31
22 UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA DE OSCILACIONES ONDAS Y ÓPTICA MÓDULO # 1: OSCILACIONES MECÁNICAS -CINEMÁTICA Y DINÁMICA- Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín Temas Introducción Conceptos básicos del movimiento oscilatorio Cinemática del MAS: Ecuaciones cinemáticas básicas Cinemática del MAS: MCU. vs MAS. Dinámica del MAS: Fuerza recuperadora Dinámica del MAS: Ecuación diferencial Taller Introducción El estudio de las oscilaciones o vibraciones es una parte fundamental de la física debido a que prácticamente todos los sistemas físicos tienen capacidad de oscilar alrededor de un punto de equilibrio. Cualquier magnitud puede estar sujeta a oscilaciones. En la vida habitual las oscilaciones más obvias son aquellas que conciernen a la oscilación de la posición (vibraciones en cuerdas, olas en el agua, péndulos, resortes), sin embargo, cualquier magnitud puede oscilar: la presión de un líquido o un gas, su temperatura, el campo magnético, el campo eléctrico entre otras. Cuando el cronograma de una partícula oscilando (representación de la posición vs el tiempo) es una función sinusoidal se dice que la oscilación es armónica, en otras palabras, que la partícula oscila con Movimiento Armónico Simple (MAS.) y a la partícula se le denomina oscilador armónico . Simulación : Bajar SimulPhysics del sitio Web: http://ludifisica.medellin.unal.edu.co/index.php/software-hardware/ simulphysics Analizar la simulación de SimulPhysics correspondiente al Cronograma de un MAS . Para acceder a ella hacer clic con el mouse en el ítem señalado en la Figuras 1. Se despliega la simulación de la Figura 2. En ésta hacer las variaciones permitidas y observar detenidamente los resultados.

ludifisica.medellin.unal.edu.coludifisica.medellin.unal.edu.co/.../modulo_1.docx · Web viewFÍSICA DE OSCILACIONES ONDAS Y ÓPTICA MÓDULO # 1: OSCILACIONES MECÁNICAS -CINEMÁTICA

  • Upload
    ngodat

  • View
    246

  • Download
    0

Embed Size (px)

Citation preview

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍNFACULTAD DE CIENCIAS-ESCUELA DE FÍSICAFÍSICA DE OSCILACIONES ONDAS Y ÓPTICA

MÓDULO # 1: OSCILACIONES MECÁNICAS -CINEMÁTICA Y DINÁMICA-Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H.

Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Temas Introducción Conceptos básicos del movimiento oscilatorio Cinemática del MAS: Ecuaciones cinemáticas básicas Cinemática del MAS: MCU. vs MAS. Dinámica del MAS: Fuerza recuperadora Dinámica del MAS: Ecuación diferencial Taller

Introducción

El estudio de las oscilaciones o vibraciones es una parte fundamental de la física debido a que prácticamente todos los sistemas físicos tienen capacidad de oscilar alrededor de un punto de equilibrio.Cualquier magnitud puede estar sujeta a oscilaciones. En la vida habitual las oscilaciones más obvias son aquellas que conciernen a la oscilación de la posición (vibraciones en cuerdas, olas en el agua, péndulos, resortes), sin embargo, cualquier magnitud puede oscilar: la presión de un líquido o un gas, su temperatura, el campo magnético, el campo eléctrico entre otras.Cuando el cronograma de una partícula oscilando (representación de la posición vs el tiempo) es una función sinusoidal se dice que la oscilación es armónica, en otras palabras, que la partícula oscila con Movimiento Armónico Simple (MAS.) y a la partícula se le denomina oscilador armónico.

Simulación:

Bajar SimulPhysics del sitio Web:

http://ludifisica.medellin.unal.edu.co/index.php/software-hardware/simulphysics

Analizar la simulación de SimulPhysics correspondiente al Cronograma de un MAS. Para acceder a ella hacer clic con el mouse en el ítem señalado en la Figuras 1. Se despliega la simulación de la Figura 2. En ésta hacer las variaciones permitidas y observar detenidamente los resultados.

