30
7/22/2019 01-3gpp Lte-sae Overview Sep06 http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 1/30  All rights reserved © 2006, Alcatel Ulrich Barth 3GPP Long-Term Evolution / System Architecture Evolution Overview   September 2006

01-3gpp Lte-sae Overview Sep06

Embed Size (px)

Citation preview

Page 1: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 1/30

 All rights reserved © 2006, AlcatelUlrich Barth

3GPP Long-Term Evolution / System Architecture EvolutionOverview

  September 2006

Page 2: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 2/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

2

Outline

  3G-LTE IntroductionMotivation

 Workplan

Requirements

  LTE air-interfaceLTE Architecture

  SAE Architecture

Page 3: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 3/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

3

3GPP Evolution

2G: Started years ago with GSM: Mainly voice

2.5G: Adding Packet Services: GPRS, EDGE

3G: Adding 3G Air Interface: UMTS

3G Architecture:

Support of 2G/2.5G and 3G Access

Handover between GSM and UMTS technologies

3G Extensions: HSDPA/HSUPA 

IP Multi Media Subsystem (IMS)

Inter-working with WLAN (I-WLAN)

Beyond 3G: Long Term Evolution (LTE)

System Architecture Evolution (SAE)

 Adding Mobility towards I-WLAN and non-3GPP air interfaces

Page 4: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 4/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

4

Need for PS optimised system Evolve UMTS towards packet only system

Need for higher data ratesCan be achieved with HSDPA/HSUPA 

and/or new air interface defined by 3GPP LTE

Need for high quality of servicesUse of licensed frequencies to guarantee quality of services

 Always-on experience (reduce control plane latency significantly)

Reduce round trip delay (→ 3GPP LTE)

Need for cheaper infrastructure Simplify architecture, reduce number of network elements

Most data users are less mobile

Motivation for LTE

Page 5: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 5/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

5

LTE history - Workplan

  Kick-off in RAN LTE workshop: Toronto, Nov. 2004

  Study Item: TR feasibility on system level (Dec 2004 – June 2006) TR 25.913: Requirements for E-UTRAN

TR 25.813: EUTRA and EUTRAN radio interface protocol aspects

TR 25.814: Physical layer aspects for E-UTRA 

TR 25.912: Feasibility Study for Evolved UTRA and UTRAN  Detailed standard work: - June 2007

  First products deployed … 2010

Page 6: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 6/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

6

RAN-LTE concept: Requirements

  3GPP TR 25.913

Service related requirements:

support of available and future advanced services VoIP higher peak data rates (e.g. 100 Mbps DL, 50 Mbps UL)

U-Plane /C-Plane latency: transit time (<10ms); setup times (<100ms)

Radio related requirements:

improved “cell edge rates” and spectral efficiency (e.g. 2-4 x Rel6) improved inner cell average data throughputs (MIMO needed)

Scaleable bandwidth - 1.25, 1.6, 2.5, 5, 10, 15, 20 MHz

Cost related requirements: reduced CAPEX and OPEX imply 

less complexity in RAN (architecture, signaling procedures/protocols)

economic usage of backhaul capacity; simplified and unified transport (IP)

Compatibility Requirements:

interworking with legacy 3G and cost effective migration

Page 7: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 7/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

7

Outline

  3G-LTE Introduction

  LTE air-interfaceModulation / Multiple Access

Multiple Antenna Schemes

Scheduling

  LTE Architecture

  SAE Architecture

Page 8: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 8/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

8

3GPP LTE PHY

  Modulation / Multiple AccessDownlink: OFDM / OFDMA

 Allows simple receivers in the terminal in case of large bandwidth #subcarriers scales with bandwidth (76 ... 1201)

frequency selective scheduling in DL (i.e. OFDMA)

 Adaptive modulation and coding (up to 64-QAM)

Uplink: SC-FDMA (Single Carrier - Frequency Division Multiple Access) A FFT-based transmission scheme like OFDM

But with better PAPR (Peak-to-Average Power Ratio)

The total bandwidth is divided into a small number of frequency blocks to be

assigned to the UEs (e.g., 15 blocks for a 5 MHz bandwidth) With Guard Interval (Cyclic Prefix) for easy Frequency Domain Equalisation

