of eddy 5. The conductivity of the media is constant. currents in the conductor. This phenomenon, generally known as skin effect, causes ohmic losses in the con- ductors and alters their magnetic induction. This Derivation of the Two-Dimensional Diffusion Equation and time invariant. 6. Temperature effects are neglected. paper presents an analysis of skin effect phenomena usingthetriangularfiniteelement method. The re- s u l t s o b t a i n e d b y this method are compared with those of classical one-dimensional analysis for (i) a con- d u c t o r i n f r e e s p a c e a n d (ii) a conductor in the presence of an iron boundary. Introduction The presence of eddy currents in conducting media affects the magnetic induction and the current density distri- butionintheregion.This phenomenon can produce sig- nificant losses in the conductors, and is, therefore, of interest in electrical equipment design. Of t h e various methods of analysis in existence, a good number are based on a one-dimensional analysis and only in a few cases of geometrical symmetry, a two-dimensional analysis has been attempted by classical methods. For general application to irregular contours and material boundariessuch as those that occur in typical electri- calequipment, a numerical method is necessary. Earlier work7 o n . t h e s u b j e c t r e l a t e s t o s k i n e f f e c t i n slot em- bedded conductors using eigenvalue analysis. In this paper an analysis employing triangular finite elements is p r e s e n t e d illustrating a noveltechnique of deter- mining the eddy current distribution in current carry- ing conductors. Section 1 deals with the theoretical analysis of the finite element method and i n Section 2, a comparison is made between the results obtained by t h i s method and those of the classical one-dimensional analysis for i) a conductor in free-space and i i ) a conductor in the presence of an iron boundary. Section 1 BasicAssumptions The a n a l y s i s p r e s e n t e d i n t h i s paper is based on the following assumptions: The current in the conductor is assumed to be directed along the conductor and is assumed t o vary sinusoidally in time. The magnetic vector potential has only a 2 directed componentanddoesnotvary i n magni- tude along the length of the conductor. It also varies sinusoidally in time. Displacement currents are neglected at power fre- quencies. On the basis of the above assumptions, Maxwell's equa- tions in the current carrying region become vxH=J=J +Js (1) v x E = - a w t (2) Where Je is the eddy current density and Js is the con- duction current density The constitutive relations are J = UE (4) where E is t h e e l e c t r i c field and pruo the perme- ability.Defining a vector A suchthat B=VxA (5) the following relationships may beobtainedfrom equations (2) and(5).afterthenecessarysubstitutions v x E = - a/at (v x A) (6) E = - aA/at + VQ (7) or Writing VQ in terms of Js, there is Since a sinusoidal variation of A has been assumed, equation (7) reducestotheform E =-juA + Js/u (9 ) Substitution of equations (3), (4), (5) and (6) into equation (1) yields the following expression l/prpo (V x V x A) = - juwA + Js (10) Using the well known vector identity (V x V x A) = V(V.A) - V2A t h e r e results by substituting for V-A = 0, l/prpo V ~ A = jud - J, (11) Equation (11) is the required two-dimensional diffusion equation satisfying the specified boundary conditions f o r l i n e a r conditions. Variational Method and the Finite Element Formulation The two-dimensional diffusion equation can be expressed in variational terms by the energy functional (ref. 4) F = /.fS V/2 I VA 1' ds + //, k2/2 A2 ds - /fS. JsA ds where v = l/pruo and k2 = jwo (12) The minimization of the above functional yields the solution to the field problem satisfying natural boun- dary conditions, provided that its Eulerequation is i d e n t i c a l t o t h e o r i g i n a l d i f f u s i o n e q u a t i o n (vide ref. 1). The EuLer equation of a two-dimensional energy functional is given by(ref. 2) a/aX (aF/aAx) + a/ay (aF/aAy) - aF/aA = 0 (13)

01059545

Embed Size (px)

DESCRIPTION

artigo

Citation preview

  • IEEE Transac t ions on Magnetics vel. MAC-13, NO. 5, September 1977 1125

    FINITE ELEMENT ANALYSIS OF THE SKIN EFFECT I N CURRENT CARRYING CONDUCTORS

    M.V.K. Chari and Z.J. Csendes General Electric Company

    Schenectady, New York 12301

    Abs t r ac t 4. The p e r m e a b i l i t y o f t h e i r o n p a r t s is s i n g l e v a l u e d

    The c u r r e n t d e n s i t y d i s t r i b u t i o n i n a conductor of f i n i t e s i z e i s a f f e c t e d by the presence of eddy 5. The conduct iv i ty o f the media i s cons t an t . c u r r e n t s i n t h e c o n d u c t o r . T h i s phenomenon, gene ra l ly known as s k i n e f f e c t , c a u s e s ohmic l o s s e s i n t h e con- ductors and alters the i r magnet ic induct ion . This Der iva t ion of the Two-Dimensional Di f fus ion Equat ion

    and t i m e i n v a r i a n t .