Figura 1

Figura 2

Es muy importante conocer el Movimiento Armónico Simple, ya que el teorema de Fourier establece que cualquier tipo de oscilación periódica puede considerarse como la superposición de movimientos armónicos simples.

Simulación:

Analizar la simulación de SimulPhysics correspondiente al Sintetizador de Fourier. Para acceder a ella hacer clic con el mouse en el ítem señalado en la Figura 3. Se despliega la simulación de la Figura 4. En ésta hacer las variaciones permitidas y observar detenidamente los resultados.

Figura 3

Figura 4

En éste módulo se trata la cinemática y la dinámica del MAS. En el módulo # 2 se estudian el sistema masa-resorte y el péndulo como modelos básicos que permiten con base en ellos estudiar

sistemas oscilantes más complejos (átomos, moléculas, edificios, puentes, sonido, telecomunicaciones,…).

En el módulo # 3 se estudia lo referente al comportamiento energético de una partícula en MAS. En el módulo # 4 se analiza la superposición de dos MAS: interferencia, pulsaciones y polarización. En el módulo # 5 se estudia las oscilaciones cuando son forzadas haciendo énfasis en el denominado fenómeno de RESONANCIA.

El fenómeno oscilatorio es la base de gran parte de la tecnología que se usa a diario: televisión, radio, celulares, telecomunicaciones en general, holografía, edificios y en general estructuras sismoresistentes, instrumentos digitales (para imagen y sonido),… Este fenómeno es la base para estudiar la luz y el sonido.

Conceptos básicos del movimiento oscilatorio

La posición de equilibrio de un cuerpo puede ser de tres tipos: estable, inestable e indiferente. En la Figura 5 se ilustran los tres casos. Los equilibrios estable e inestable corresponden respectivamente a estados de mínima y máxima energía potencial.

Figura 5

Cuando el cuerpo es separado de la posición de equilibrio por la acción de un agente externo, oscilará solo si su posición de equilibrio era estable. A este tipo de movimiento se le denomina movimiento oscilatorio o vibratorio. El estudio de este tipo de movimientos es de suma importancia en la física, ya que son la base para la comprensión, entre otros, de fenómenos como el sonido y la luz.

Definiciones básicas en el movimiento oscilatorio

En el movimiento oscilatorio se utiliza como sistema de coordenadas, a un sistema cuyo origen es la posición de equilibrio del oscilador, Figura 6. A continuación se definirán algunos conceptos básicos.

Elongación ( ): Es el vector posición del oscilador medido respecto a la posición de equilibrio. En la Figura 6 corresponde a la variable . Tiene unidades de longitud: su unidad en el SI es el metro (m).

Figura 6

Amplitud (A): Corresponde a la magnitud de la máxima elongación. Tiene unidades de longitud: su unidad en el SI es el metro (m).

Periodo (P): Si el movimiento oscilatorio es un movimiento periódico, se define como periodo, al tiempo que se invierte para hacer una oscilación completa (“un ir y venir”): su unidad en el SI es el segundo (s).

Es decir si en un intervalo de tiempo el oscilador hace oscilaciones completas, se cumple,

Frecuencia (f): Como a todo movimiento periódico, al oscilador periódico también se le define una frecuencia. En este caso, será el número de oscilaciones completas en la unidad de tiempo. En el SI su unidad es el Hertz (1 Hz=1 oscilación/s).

Es decir si en un intervalo de tiempo el oscilador hace oscilaciones completas, se cumple,

El período y la frecuencia son inversos multiplicativos,

Fase ( ): Un parámetro muy utilizado cuando se están analizando movimientos oscilatorios, es el que recibe el nombre de fase del oscilador. Recibe este nombre porque determina en que “fase” del movimiento de “ir y venir” se encuentra la partícula oscilante; por ejemplo, determina si el oscilador en un instante dado está en su posición de equilibrio, o en uno de los extremos de oscilación, o en otra posición. Este concepto es un poco abstracto, pero a continuación se dan algunos ejemplos que aclaran su interpretación física.

