32
Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis AREVA Proprietary

0000 - FIT Sample - Module 2 - Statistics - Framatome · excesti quia sanducit qui quis nis pa quam velit faccaturis INTRODUCTION Deterministic vs. Statistical Statistics allows for

Embed Size (px)

Citation preview

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

AREVA Proprietary

Basic Statistics Refresher

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

Outline

INTRODUCTION

NORMAL DISTRIBUTION

TOLERANCE INTERVALS

RESPONSE SURFACE MODELS

CE Setpoints – Statistics - p.3

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

Learning Objectives

Introduction� Describe the difference between a bias and a random un certainty

Normal Distribution� Explain why “2-sigma” is commonly used to describe 95% coverage of a

normal distribution

Tolerance Intervals� Describe a 95/95 tolerance interval

� Explain the difference between a one-sided tolerance in terval and a two-sided tolerance interval

Response Surface Models� Define a Response Surface Model

CE Setpoints – Statistics - p.4

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

INTRODUCTION

Outline

INTRODUCTION

NORMAL DISTRIBUTION

TOLERANCE INTERVALS

RESPONSE SURFACE MODELS

CE Setpoints – Statistics - p.5

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

INTRODUCTION

Learning Objectives

Introduction� Describe the difference between a bias and a random u ncertainty

Normal Distribution� Explain why “2-sigma” is commonly used to describe 95% coverage of a

normal distribution

Tolerance Intervals� Describe a 95/95 tolerance interval

� Explain the difference between a one-sided tolerance interval and a two-sided tolerance interval

Response Surface Models� Define a Response Surface Model

CE Setpoints – Statistics - p.6

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

INTRODUCTION

Deterministic vs. Statistical

Statistics allows for the treatment of random variability. � Deterministic – Single value used to represent a Param eter.

� Statistical – Distribution of value used to represent a parameter including random variability.

CE Setpoints – Statistics - p.7

Pro

babi

lity

Den

sity

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

INTRODUCTION

Types of Uncertainty

Bias – Shifts the mean of the distribution to the left or to the right

Random – Impacts the shape of the distribution

CE Setpoints – Statistics - p.8

Pro

babi

lity

Den

sity

Pro

babi

lity

Den

sity

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

INTRODUCTION

Types of Uncertainty

A base assumption throughout the setpoint methodology is that uncertainty parameters may be treated as symmetric and normally distributed.

Example� Tavg uncertainty = +4.0F/-4.8F

Option 1� Apply bounding random uncertainty

Option 2� Apply bias to nominal setting

Pay extra attention in these situations

Not always the case in reality

Bias = -0.4F

Random = +-4.4F

Bias = -0.0F

Random = +-4.8F

Bias = -0.4F

Random = +-4.4F

CE Setpoints – Statistics - p.9

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

INTRODUCTION

Visualization

A Histogram is used to visualize how a collection of data points is distributed.Probability Density Functions (PDF) are often used to analytically estimate statistical distributions.

CE Setpoints – Statistics - p.10

Pro

babi

lity

Den

sity

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

INTRODUCTION

Review Learning Objectives

Introduction� Describe the difference between a bias and a random u ncertainty

Normal Distribution� Explain why “2-sigma” is commonly used to describe 95% coverage of a

normal distribution

Tolerance Intervals� Describe a 95/95 tolerance interval

� Explain the difference between a one-sided tolerance interval and a two-sided tolerance interval

Response Surface Models� Define a Response Surface Model

CE Setpoints – Statistics - p.11

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

NORMAL DIST.

Outline

INTRODUCTION

NORMAL DISTRIBUTION

TOLERANCE INTERVALS

RESPONSE SURFACE MODELS

CE Setpoints – Statistics - p.12

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

NORMAL DIST.