(FDE) at receiver

Page 9: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 9/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

9

3GPP LTE PHY

TTI length: 1ms, comprising 2 subframes; concatenation possible

DL parameters from 25.814 (Aug. 06)

Table 7.1.1-1 - Parameters for downlink transmission scheme

Transmission BW 1.25 MHz 2.5 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Sub-frame duration 0.5 ms

Sub-carrier spacing 15 kHz

Sampling frequency 1.92 MHz

(1/2×

 3.84 MHz)

3.84 MHz 7.68 MHz

(2×

 3.84 MHz)

15.36 MHz

(4×

 3.84 MHz)

23.04 MHz

(6×

 3.84 MHz)

30.72 MHz

(8×

 3.84 MHz)

FFT size 128 256 512 1024 1536 2048

Number of occupied

sub-carriers†, ††

76 151 301 601 901 1201

Number of 

OFDM symbols

per sub frame

(Short/Long CP)

7/6

Short (4.69/9) × 6,

(5.21/10) × 1*

(4.69/18) × 6,

(5.21/20) × 1

(4.69/36) × 6,

(5.21/40) × 1

(4.69/72) × 6,

(5.21/80) × 1

(4.69/108) × 6,

(5.21/120) × 1

(4.69/144) × 6,

(5.21/160) ×1

CP length(µs/samples)

Long (16.67/32) (16.67/64) (16.67/128) (16.67/256) (16.67/384) (16.67/512)

†Includes DC sub-carrier which contains no data

Page 10: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 10/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

10

3GPP LTE PHY – Multiple Antenna Schemes

  Well-integrated part in LTE from the beginningMinimum antennas requirement: 2 at eNodeB, 2 Rx at UE

  Beamforming Improves throughput at cell edge

  Spatial Multiplexing MIMO

Needs good channel conditions high SNR to enable good channel estimation

rich scattering environment, high spatial diversity, but NLOS !

Improves throughput in cell center

  Multi-Antena Diversity  Fall back solution if channel conditions don’t allow MIMO

NTx

Transmit Antennas

NRx

ReceiveAntennas

Page 11: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 11/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

11

3GPP LTE PHY - MIMO Basics

Transmission of several independent data streams in parallel overuncorrelated antennas (i.e. separated by ≥ 10 λ)⇒ increased data rate

The radio channel consists of NTx x NRx (ideally uncorrelated) paths Theoretical maximum rate increase factor = Min (NTx , NRx)

(in a rich scattering environment; no gain in a line-of-sight environment)

multiple codewords (MCW): each stream / antenna has its own FEC coding

“Per Antenna” (PAxx) schemes

MI  M O -R X 

 pr  o c  e s  s i  n g

DataStreams

MIMOChannel

MI  M O -T X 

 pr  o c  e s  s i  n g

Page 12: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 12/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

12

3GPP LTE PHY - Scheduling

Resource Block Size: 12 subcarriers 100 RB in 20 MHz

Frequency diverse scheduling

UEs are allocated to distributed resource blocks (combs)Frequency selective scheduling - user specific

Each UE is allocated its individual best part of the spectrum

Best use of the spectrum⇒ OFDM exploits channel capacity 

Sufficient feedback information on channel conditions from UE required

0 5 0 10 0 1 5 0 2 0 0 2 50 3 0 0- 4

- 2

0

2

4

6

8

1 0

S u b c a rr i e r in d e x

   R  e   l  a   t   i  v  e

  s  u   b  c  a  r  r   i  e  r  p  o

  w  e  r  a   t  r  e  c  e   i  v   i  n  g

   U   E

   i  n

   d   B

A l lo c a t e d  

to U E 1

A llo c a t e d to U E 2  

Page 13: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 13/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

13

3GPP LTE PHY - Feedback Channel Concept

Mobility andscenarioinformation

channelgain

loop

time

 

Downlink data(signalling /traffic) 

Assignment of UEspecific feedback reporting interval 

UE measurementsin frequency band

ENB total

uplink load

UEmeasurements

Reportinginterval

Frequency selective report Frequency diverse report

Reporting viafeedback channel

ENBUE

UE: Reports the finest possiblegranularity 

The reporting scheme andgranularity depend on theradio channel quality variation!