Cada que el oscilador hace una oscilación completa, se dice que su fase se ha incrementado en 360º ( radianes). Si el oscilador se suelta desde un extremo, cuando su fase sea de radianes, estará ocupando la posición del extremo opuesto, y habrá transcurrido un tiempo equivalente a tres períodos y medio, y además habrá completado tres oscilaciones (completas) y media. Ahora, si dos osciladores se sueltan simultáneamente de extremos opuestos, se dice que su diferencia de fase es igual a radianes (se dice que estos osciladores se encuentran en

oposición). Y si se sueltan bajo las mismas condiciones desde la misma posición, se dice que están en fase.

El concepto de diferencia de fase, , es fundamental para estudiar el fenómeno de interferencia.

Fase inicial ( ): Corresponde al valor de la fase del oscilador en el instante t=0.

Más adelante se muestra que la fase inicial, , y la amplitud, A, de un oscilador libre (es decir, NO forzado) dependen de las condiciones iniciales (posición y velocidad iniciales).

Ejemplo 1:

Una masa que pende de un resorte se desplaza de su posición de equilibrio hasta una posición igual a 2,50 cm y se suelta. Si oscila periódicamente con una frecuencia igual a 0,500 Hz, calcular: (a) su periodo, (b) el número de oscilaciones que hace en 20,0 s, (c) su desfase a los 3,50 s y a los 5,00 s después de iniciado su movimiento, (d) su desplazamiento a los 1, 50 s y 4,00 s después de iniciado su movimiento.

Solución:

(a) De la ecuación [3], se deduce que el periodo P es,

(b) Como el periodo es igual a 2,00 s, significa que para la masa hacer una oscilación completa invierte un tiempo igual a 2,00 s. Por lo tanto en 20,0 s hace 10 oscilaciones completas.

(c) Cada 2,00 s la masa se desfasa en (correspondiente a 1 oscilación completa). Por lo tanto

en 3,50 s se desfasa en (la suma resultante de + + ). A los 5,00 se ha desfasado .

(d) Cuando ha transcurrido 1,00 s la masa se ha movido de un extremo al otro; cuando ha transcurrido 0,50 s adicionales la masa llega a la posición de equilibrio. Si se supone que la

masa en su posición inicial estaba en , en t= 1,50 se encontrará en dando como resultado para el desplazamiento,

El lector podrá comprobar que transcurridos 4,00 s el desplazamiento es nulo,

Cinemática del MAS: Ecuaciones cinemáticas básicas

Elongación: En general toda partícula oscilante cuya elongación se exprese mediante una relación sinusoidal del tiempo, ecuación [4], se dice que oscila armónicamente. A este movimiento se le denomina Moviminento Armónico Simple (MAS.) y a la partícula se le denomina oscilador armónico. En la Figura 7 se ilustra un sistema masa resorte oscilando: mediante el desplazamiento de una cinta de papel se puede recoger su cronograma (representación de su elongación vs tiempo ); esto se pudo observar en la simulación correspondiente a las Figuras 1 y 2.

Figura 7

en donde A es la amplitud, la frecuencia angular (se mide en el SI rad/s),

la frecuencia medida en el SI en Hz, P el periodo y el tiempo medidos en el SI en s y la fase inicial medida en rad. Adicionalmente la fase es,

y se mide en rad.

La velocidad y la aceleración de la partícula que oscila con MAS se obtiene derivando respecto al tiempo la ecuación [4],

De las ecuaciones [4] y [8] se obtiene,

La elongación y la aceleración son vectores opuestos,

Más adelante se muestra que esto es consecuencia de que la fuerza neta que actúa sobre un oscilador armónico es proporcional a la elongación y es RECUPERADORA,

Es decir es una fuerza Hookeana (recordar la ley de Hooke).

En la Figura 8 se ilustra la representación temporal de estas magnitudes (para facilidad se asumió

Figura 8

Ejemplo 2:

En qué posiciones de la trayectoria de un oscilador armónico son máximas: (a) la magnitud (el módulo) de la elongación, (b) la rapidez, (c) la magnitud de la aceleración.