Learning Objectives

Introduction� Describe the difference between a bias and a random u ncertainty

Normal Distribution� Explain why “2-sigma” is commonly used to describe 95% coverage of a

normal distribution

Tolerance Intervals� Describe a 95/95 tolerance interval

� Explain the difference between a one-sided tolerance interval and a two-sided tolerance interval

Response Surface Models� Define a Response Surface Model

CE Setpoints – Statistics - p.13

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

NORMAL DIST.

Normal Distribution

Many of the setpoint calculations use probability distributions to model the real world variability in input parameters.

Simplified models are typically used.� Most common is a Normal distribution.

� � �1

� 2��� �

��

Where,

µ = mean

σ = standard deviation

CE Setpoints – Statistics - p.14

Pro

babi

lity

Den

sity

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

NORMAL DIST.

Normal Distribution

A normal curve represents probability as the area under the curve.� Typically calculated using

tables because there is not a closed form solution for the integral.

� Student’s T distribution

� Note that the 2-sigma interval covers just over 95% of the data. µ-3σ µ-2σ µ-1σ µ µ+1σ µ+2σ µ+3σ

0.9545

0.9973

0.6827

CE Setpoints – Statistics - p.15

Two-sided Intervals

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

NORMAL DIST.

Normal Distribution

A normal curve represents probability as the area under the curve.� Typically calculated using

tables because the is not closed form solution for the integral.

µ-3σ µ-2σ µ-1σ µ µ+1σ µ+2σ µ+3σ

0.9773

0.9987

0.8414

CE Setpoints – Statistics - p.16

One-sided Intervals

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

NORMAL DIST.

Review of Learning Objectives

Introduction� Describe the difference between a bias and a random un certainty

Normal Distribution� Explain why “2-sigma” is commonly used to describe 95% coverage of a

normal distribution

Tolerance Intervals� Describe a 95/95 tolerance interval

� Explain the difference between a one-sided tolerance in terval and a two-sided tolerance interval

Response Surface Models� Define a Response Surface Model

CE Setpoints – Statistics - p.17

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

TOLERANCE INTV.

Outline

INTRODUCTION

NORMAL DISTRIBUTION

TOLERANCE INTERVALS

RESPONSE SURFACE MODELS

CE Setpoints – Statistics - p.18

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

TOLERANCE INTV.

Learning Objectives

Introduction� Describe the difference between a bias and a random u ncertainty

Normal Distribution� Explain why “2-sigma” is commonly used to describe 95% coverage of a

normal distribution

Tolerance Intervals� Describe a 95/95 tolerance interval

� Explain the difference between a one-sided tolerance interval and a two-sided tolerance interval

Response Surface Models� Define a Response Surface Model

CE Setpoints – Statistics - p.19

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

TOLERANCE INTV.

Tolerance Interval

A finite data set is inadequate to characterize a parameter’s variability with 100% certainty.

A tolerance interval has two numbers associated with it, namely a confidence level and a coverage level.

The interval is made so that we can have specified confidence that at least the specified portion of the entire population is covered by the interval.

For example, a 99/95 tolerance interval means that there is 99% confidence that 95% of the population will be covered by the given interval.� The order of the terms is not always treated consistently (i.e. 99/95 vs.

95/99).

� Luckily, we usually use 95/95 so it does not matter.

CE Setpoints – Statistics - p.20

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

TOLERANCE INTV.

Tolerance Interval

For example, a 99/95 tolerance interval means that there is 99% confidence that 95% of the population will be covered by the given interval.

The 99% refers to the confidence of the interval.

This is typically impacted by the number of samples available. � A large uncertainty factor must be applied if a small number of samples

is available or if a high confidence is desired.

� A small uncertainty factor can be applied is a large number of samples is available or if a low confidence is desired.

� The confidence of a best estimate calculation is 50% .

CE Setpoints – Statistics - p.21

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

TOLERANCE INTV.

Tolerance Interval

The 95% is the portion of the population being covered.

Coverage can be one-sided or two-sided.

one-sidedtwo-sided

CE Setpoints – Statistics - p.22

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

TOLERANCE INTV.

Tolerance Interval

Tolerance intervals for normal distributions are of the form:

The constants k are typically referred to as “k-factors” and are tabulated.