    6 . Tempera ture e f fec ts a re neglec ted .

    p a p e r p r e s e n t s a n a n a l y s i s o f s k i n e f f e c t phenomena u s i n g t h e t r i a n g u l a r f i n i t e e l e m e n t method. The re- s u l t s o b t a i n e d b y t h i s method a r e compared wi th t hose o f c l a s s i c a l o n e - d i m e n s i o n a l a n a l y s i s f o r ( i ) a con- d u c t o r i n f r e e s p a c e a n d ( i i ) a c o n d u c t o r i n t h e presence of an iron boundary.

    In t roduc t ion

    The presence of eddy c u r r e n t s i n c o n d u c t i n g m e d i a a f f e c t s t he magne t i c i nduc t ion and t he cu r ren t dens i ty d i s t r i - b u t i o n i n t h e r e g i o n . T h i s phenomenon can produce sig- n i f i c a n t l o s s e s i n t h e c o n d u c t o r s , and i s , t h e r e f o r e , o f i n t e re s t i n e l ec t r i ca l equ ipmen t des ign . Of t h e var ious methods o f ana lys i s in ex is tence , a good number are based on a one-dimensional analysis and only in a few cases of geometrical symmetry, a two-dimensional analysis has been a t tempted by c lass ical methods. For g e n e r a l a p p l i c a t i o n t o i r r e g u l a r c o n t o u r s and m a t e r i a l boundaries such as t h o s e t h a t o c c u r i n t y p i c a l e l e c t r i - cal equipment , a numerical method is necessary. Earlier work7 o n . t h e s u b j e c t r e l a t e s t o s k i n e f f e c t i n s l o t em- bedded conductors us ing e igenvalue ana lys i s . In th i s pape r an ana lys i s employ ing t r i angu la r f i n i t e e l emen t s i s p r e s e n t e d i l l u s t r a t i n g a novel technique of de t e r - m i n i n g t h e e d d y c u r r e n t d i s t r i b u t i o n i n c u r r e n t c a r r y - ing conductors .

    Sec t ion 1 d e a l s w i t h t h e t h e o r e t i c a l a n a l y s i s o f t h e f i n i t e element method and i n S e c t i o n 2 , a comparison is made be tween t he r e su l t s ob ta ined by t h i s method and those o f t he c l a s s i ca l one -d imens iona l ana lys i s fo r i ) a conduc to r i n f r ee - space and i i ) a c o n d u c t o r i n t h e presence of an iron boundary.

    Sec t ion 1

    Basic Assumptions

    The a n a l y s i s p r e s e n t e d i n t h i s p a p e r is based on the following assumptions:

    The c u r r e n t i n t h e c o n d u c t o r is assumed t o b e d i r ec t ed a long t he conduc to r and is assumed t o v a r y s i n u s o i d a l l y i n time.

    The magne t i c vec to r po ten t i a l has on ly a 2 d i r e c t e d component and does not vary i n magni- t ude a long t he l eng th o f t he conduc to r . It a l s o v a r i e s s i n u s o i d a l l y i n time.

    Disp lacement cur ren ts a re neglec ted a t power f r e - quencies.

    On the bas i s o f the above assumpt ions , Maxwell's equa- t i o n s i n t h e c u r r e n t c a r r y i n g r e g i o n become

    v x H = J = J + J s (1)

    v x E = - a w t (2) Where Je is t h e eddy cu r ren t dens i ty and Js is t h e con- d u c t i o n c u r r e n t d e n s i t y

    The c o n s t i t u t i v e r e l a t i o n s are

    J = UE ( 4 ) where E is t h e e l e c t r i c f i e l d and pruo t h e perme- a b i l i t y . D e f i n i n g a v e c t o r A s u c h t h a t

    B = V x A (5)

    t he fo l lowing r e l a t ionsh ips may be obtained from equat ions (2) a n d ( 5 ) . a f t e r t h e n e c e s s a r y s u b s t i t u t i o n s

    v x E = - a / a t ( v x A) ( 6 )

    E = - a A / a t + VQ (7) o r

    Wri t ing VQ i n terms of Js, t h e r e is

    Since a s i n u s o i d a l v a r i a t i o n o f A has been assumed, equat ion ( 7 ) reduces to the form

