6
ప ᕤᏛ 51 8 2016 385 ⏕ᘧ⇕ჾࡢࡑタィᣦ㔪 *1 Regenerative Heat Exchanger and Its Design Approach Kazuhiro HAMAGUCHI *1 Synopsis: The regenerator is an indispensable regenerative heat exchanger in Stirling cycle machines, G-M cryocoolers and pulse tube cryocoolers. Its existence is a key factor in enabling these machines to have the highest thermal efficiency and coefficient of performance. A regenerator is composed of a matrix and housing. The matrices are often made of stacks of fine wire mesh screens. However, an optimum balance between flow loss and heat transfer characteristics is required. In this report, based on the theoretical studies of thermal behavior in wire elements and matrices, relationships between design factors are obtained. An approach for designing regenerator used in Stirling cryocoolers is presented. Keywords: temperature ratio, temperature efficiency, flow loss, reheat loss, indicated COP (Some figures in this article may appear in colour only in the electronic version) ࡌࡣ ࢱࢫ㸪୪ GM ෭ᶵ㸪ࢱࢫ ෭ᶵ௦⾲෭ჾ᪉ᘧᴟప ෭ᶵᛶ⬟⏕ᘧ⇕ჾ㸦⇕⏕⇕ჾ㸧ᛶ⬟ࡃࡁᙳ㡪 ⇕ࡢࡇࠋࢱࢫჾ㸪ᴟప ෭ᶵ෭ჾࡋࡑ⇕㡢㡪ᶵჾࢱࢫࡣ ⇕ࡢᶵჾᚲせḞᮏ✏ ෭ჾᑐ㇟ࡢࡑᇶᮏᵓᡂᙺ㸪タィ㝿 ᚲせせồ㡯┠㸪෭ᮦ✀ࡢࢫࢡ≉ᛶ㸪✀ᦆኻホ౯ἲ⥲ⓗホ౯ἲ⤂㸪෭ タィᣦ㔪㏙ ⏕ᘧ⇕ჾ ᇶᮏᵓᡂᙺ Fig. 1 ࢱࢫࢧࢢᶵჾࡅ࠾⏕ᘧ⇕ ჾ㸦⏕ჾࡣ࠸෭ჾ㸧ࢡࡢᨺ⇕ჾ ྾⇕ჾ⨨㛵ಀ♧ࠋࡍ⏕ᘧ⇕ჾࡢࢢࢫࢡ⇕ᮦࡣ࠸༢⣧ᵓᡂࡢࡑࠋࡣࢫࢡ┤᥋᥋ゐ㸪స㛫⇕ 㸪⇕ࡋࡑᨺ⇕┤᥋᥋ゐᘧ⇕⏕ᘧ ⇕ჾᮏ✏㸪෭ჾFig. 1 Fig. 2 ࡢࡑᙺ㏙෭ჾ㸪ప 㒊ࡢ⇕ࡢ྾⇕ჾὶධࡓࡋࡢࢫ⇕ჾ࿘⦕⎔ቃᨺฟὶ㊰ࡢࡑࠋࡣࡁFig. 2 ᅽ⦰✵㛫ᨺ⇕ჾ⤒ Fig. 1 Stirling cycle machine. Fig. 2 Temperature distribution in regenerator. *1 Received August 10, 2016 Ꮫ⌮ᕤᏛ㒊 191-8506 ᮾி㒔᪥㔝ᕷ⛬ಖ 2-1-1 Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan E-mail: [email protected] DOI : 10.2221/jcsj.51.385 ≉㞟㸸⏕ᘧ⇕ჾヰ㢟

0 1 - J-STAGE

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 0 1 - J-STAGE

51 8 2016 385

*1

Regenerative Heat Exchanger and Its Design Approach

Kazuhiro HAMAGUCHI*1

Synopsis: The regenerator is an indispensable regenerative heat exchanger in Stirling cycle machines, G-M cryocoolers and pulse tube cryocoolers. Its existence is a key factor in enabling these machines to have the highest thermal efficiency and coefficient of performance. A regenerator is composed of a matrix and housing. The matrices are often made of stacks of fine wire mesh screens. However, an optimum balance between flow loss and heat transfer characteristics is required. In this report, based on the theoretical studies of thermal behavior in wire elements and matrices, relationships between design factors are obtained. An approach for designing regenerator used in Stirling cryocoolers is presented.

Keywords: temperature ratio, temperature efficiency, flow loss, reheat loss, indicated COP (Some figures in this article may appear in colour only in the electronic version)

GM

Fig. 1

Fig. 1 Fig. 2

Fig. 2

Fig. 1 Stirling cycle machine.

Fig. 2 Temperature distribution in regenerator.

*1

Received August 10, 2016

191-8506 2-1-1 Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan

E-mail: [email protected] DOI : 10.2221/jcsj.51.385

Page 2: 0 1 - J-STAGE

386 TEION KOGAKU J. Cryo. Super. Soc. Jpn. Vol. 51 No. 8 2016

Fig. 1

Fig. 3

2)

Fig. 4

3)

a)

Fig. 3 Effects of normal flow passage at regenerator.