Solución:

Con base en las ecuaciones [4], [7], [8] y [9] se deduce que los valores máximos de las magnitudes de la elongación, velocidad y aceleración son,

En los extremos la elongación y la aceleración son máximas y la rapidez es nula. Cuando el oscilador pasa por la posición de equilibrio la elongación y la aceleración son nulas pero la rapidez es máxima, Figura 9.

Figura 9

Ejemplo 3:

Un oscilador armónico oscila con una frecuencia igual a 2,00 Hz y una amplitud igual a 5,00 cm, calcular: (a) su máxima elongación, (b) su máxima rapidez, (c) el máximo valor de la aceleración.

Solución:

La elongación máxima es igual a la amplitud,

Según la ecuación [5] la frecuencia angular es,

Por lo tanto según las ecuaciones [11] y [12],

Ejemplo 4:

La elongación de un oscilador armónico expresada en el SI es,

Calcular: (a) su amplitud, (b) su frecuencia angular, (c) su periodo, (d) su frecuencia en Hz, (e) su fase inicial, (f) su fase en el instante t= 2,00 s, (g) su máxima rapidez, (h) su máxima aceleración, (i) su velocidad en el instante t=1,30 s.

Solución:

Según la ecuación [4],

Por lo tanto por comparación se obtiene,

(a) Amplitud,

A= 0,200 m

(b) Frecuencia angular,

(e) Fase inicial,

(c) Según la ecuación [5],

El periodo es,

Por lo tanto,

(d) De la ecuación [3],

La frecuencia en Hz es,

(f) Según la ecuación [6], la fase es,

Como puede deducirse en t = 2,00 s ha transcurrido un periodo, por lo que el desfase es igual a

: pasó de una fase en t = 0 s igual a a una fase en t = 2,00 s igual a .

(g) y (h) Con base en las ecuaciones [11] y [12] se obtiene para la rapidez y aceleración máximas,

(i) Según la ecuación [7],

Ejemplo 5:

Hallar la diferencia de fase entre los osciladores cuyas elongaciones están expresadas en el SI como sigue:

(a)

(b)

(c)

(d)

Solución:

Para encontrar la diferencia de fase entre estos osciladores es necesario obtener sus fases empleando la misma función trigonométrica para sus elongaciones (ambas expresadas con la función seno o ambas con la función coseno). Además es necesario tener en cuenta que la amplitud es siempre positiva (es la magnitud de la máxima elongación).

(a) La elongación del oscilador 2 se puede transformar así,

Por lo tanto,

También se habría podido realizar al revés,

(b) En este caso las partículas oscilan en direcciones ortogonales, pero el cálculo se hace de igual forma,

(c) La elongación del oscilador 2 se puede transformar así,

Por lo tanto,

(d) La elongación del oscilador 2 se puede transformar así,

Por lo tanto,

Cinemática del MAS: MCU. vs MAS.

La proyección sobre una línea recta, de una partícula que se mueve con M.C.U (Movimiento Circular Uniforme), oscila con M.A.S (Movimiento Armónico Simple).

Simulación:

Analizar la simulación de SimulPhysics correspondiente a M.A.S. vs M.C.U. Para acceder a ella hacer clic con el mouse en el ítem señalado en la Figura 10. Se despliega la simulación de la Figura 11. En ésta hacer las variaciones

permitidas y observar detenidamente los resultados.

Figura 10

Figura 11

Análisis:

El asunto consiste en proyectar las variables cinemáticas del MCU sobre una recta: podría ser por ejemplo sobre el eje X o sobre el eje Y. Si se escoge el eje Y las proyecciones son las componentes rectangulares en esa dirección. Por lo tanto, apoyándose en las Figuras 12, 13, 14 y empleando las relaciones del movimiento circular para la velocidad lineal y para la aceleración centrípeta , se obtienen,

Que son las expresiones cinemáticas básicas del MAS, es decir se concluye que la proyección sobre una recta de una partícula moviéndose con MCU oscila con MAS.

Figura 12

Figura 13

Figura 14

En las Figuras 15, 16 y 17 se ilustra el mismo análisis con base en la simulación correspondiente a la Figura 11.