    E =-juA + Js /u (9 ) Subs t i tu t ion of equa t ions ( 3 ) , ( 4 ) , (5) and ( 6 ) i n t o equat ion (1) y i e l d s t h e f o l l o w i n g e x p r e s s i o n

    l /prpo (V x V x A) = - juwA + Js (10) Using the wel l known v e c t o r i d e n t i t y

    ( V x V x A) = V(V.A) - V2A

    t h e r e r e s u l t s by s u b s t i t u t i n g f o r V - A = 0,

    l /prpo V ~ A = j u d - J, (11) Equation (11) is the required two-dimensional dif fusion e q u a t i o n s a t i s f y i n g t h e s p e c i f i e d b o u n d a r y c o n d i t i o n s f o r l i n e a r c o n d i t i o n s .

    V a r i a t i o n a l Method a n d t h e F i n i t e Element Formulation

    The two-dimensional diffusion equation can be expressed i n v a r i a t i o n a l t e r m s by t h e e n e r g y f u n c t i o n a l ( r e f . 4 ) F = / . f S V / 2 I VA 1' ds + //, k2/2 A2 d s - /fS. J s A d s where v = l/pruo and k2 = jwo ( 1 2 )

    The min imiza t ion o f t he above func t iona l y i e lds t he s o l u t i o n t o t h e f i e l d p r o b l e m s a t i s f y i n g n a t u r a l boun- da ry cond i t ions , p rov ided t ha t i t s Euler equa t ion is i d e n t i c a l t o t h e o r i g i n a l d i f f u s i o n e q u a t i o n ( v i d e r e f . 1). The EuLer equat ion of a two-dimensional energy f u n c t i o n a l is g iven by ( re f . 2 )

    a / a X (aF/aAx) + a/ay (aF/aAy) - aF/aA = 0 (13)

  • 1126

    where A, and % a r e p a r t i a l d e r i v a t i v e s of A a long t he x and y a x e s . S u b s t i t u t i n g f o r F i n equa t ion (11) from equa t ion (lo), one ob ta ins a l a x (v a ~ / a ~ ) + a / a y (v aA/ay) - K ~ A + . J ~ = o (14) Equation ( 1 4 ) is i d e n t i c a l t o t h e d i f f u s i o n e q u a t i o n (ll), s i n c e v = l / p rp0 - i s c o n s t a n t i n a f i r s t o r d e r f i n i t e e l e m e n t so tha t min imiza t ion of the energy f u n c t i o n a l i n e q u a t i o n ( 1 2 ) y i e l d s t h e r e q u i r e d solu- t i o n t o t h e problem.

    As is customary i n f i n i t e e lement ana lys i s , the two d imens iona l reg ion of in te res t is d iv ided i n to tri- ang les ensu r ing t ha t t he t r i ang le edges co inc ide w i th t h e m a t e r i a l i n t e r f a c e s and boundaries . The r e l u c t i - v i t y a n d c o n d u c t i v i t y a r e assumed t o b e c o n s t a n t i n e a c h t r i a n g u l a r r e g i o n . I f t h e p o t e n t i a l f u n c t i o n i n e a c h t r i a n g l e is d e f i n e d t o b e a f i r s t o r d e r p i e c e - wise polynomial, then i t s v a l u e a t any p o i n t i n t h e r eg ion of t h e t r i a n g l e w i l l b e a l i n e a r i n t e r p o l a t e of i t s ve r t ex va lues . Thus

    A(x,y) = 1 / 2 A E (ai + b i x + Ciy)Ai where i , j , m a r e t h e v e r t i c e s o f a t r i a n g l e and a ,b and c are geomet r i ca l cons t an t s de f ined by t he r e l a t ions

    m

    i (15)

    a . = x .

    b i = Y j - Ym c i = 31 - xj (16)

    S u b s t i t u t i n g f o r A from equation (15) i n e q u a t i o n (12) and s e t t i n g i t s d e r i v a t i v e w i t h r e s p e c t t o each nodal p o t e n t i a l A i , A . and equal to zero , the fo l lowing expres s ion is d e r l v e d a f t e r c o n s i d e r a b l e a l g e b r a i c manipulation.