  ENB: Receives mobility and qualityinformation

Incremental feedback

information forms a roughpicture of the radio channel with the first report(s). Thegranularity gets finer and finer with each report.

Page 14: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 14/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

14

Outline

  3G-LTE Introduction

  LTE air-interface

LTE ArchitectureNode Architecture

User plane

Control plane

  SAE Architecture

Page 15: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 15/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

15

Network Architecture for LTE

  Architecture for User Plane Traffic

Cost efficient 2 node architecture

Fully meshed approach with tunnelingmechanism over IP transport network

Iu Flex approach

 Access Gateway (AGW)

Enhanced Node B (ENB)

 AGW  AGW 

 AGW: Access Gateway ENB: Enhanced Node B

LTE AccessNetwork 

IP transportnetwork 

ENB

ENBENB

ENB

ENB

ENB

IP servicenetworks

Page 16: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 16/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

16

E-UTRAN Architecture

[25.912]

The E-UTRAN consists of eNBs, providing

the E-UTRA U-plane (RLC/MAC/PHY) and

the C-plane (RRC) protocol terminations towards the UE.

the eNBs interface to the aGW via the S1

eNodeB

All Radio-related issues

Decentralized mobility management

MAC and RRM

Simplified RRC

aGW 

Paging origination

LTE_IDLE mode management

Ciphering of the user plane

Header Compression (ROHC)

Page 17: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 17/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

17

E-UTRAN Architecture: U-plane

[R3.018]

Differences between UMTS (HSDPA) and LTE/SAE

Page 18: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 18/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

18

Layer 2 Structure (eNB and aGW)

[25.912]

Page 19: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 19/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

19

 ARQ and HARQ

[25.813]

 ARQ

HARQ

The ARQ functionality provides error correction by retransmissions inacknowledged mode atLayer 2.

The HARQ functionality ensures delivery betweenpeer entities at Layer 1.

Page 20: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 20/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

20

 ARQ and HARQ

HARQ characteristicsN-process Stop-And-Wait HARQ is used

The HARQ is based on ACK/NACKs

In the downlink asynchronous retransmissions with adaptivetransmission parameters are supported

In the uplink HARQ is based on synchronous retransmissions

 ARQ characteristics The ARQ retransmits RLC SDUs (IP packets)

 ARQ retransmissions are based on HARQ/ARQ interactions

HARQ/ARQ interactions ARQ uses knowledge obtained from the HARQ about the

transmission/reception status of a Transport Block

[25.813]

Page 21: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 21/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

21

E-UTRAN C-Plane: Distributed RRM

Radio Bearer Control (RBC)

Radio Admission Control (RAC)

Connection Mobility Control (CMC)

Dynamic Resource Allocation (scheduling) (DRA)

Radio Configuration (RC)

  References for Distributed RRM

R2-052905 RRM for Architecture Option C in the Control Plane and Option A in theUser Plane

R3-051248 Definition of Multi- and Intra-cell RRM

R3-060029 Handling of RRM in a Decentralized RAN Architecture

Page 22: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 22/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

22

E-UTRAN C-Plane: Intra-LTE Handover

Network controlled handover: decision taken by Source ENB

Preparation phase

preparation of Target eNodeB by context transfer prior to HO command Break before make approach

core network not involved during preparation phase

Temporary forwarding of UP data from Source ENB to Target ENB

Path switching at AGW  after establishment of new connection between UE and Target ENB

no temporary buffering at AGW 

Performance

short interruption time in the range of 30 ms

same handover procedure applicable for real-time (delay sensitive) and non real-time(non delay sensitive) services

suitable for lossless and seamless handovers

Page 23: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 23/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

23

E-UTRAN C-Plane: Intra-LTE Handover

5-HO Response

UESource

ENB

Target

ENB AGW 

1-UE measurements

2-Reporting of measurements

3-HO decision

4-HO Request

8-HO Complete 9-Path Switch

6-HO Command

10-Release Command

7-Forwarding

     I   n    t   e   r   r   u   p    t     i   o   n

    t     i   m   e

P r  e  p ar  at   i     on

  ph 

 a s  e

E  x e c  ut   i     on

  ph  a s  e

Page 24: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 24/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

24

Outline

  3G-LTE Introduction

  LTE air-interface

LTE Architecture

  SAE ArchitectureObjectives

Node Architecture

Page 25: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 25/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

