211
歐歐歐歐 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

Embed Size (px)

Citation preview

Page 1: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Chapter 9

Vector Differential Calculus. Grad, Div, Curl

Page 2: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Contents

9.1 Vectors in 2-Space and 3-Space

9.2 Inner Product (Dot Product)

9.3 Vector Product (Cross Product)

9.4 Vector and Scalar Functions and Fields. Derivatives

9.5 Curves. Arc Length. Curvature. Torsion

9.6 Calculus Review: Functions of Several Variables. Optional

9.7 Gradient of a Scalar Field. Directional Derivative

9.8 Divergence of a Vector Field

9.9 Curl of a Vector Field

Summary of Chapter 9

Page 3: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

9.1 Vectors in 2-Space and 3-Space

In physics and geometry and its engineering applications we use two kinds of quantities: scalars and vectors. A scalar is a quantity that is determined by its magnitude; this is the number of units measured on a suitable scale. For instance, length, voltage, and temperature are scalars.

A vector is a quantity that is determined by both its magnitude and its direction. Thus it is an arrow or directed line segment. For instance, a force is a vector, and so is a velocity, giving the speed and direction of motion (Fig. 162).

continued364

Page 4: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 162. Force and velocity

365

Page 5: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

We denote vectors by lowercase boldface letters a, b, v, etc. In handwriting you may use arrows, for instance (in place of a), , etc.

A vector (arrow) has a tail, called its initial point, and a tip, called its terminal point. This is motivated in the translation (displacement without rotation) of the triangle in Fig.163, where the initial point P of the vector a is the original position of a point, and the terminal point Q is the terminal position of that point, its position after the translation.

continued365

Page 6: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

The length of the arrow equals the distance between P and Q. This is called the length (or magnitude) of the vector a and is denoted by |a|. Another name for length is norm (or Euclidean norm).

A vector of length 1 is called a unit vector.

continued365

Page 7: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 163. Translation

365

Page 8: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Equality of Vectors

DEFINITION

Two vectors a and b are equal, written a = b, if they have the same length and the same direction [as explained in Fig. 164; in particular, note (B)]. Hence a vector can be arbitrarily translated; that is, its initial point can be chosen arbitrarily.

continued365

Page 9: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 164. (A) Equal vectors. (B)–(D) Different vectors

365

Page 10: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Components of a Vector

We choose an xyz Cartesian coordinate system in space (Fig. 165), that is, a usual rectangular coordinate system with the same scale of measurement on the three mutually perpendicular coordinate axes. Let a be a given vector with initial point P: (x1, y1, z1) and terminal point Q: (x2, y2, z2). Then the three coordinate differences

(1)

continued366

Page 11: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

are called the components of the vector a with respect to that coordinate system, and we write simply a = [a1, a2, a3]. See Fig. 166.

The length |a| of a can now readily be expressed in terms of components because from (1) and the Pythagorean theorem we have

(2)

continued366

Page 12: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 165. Cartesian coordinate system

366

Page 13: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 166. Components of a vector

366

Page 14: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 1 Components and Length of a Vector

The vector a with initial point P: (4, 0, 2) and terminal point Q: (6, –1, 2) has the components

a1 = 6 – 4 = 2 a2 = –1 – 0 = –1 a3 = 2 – 2 = 0

Hence a = [2, –1, 0]. (Can you sketch a, as in Fig. 166?) Equation (2) gives the length

If we choose (–1, 5, 8) as the initial point of a, the corresponding terminal point is (1, 4, 8).

continued366

Page 15: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

If we choose the origin (0, 0, 0) as the initial point of a, the corresponding terminal point is (2, –1, 0); its coordinates equal the components of a. This suggests that we can determine each point in space by a vector, called the position vector of the point, as follows.

366

Page 16: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

A Cartesian coordinate system being given, the position vector r of a point A: (x, y, z) is the vector with the origin (0, 0, 0) as the initial point and A as the terminal point.

continued366

Page 17: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 167. Position vector r of a point A: (x, y, z)

366

Page 18: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Vectors as Ordered Triples of Real Numbers

THEOREM 1

A fixed Cartesian coordinate system being given, each vector is uniquely determined by its ordered triple of corresponding components. Conversely, to each ordered triple of real numbers (a1, a2, a3) there corresponds precisely one vector a = [a1, a2, a3], with (0, 0, 0) corresponding to the zero vector 0, which has length 0 and no direction.

Hence a vector equation a = b is equivalent to the three equations a1 = b1, a2 = b2, a3 = b3 for the components.