    1 Jym - %yj

    J .

    aF/aAi = 1/4A2 ~ J C V [L] [A] + C N i N j A i - ZANiJ,) ds (17) where [L] =[ ( b i b i + c i c i ) , ( b i b j + c i c j ) ,

    (bib, + c~c,) I (18) Nk = (ak + bkx f Cky) 1-41 = [Ai, A j , Am] (19 1

    The f u n c t i o n a l is d i f f e r e n t i a t e d w i t h r e s p e c t t o A. and A,,, i n a similar manner to the above . J

    I f the above process is repeated for each and every t r i a n g l e i n t h e two d imens iona l reg ion , an equat ion similar to equa t ion ( 1 7 ) w i l l be obtained which w i l l inc lude Poissonian , Laplac ian and d i f fus ion reg ions . Formal ly the resu l t ing equat ion can be expressed as

    v [SI [A] + k2 [TI [A] = J [A/31 (20) where [SI and [TI can be evaluated f rom the geometr i - c a l c o e f f i c i e n t s of t h e i n d i v i d u a l t r i a n g l e s .

    Boundary Conditions

    The above var ia t iona l formula t ion conta ins homogen- eous Neumann boundary condi t ions unless another boundary condition i s exp l i c i t l y spec i f i ed . The re - f o r e , i t is only necessary to spec i fy f ixed po ten- t i a l boundar ies ( f lux- l ine boundar ies ) on the domain A f u r t h e r n e c e s s a r y c o n d i t i o n t h a t must be s a t i s f i e d is t h a t t h e i n t e g r a l o f t h e e d d y - c u r r e n t d e n s i t y ove r t he r eg ion must equal zero. This can be ex- pressed as

    t i a l s o b t a i n e d by so lv ing equat ion ( Z O ) , on ly t he r e f e r - e n c e l e v e l and no t t he so lu t ion t o t he p rob lem w i l l b e changed. Fu r the r , t he impos i t i on of t h i s boundary con- d i t i o n s a t i s f i e s e q u a t i o n ( 2 1 ) a u t o m a t i c a l l y . The eddy- c u r r e n t v e c t o r p o t e n t i a l i s then given by

    A i A i - JA*ds//ds (24) Magnetic Induction and Reluctivity

    S ince B = V x A and A has only a component a long t he Z-axis , the value of / B I o b t a i n e d f o r t h e two-dimen- s iona l p roblem is

    S u b s t i t i t u t i n g f o r A from equation (15) in equation (25) , i t is s e e n t h a t B is independent of x and y , and hence i s c o n s t a n t i n e a c h t r i a n g l e . The va lue o f B is , t h e r e f o r e , o b t a i n e d a s

    IBI = 1 / 2 4 Y J b i A i + bjAj + b m h ) 2 + ( c iAi + c.A. + c,%)~ (26)

    S i n c e t h e r e l u c t i v i t y is a func t ion of / B 1 . i t is a l s o J J

    i ndependen t o f t he coo rd ina te sys t em fo r t h i s f i r s t o rde r f i n i t e element problem.

    Sect ion 2

    Applicat ions

    To a s c e r t a i n t h e e f f i c a c y o f t h e method f o r s o l v i n g two- d imens iona l d i f fus ion problems, the fo l lowing two s imple c a s e s a r e c o n s i d e r e d f o r which c losed form so lu t ions a r e r e a d i l y a v a i l a b l e as a bas i s for compar ison .

    i. A t h i n f l a t c o n d u c t o r i n f r e e s p a c e .

    ii. A conduc to r i n t he p re sence of an iron boundary.

    In bo th of the above cases , the magnet ic induct ion in the one-dimensional c losed form analysis is assumed t o have only an x component a s shown i n F i g . 1.

    Z J

    Fig . 1 .a S t r ip Conductor in Free Space .

    0 = {Je - ds = pjE*ds = - jwpIA-ds (21) However, s ince the above equat ion cannot be exact ly s a t i s f i e d , a r e s i d u a l R w i l l r e s u l t s u c h t h a t

    R = JJe* ds = - jWpJA * ds (22)

    Fig. 1.b Conductor i n t he p re sence o f an I ron Boundary.

    The closed form expressions f o r t h e c u r r e n t d e n s i t y d i s t r i b u t i o n f o r t h e a f o r e s a i d two cases were devel- .oped a n d t h e r e s u l t s a r e compared wi th t hose o f t he f i n i t e e l e m e n t a n a l y s i s i n F i g s . 2, 3 and 4 .

    CURRENT DENSITY I A M P S I O m l 1140 1160 I180 1200 1220 1240 1260 r1645r1O41 I I I I I I I

    Hence * res idua l = jA*ds//ds (23)

    i 1 - FINITE ELEMENTMETHOD

    5 m m DEEP

    _-- CLASSICAL ONEDIMENSIONAL ANALYSIS

    If Aresidual is now subtracted f rom each of the poten- Fig. 2.a Curren t Dens i ty Dis t r ibu t ion In A

    Conductor In Free Space.