Figura 15

Figura 16

Figura 17

Dinámica del MAS: Fuerza recuperadora

Una partícula de masa m que oscila con MAS cumple la ecuación [9],

y por tanto, la fuerza neta que actúa sobre ella según la segunda ley de Newton es,

en donde,

se denomina constate del MAS.

Por tanto, se concluye que una partícula oscila con MAS si y solo si la fuerza neta que actúa sobre ella cumple que:

sea lineal con la elongación.

sea recuperadora (se oponga en todo instante a la elongación). Esto es, apunte en todo instante hacia la posición de equilibrio de la partícula.

La fuerza es variable. En la posición de equilibrio es nula y va aumentando en magnitud cuando el oscilador avanza hacia los extremos del movimiento hasta alcanzar su valor máximo en estos (

). Por lo tanto, las oscilaciones se dan por un compromiso entre la inercia y la fuerza restauradora, ya que aunque en el instante que la partícula pasa por la posición de equilibrio no está sometida a una fuerza neta, aquí es nula (en la dirección del movimiento), logra atravesar la posición de equilibrio; esto es consecuencia de la inercia.

De la ecuación [14] se deduce que,

Ejemplos que se analizarán en el módulo # 2 (los péndulos y el sistema masa-resorte), llevarán a concluir que, la fecuencia, el período, la frecuencia angular y la constante del MAS, son constantes impuestas por la naturaleza al sistema (son “huellas digitales”). A la frecuencia se le denomina frecuencia natural o frecuencia propia del oscilador.

Dinámica del MAS: Ecuación diferencial

La segunda ley de Newton aplicada al oscilador armónico, siendo Fy la fuerza neta que actúa sobre él es,

Combinándola con la ecuación [13] se obtiene,

o en forma diferencial,

denominada la ecuación diferencial del oscilador armónico.

Escribiéndola en forma comprimida es,

Esta ecuación diferencial es lineal, de orden 2 y homogénea. Según la teoría de ecuaciones diferenciales, su solución corresponde a la siguiente combinación lineal de seno y coseno,

Redefiniendo constantes, con base en la Figura 18, se obtiene de nuevo la ecuación [4],

Figura 18

La interpretación de cada una de las variables y constantes es la que se ha venido señalando. En particular, la amplitud A y la fase inicial representan las constantes de integración y sus valores dependen de las condiciones iniciales como se demostrará a continuación:

Aplicando las condiciones iniciales, es decir los valores de la elongación y la velocidad en t=0, se obtiene,

Dividiendo las dos ecuaciones se llega a,

Elevando al cuadrado las ecuaciones y luego sumándolas se obtiene,

Observándose cómo es que dependen la amplitud y la fase iniciales de las condiciones iniciales de elongación y velocidad.

Ejemplo 6:

Una partícula sujeta a un resorte vertical se hala hacia abajo una distancia de 4,00 cm a partir de la posición de equilibrio y se suelta desde el reposo. Si la aceleración inicial hacia arriba de la partícula es 0,300 m/s2 y continúa oscilando armónicamente: (a) ¿Cuál es el período de las subsecuentes oscilaciones? (b) ¿A qué velocidad

pasa la partícula por la posición de equilibrio? (c) ¿Cuál es la ecuación de la elongación en función del tiempo para la partícula? (Escoger la dirección positiva hacia abajo)

Solución:

En la Figura 19 se ilustra la escena física (en t=0 y en un instante t>0). El marco de referencia elegido es el techo y el sistema de coordenadas elegido es el eje Y con origen en la posición de equilibrio y apuntando hacia abajo.

Figura 19 Aunque posiblemente no se empleen todas las ecuaciones cinemáticas para resolver el ejercicio, es saludable hacer el listado de ellas,

(a) La partícula se suelta del extremo inferior y por lo tanto en ese instante tiene su aceleración y elongación máximas en magnitud,

Entonces y , se obtiene para la frecuencia angular,

Adicionalmente,

Y por lo tanto se obtiene para el periodo,

(b) Por la posición de equilibrio la partícula pasa con la rapidez máxima,

y por lo tanto,

(c) La ecuación de la elongación de la partícula está dada por la ecuación (1),

Como la partícula se soltó del extremo inferior la fase inicial del oscilador es ya que en ese instante , por lo tanto la ecuación de la elongación del oscilador expresada en el SI es,

Tarea: Si el sistema coordenadas, en este caso el eje Y, se hubiera tomado apuntando hacia arriba encontrar la ecuación de la elongación.