25

System Architecture Evolution

  ObjectivesNew core network architecture to support the high-throughput / low-

latency LTE access system Simplified network architecture

 All IP network

 All services are via PS domain only, No CS domain

Support mobility between multiple heterogeneous access system 2G/3G, LTE, non 3GPP access systems (e.g. WLAN, WiMAX)

Inter-3GPP handover (GPRS <> E-UTRAN): Using GTP-C based interface forexchange of Radio info/context to prepare handover

Inter 3GPP non-3GPP mobility: Evaluation of host based (MIPv4, MIPv6,DSMIPv6) and network based (NetLMM, PMIPv4, PMIPv6) protocols

Page 26: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 26/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

26

 

S5b

Evolved Packet Core

WLAN3GPP IP Access

S2

non 3GPPIP Access

S2

IASA

S5a

SAEAnchor

3GPPAnchor

S4

SGiEvolved RAN

S1

Op.IP

Serv.(IMS,PSS,etc…)

Rx+

GERAN

UTRAN

Gb

Iu

S3

MMEUPE

HSS

PCRF

S7

S6

* Color coding: red indicates new functional element / interface

SGSN GPRS Core

Figure 4.2-1: Logical high level architecture for the evolved system [3GPP TR 23.882]

SAE Architecture: Baseline

Page 27: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 27/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

27

SAE Architecture: Functions per Element

MME (Mobility Management Entity):

Manages and stores the UE control plane context, generates temporary Id,UE authentication, authorisation of TA/PLMN, mobility management

UPE (User Plane Entity):

Manages and stores UE context, DL UP termination in LTE_IDLE, ciphering,mobility anchor, packet routing and forwarding, initiation of paging

3GPP anchor:

Mobility anchor between 2G/3G and LTE

SAE anchor:

Mobility anchor between 3GPP and non 3GPP (I-WLAN, etc)

Evolved Packet Core (EPC)IASA

SAEAnchor

3GPPAnchor

MMEUPE

Page 28: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 28/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

28

 

S5b

Evolved Packet Core

WLAN3GPP IP Access

S2

non 3GPPIP Access

S2

IASA

S5a

SAEAnchor

3GPPAnchor

S4

SGiEvolved RAN

S1

Op.IP

Serv.(IMS,PSS,etc…)

Rx+

GERAN

UTRAN

Gb

Iu

S3

MMEUPE

HSS

PCRF

S7

S6

* Color coding: red indicates new functional element / interface

SGSN GPRS Core

Figure 4.2-1: Logical high level architecture for the evolved system [3GPP TR 23.882]

SAE Architecture: Interfaces

C-Plane: S1-C betweeneNB and MME

U-Plane: S1-U betweeneNB and UPE

user and bearerinformation exchange forinter 3GPP access systemmobility 

transfer of subscription

and authentication datafor user access to theevolved system(AAA interface).

Page 29: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 29/30

 All rights reserved © 2006, Alcatel3GPP LTE/SAE Overview / Sept. 06 / U.Barth

29

 

S5b

Evolved Packet Core

WLAN3GPP IP Access

S2

non 3GPPIP Access

S2

IASA

S5a

SAEAnchor

3GPPAnchor

S4

SGiEvolved RAN

S1

Op.IP

Serv.(IMS,PSS,etc…)

Rx+

GERAN

UTRAN

Gb

Iu

S3

MMEUPE

HSS

PCRF

S7

S6

* Color coding: red indicates new functional element / interface

SGSN GPRS Core

Figure 4.2-1: Logical high level architecture for the evolved system [3GPP TR 23.882]

SAE Architecture: Interfaces

mobility support between WLAN 3GPP IP access ornon 3GPP IP access andInter AS Anchor

mobility support betweenGPRS Core and Inter AS

 Anchor

transfer of (QoS) policyand charging rules from

PCRF (Policy andCharging Rule Function )

Page 30: 01-3gpp Lte-sae Overview Sep06

7/22/2019 01-3gpp Lte-sae Overview Sep06

http://slidepdf.com/reader/full/01-3gpp-lte-sae-overview-sep06 30/30

 All rights reserved © 2006, AlcatelUlrich Barth

Thank You

 [email protected]