  • 1127

    1050 1100 1150 1200 1250 1300 1350 1400 ~ 1 6 . 4 5 ~ 1 0 ~ 1 CURRENT DENSITY l A M P S / O m l

    I I I I I I 1

    I - FINITE ELEMENTMETHOO --- CLASSICAL ONE DIMENSIONAL ANALYSIS

    6.35 mm DEEP li I

    Fig. 2 .b Current Densi ty Distr ibut ion In A Conductor In Free Space.

    1000 1100 I200 1300 1400 1500 x16.45X1041 CURRENT DENSITY l A M P S / o m l

    0.4 - c

    0.3-

    0.2 - \ \ - FINITE ELEMENT METHOD

    CLASSICAL ONE DIMENSIONAL ANALYSIS

    0

    Fig. 2 .c Current Densi ty Distr ibut ion In A Conductor In Free Space.

    C U R R E N T O E N S I T Y ( A M P S / O m )

    d = 5mrn

    - F I N I T E E L E M E N T M E T H O D --- C L A S S I C A L O N E D I M E N T I O N A L A N A L Y S I S

    Fig. 3 .a Current Densi ty Distr ibut ion In A Conductor In The Presence Of An I ron Boundary.

    Conclusions

    The r e s u l t s o f t h e f i n i t e e l e m e n t a n a l y s i s compare we l l

    C U R R E N T D E N S I T Y ( A M P S / o m ] 800 1000 1200 1400 1600 1800 XI6.45XlO? I I I I 1

    4

    d = lOmm

    FINITE ELEMENT METHOD - - - C L A S S I C A L O N E D I M E N S I O N A L A N A L Y S I S

    ?

    4.0

    w

    c)

    Fig. 3 .b Current Densi ty Distr ibut ion In A Conductor In The Presence Of An I ron Boundary.

    - FINITE ELEMENT METHOD ___ CLASSICAL ONE DIMENSIONAL ANALYSIS

    Fig. 4 Var ia t ion Of A.C. Res i s t ance With a d

    l a r g e l y depend on t h e number of elements chosen. A l so , s ince t he method g ives an approximat ion to the t r u e s o l u t i o n i n t h e l e a s t s q u a r e s e n s e , t h e l a r g e r t h e number of e lements , the c loser the boundary c o n d i t i o n s a r e s a t i s f i e d .

    References

    1.

    2 .

    3.

    4 .

    5.

    w i th t hose of the c lass ica l one-d imens iona l ana lys i s for small conductor depths in bo th appl ica t ions . For h igher 6 - values of conductor depth, the one-dimensional solu- t i o n is n o t s t r i c t l y a p p l i c a b l e , a n d t h i s may account f o r t h e d i s p a r i t y .

    Although i t is d i f f i c u l t t o e s t a b l i s h s t r i c t e r r o r bounds f o r t h e f i n i t e e l e m e n t method, excepting perhaps f o r homogeneous c a s e s , t h e d i s c r e t i z a t i o n e r r o r w i l l

    7.

    M.V.K. Chari , "Fini te Element Analysis of Non- l inear Magnet ic F ie lds in E lec t r ic Machines ," Ph.D. Disser ta t ion, McGil l Universi ty , Montreal , Canada, 19 70

    F.B. Hildebrand, Methods of Applied Mathematics, Englewood C l i f f s , N . J . : P r e n t i c e Hall, 1965

    O.C. Zienkiewicz, The F i n i t e Element Method i n Engineering Science, Mc-Graw Hill,London, 1971

    P. Si lvester , "High-order polynomial t r iangular f i n i t e e l e m e n t s f o r p o t e n t i a l p r o b l e m s , " I n t . J. Engrg. Science, Vol. 7, pp. 849-861, 1969

    M.V.K. Chari , "Fini te-Element Solut ion of the Eddy-current Problem i n Magnet ic Structures ," IEEE Trans. Vol. PAS-93, Number 1, 1973 J. Lammeraner and M. S t a f l , Eddy Currents , I l i f f e Books Ltd. , London, 1966

    A. Konrad, J .L . Coulomb, J . C . Sabonnadiere and P .P . S i lves t e r , "F in i t e Element Analysis of S t e a d y S t a t e S k i n E f f e c t i n S l o t Embedded Conductor," A 76-189-1, IEEE Winter Meeting, Jan. 1976.