Rp.

Ejemplo 7:

Una partícula que se cuelga de un resorte ideal tiene una frecuencia angular de 2,00 rad/s. El resorte se cuelga del techo de un elevador, y cuelga sin movimiento (respecto al elevador) conforme el elevador desciende con una rapidez constante de 1,50 m/s. El elevador se para repentinamente y la partícula continúa oscilando armónicamente: (a) ¿Con qué amplitud oscilará la partícula? (b) ¿Cuál es la ecuación de la elongación en función del tiempo para la partícula? (Escoger la dirección positiva hacia abajo).

Solución:

En la Figura 20 se ilustra la escena física (en t=0 y en un instante t>0). El marco de referencia elegido es el techo del ascensor y el sistema de coordenadas elegido es el eje Y con origen en la posición de equilibrio y apuntando hacia abajo.

Figura 20 Aunque posiblemente no se empleen todas las ecuaciones cinemáticas para resolver el ejercicio, es saludable hacer el listado de ellas,

(a) Al detenerse el ascensor la partícula sigue con la velocidad de éste (ley de inercia). En ese instante la partícula se encuentra en la posición de equilibrio y por lo tanto su rapidez equivale a la máxima,

Como y se obtiene para la amplitud,

(b) La ecuación de la elongación de la partícula está dada por la ecuación (1),

Como la partícula en t-0 se encontraba en la posición de equilibrio y con velocidad apuntando en el sentido positivo de Y, la fase inicial del oscilador es ya que en ese instante y Vy > 0, por lo tanto la ecuación de la elongación del oscilador expresada en el SI es,

Tarea: Si el sistema coordenadas, en este caso el eje Y, se hubiera tomado apuntando hacia arriba encontrar la ecuación de la elongación.

Rp.

Taller

1. La elongación de un oscilador armónico en el SI está dada por la ecuación,

Determinar para este oscilador: (a) fase inicial, (b) amplitud, (c) frecuencia en Hz, (d) periodo, (e) rapidez máxima, (f) aceleración máxima, (g) ecuación de la velocidad en función del tiempo, (h) ecuación de la aceleración en función del tiempo, (i) ecuación de la aceleración en función de la elongación.

Ayuda: si se trabaja con la ecuación en función coseno (como fue dada), la fase inicial será 0.

Si se trabaja la ecuación en función de seno la fase inicial es . Ambos resultados SON EQUVALENTES.Rp. (b) 0,30 m (c) 1,27 Hz, (d) 0,79 s, (e) 2,4 m/s, (f) 19 m/s2.

2. El cono de un parlante vibra con MAS a una frecuencia de 262 Hz. La amplitud en el centro del cono es 1,5x10-4 m y en t=0, la elongación es igual a su amplitud (y=+A). Encontrar la ecuación de la elongación en función del tiempo.

Rp. Su ecuación en el SI es .3. Hallar la diferencia de fase entre los osciladores cuyas elongaciones están expresadas en el SI

como sigue:

(a)

(b)

4. Una partícula se mueve con MCU con una velocidad angular igual a 2,00 rad.s -1. Si el radio de

su trayectoria es igual a 10,0 cm y su posición angular inicial es , encontrar las ecuaciones cinemáticas para la elongación, la velocidad y la aceleración de la oscilación de la sombra de la partícula tanto en X, m1, como en Y, m2, Figura 21.

Figura 21

Rp. para m1,

La ecuación de la elongación se obtiene por simple análisis trigonométrico (componente rectangular),

Las de velocidad y aceleración se pueden obtener simplemente derivando respecto a l tiempo,

Rp. para m2,

La ecuación de la elongación se obtiene por simple análisis trigonométrico (componente rectangular),

Las de velocidad y aceleración se pueden obtener simplemente derivando respecto a l tiempo,

FIN.