The K factor for a two-sided 95/95 tolerance interval with infinite samples is 1.96

The K factor for a one-sided 95/95 tolerance interval with infinite samples is 1.645

�� � � ∗ �(two−sided) �� � � ∗ �(lower) �� � � ∗ �(upper)

�� (is the sample population mean) �(is the sample population standard deviation)

CE Setpoints – Statistics - p.23

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

TOLERANCE INTV.

Review of Learning Objectives

Introduction� Describe the difference between a bias and a random u ncertainty

Normal Distribution� Explain why “2-sigma” is commonly used to describe 95% coverage of a

normal distribution

Tolerance Intervals� Describe a 95/95 tolerance interval

� Explain the difference between a one-sided tolerance interval and a two-sided tolerance interval

Response Surface Models� Define a Response Surface Model

CE Setpoints – Statistics - p.24

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

RSM

Outline

INTRODUCTION

NORMAL DISTRIBUTION

TOLERANCE INTERVALS

RESPONSE SURFACE MODELS

CE Setpoints – Statistics - p.25

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

RSM

Learning Objectives

Introduction� Describe the difference between a bias and a random uncertain ty

Normal Distribution� Explain why “2-sigma” is commonly used to describe 95% cover age of a

normal distribution

Tolerance Intervals� Describe a 95/95 tolerance interval

� Explain the difference between a one-sided tolerance interv al and a two-sided tolerance interval

Response Surface Models� Define a Response Surface Model

CE Setpoints – Statistics - p.26

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

RSM

Response Surface Model (RSM)

A response surface is a multi-dimensional fit of a particular response to a set of input parameters.

Typically used to estimate complex phenomenon in an efficient way.

CE Setpoints – Statistics - p.27

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

RSM

Response Surface Model

To develop an RSM, a set of experimental results characterizing the design space is required. � For DNBR calculation, the experiments are explicit XCO BRA-IIIC runs

� The design space is defined by the min and max of each input parameter

� Typically inputs are varied at integer multiples of t heir standard deviation

One option is to evaluate all possible combinations of each parameter at a given set of levels.� For example, assume each parameter can be at -2σ, -1σ, 0σ, 1σ, or 2σ

� Running all combinations of 10 parameters at 5 level s results in 9,765,625 XCOBRA-IIIC runs

CE Setpoints – Statistics - p.28

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

RSM

Response Surface Model

Design of Experiments (DOE)� A design of experiments can be used to limit the num ber of explicit runs

needed to build an RSM while minimizing the loss of information

� Many types of DOE exist• Box-Benhken design• Plackett-Burman• Cubic centered design

CE Setpoints – Statistics - p.29

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

RSM

Review of Learning Objectives

Introduction� Describe the difference between a bias and a random uncertainty

Normal Distribution� Explain why “2-sigma” is commonly used to describe 9 5% coverage of a

normal distribution

Tolerance Intervals� Describe a 95/95 tolerance interval

� Explain the difference between a one-sided tolerance interval and a two-sided tolerance interval

Response Surface Models� Define a Response Surface Model

CE Setpoints – Statistics - p.30

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

Exercise 2.1Companion Notebook > Statistics Tab > Exercise 2.1� Tolerance Intervals

CE Setpoints – Statistics - p.31

AREVA Proprietary

Sed qui doloratur, qui sincit doles maximi, nonsentur solorro officte sima si conse optiatet acium excesti quia sanducit qui quis nis pa quam velit faccaturis

Review of Learning Objectives

Introduction� Describe the difference between a bias and a random u ncertainty

Normal Distribution� Explain why “2-sigma” is commonly used to describe 95% coverage of a

normal distribution

Tolerance Intervals� Describe a 95/95 tolerance interval

� Explain the difference between a one-sided tolerance interval and a two-sided tolerance interval

Response Surface Models� Define a Response Surface Model

CE Setpoints – Statistics - p.32

AREVA Proprietary