Fig. 4 Effects of tapered flow passage at regenerator.

b) c) d)

200 4000.05 0.03 mm

a) b)

c)

d) e)

b) c)a) d) e)

Cp

1 MPa 2 MPa10 20 K

4.2 K0 70 K

10 K10 K

Gd Dy Ho Er

70 K

Fig. 5(a)

Fig. 5(b)Fig. 5(a)

Page 3: 0 1 - J-STAGE

51 8 2016 387

(a) Vertical stack (b) Parallel stack Fig. 5 Stacking method of wire gauzes.

(1)

(mm2/mm3) dh(mm)

a)

( )

m

14d

φσ −= (1)

dm (mm) b)

dh dh 4

4σφ4 (2)

c)

(2)

P(Pa) fRe f

Re u

2

h

21 u

lrPd

= (3)

νudRe h= (4)

φ0u

u = (5)

lr (m)(kg/m3) (m2/s) u

u0

(m/s)(3)

m(W/(m2K)) Nu

Fig. 6 Effects of stacking method and porosity on balance values of two characteristics.

ReNu

g

mh

λαdNu = (6)

g (W/(mK)) (4) 4)

Fig. 6Re

30 50 100 VP f/Nu

f/Nu f/Nu

f/Nu

f/Nuf/Nu

f/Nuf/Nu

f/Nu

(5)

5)

(7) f (8)Re

Page 4: 0 1 - J-STAGE

388 TEION KOGAKU J. Cryo. Super. Soc. Jpn. Vol. 51 No. 8 2016

60.1175 +=Re

f (7)

67.033.0 ReNu = (8) (7) (8) (3) (4) (6)

6)

(6) 7)

e (W/ (mK))

( )

−+−

+=

sg

g

s

ge112

121ln1

λλ

λλ

λλ

A

A (9)

s g (W/(mK))A

( ) 2141 −−=π

φAAA

−−=

Fig. 7

dm

Tf*

in

Tf*

out Fig. 7(b) Fig. 7(a)

Fig. 7 Heat storage in a wire element.

Fig. 7(c)

Fig. 7(b)

Tr Bi FoFig. 8

8)

Tr Bi Fo

0fm

d

==

RTTTr (10)

Td /Tfm

R=0

d

mm

2λα dBi = (11)

m (W/(m2K)) dm

d (W/(mK))

2m

d4d

tFo κ= (12)

d (m2/s) t(s)

Fig. 8

dm

Bi Fo TrTr =1

Tr =1

Fig. 9

Fig. 8 Relation between Bi and Fo with temperature ratio Tr.

Page 5: 0 1 - J-STAGE

51 8 2016 389

Ntu CrFig. 10 Ntu

Cr Crs

p

m

CmSNtu α= (13)

m (8)S (m2) m

(kg/s) Cp (kJ/(kgK))

tCmMCCr

p

m= (14)

M (kg) Cm

(kJ/(kgK)) (s)

vr

m

CMMCCrs = (15)

Mr (kg)Cv (kJ/(kgK))

0xfmh

0ff

=

==

−−

=TTTT xlrxε (16)

Tf x=lr

Tf x=0

Tmh

Fig. 9 Control volume of matrix.

Fig. 10 Temperature efficiency versus Ntu with Cr (Crs>100).

9) Crs 100 CrsFig. 10

=0.99 Cr Ntu

2)

Wp( )

PmW Δ=ρp (17)

m P

P f(7)

Qr(W)

Fig. 2Ta Tr Tr

Tr

Ta Ta

Tr

Qr

rpr TCmQ = (18)

m Cp

(18)

Tr

(1- )

Qmax

max

r1QQ=− ε (19)

Qmax ( )rapmax TTmCQ −= (20)

Page 6: 0 1 - J-STAGE

390 TEION KOGAKU J. Cryo. Super. Soc. Jpn. Vol. 51 No. 8 2016

( )( )ε−−= 1rapr TTmCQ (21)

(22)(23)

Cr 0 (23) (22)

221+

=−Ntu

ε (22)

( )+⋅−=−

2tanh11

NtuCrNtuCrε (23)

Qc(W)

LrTTAQ ra

emc−= λ (24)

Am Lr (m2)(m) Ta Tr ( )

e (9)

77 K, 1 W10) Fig. 11

COPi

opi

ocrei WWW

QQQWCOP

Σ−−Σ−−−

= (25)

We Wi (W)Qo Wo Qr

Qc Wp

Qo

Fig. 11 Heat balance in a Stirling cryocooler.

Wo

(25) COPi

1) (B) 72-714 (2006) 491-497

2) (B) 64-624

(1998) 2702-2709 3)

(B) 78-794 (2012) 128-139

4) (B) 70-697 (2004)

2425- 2432 5) M. Tanaka, et al.: “Flow and heat transfer characteristics of Stirling

engine regenerator in oscillating flow”, JSME Int. J., Ser. 2, 33 (1990) 283

6) (2009) 124-129

7) No.145 (1988) 76

8) (B) 49-445 (1983) 2001-

2010 9) H. Miyabe, S. Takahashi and K. Hamaguchi: “An approach to the

design of Stirling engine regenerator matrix using packs of wire gauzes”, Proc. 17th IECEC (1982) 1839-1844

10) 62-719 (1987) 1-7

1950 2 28 1981