367

Page 19: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Vector Addition, Scalar Multiplication

Addition of Vectors DEFINITION

The sum a + b of two vectors a = [a1, a2, a3] and b = [b1, b2, b3] is obtained by adding the corresponding components,

(3) a + b = [a1 + b1, a2 + b2, a3 + b3].

Geometrically, place the vectors as in Fig. 168 (the initial point of b at the terminal point of a); then a + b is the vector drawn from the initial point of a to the terminal point of b.

continued367

Page 20: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 168. Vector addition

367

Page 21: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

For forces, this addition is the parallelogram law by which we obtain the resultant of two forces in mechanics. The “algebraic” way and the “geometric way” of vector addition give the same vector.

continued367

Page 22: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 169. Resultant of two forces (parallelogram law)

367

Page 23: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Basic Properties of Vector Addition. Familiar laws for real numbers give immediately (see also Figs. 171 and 172)

(4)

continued368

Page 24: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 171. Cummutativity of vector addition

368

Page 25: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 172. Associativity of vector addition

368

Page 26: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Scalar Multiplication (Multiplication by a Number)

DEFINITION

The product ca of any vector a = [a1, a2, a3] and any scalar c (real number c) is the vector obtained by multiplying each component of a by c,

(5) ca = [ca1, ca2, ca3]

Geometrically, if a ≠ 0, then ca with c > 0 has the direction of a and with c < 0 the direction opposite to a. In any case, the length of ca is |ca| = |c||a|, and ca = 0 if a = 0 or c = 0 (or both). (See Fig. 173.)

continued368

Page 27: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 173. Scalar multiplication [multiplication of vectors by scalars (numbers)]

368

Page 28: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Basic Properties of Scalar Multiplication. From the definitions we obtain directly

(6)

368

Page 29: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 174. Difference of vectors

Instead of b + (–a) we simply write b – a.

369

Page 30: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 2 Vector Addition. Multiplication by Scalars

With respect to a given coordinate system, let

a = [4, 0, 1] and b = [2, –5, 1/3]

Then –a = [–4, 0, –1], 7a = [28, 0, 7], a + b = [6, –5, 4/3], and

369

Page 31: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Unit Vectors i, j, k. Besides a = [a1, a2, a3] another popular way of writing vectors is

(8)

In this representation, i, j, k are the unit vectors in the positive directions of the axes of a Cartesian coordinate system (Fig. 175). Hence, in components,

(9)

and the right side of (8) is a sum of three vectors parallel to the three axes.

continued369

Page 32: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 175. The unit vectors i, j, k and the representation (8)

369

Page 33: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 3 i j k Notation for Vectors

In Example 2 we have a = 4i + k, b = 2i – 5j + 1/3k, and so on.

369

Page 34: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

9.2 Inner Product (Dot Product)

Inner Product (Dot Product) of Vectors

DEFINITION

The inner product or dot product a • b (read “a dot b”) of two vectors a and b is the product of their lengths times the cosine of their angle (see Fig. 176),

(1)

The angle γ, 0 ≤ γ ≤ π between a and b is measured when the initial points of the vectors coincide, as in Fig. 176. In components, a = [a1, a2, a3], b = [b1, b2, b3], and

(2)

continued371

Page 35: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 176. Angle between vectors and value of inner product

371

Page 36: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Orthogonality

THEOREM 1

The inner product of two nonzero vectors is 0 if and only if these vectors are perpendicular.

371

Page 37: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Length and Angle. Equation (1) with b = a gives a • a = |a|2. Hence

(3)

From (3) and (1) we obtain for the angle γ between two nonzero vectors

(4)

372

Page 38: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 1 Inner Product. Angle Between Vectors

Find the inner product and the lengths of a = [1, 2, 0] and b = [3, –2, 1] as well as the angle between these vectors.

Solution. , and (4) gives the angle

372

Page 39: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

From the definition we see that the inner product has the following properties. For any vectors a, b, c and scalars q1, q2

(5)

372

Page 40: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Applications of Inner ProductsE X A M P L E 2 Work Done by a Force Expressed as an Inner Product

This is a major application. It concerns a body on which a constant force p acts. (For a variable force, see Sec. 10.1.) Let the body be given a displacement d. Then the work done by p in the displacement is defined as

(9)

continued373

Page 41: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

that is, magnitude |p| of the force times length |d| of the displacement times the cosine of the angle between p and d (Fig. 177). If α < 90°, as in Fig. 177, then W > 0. If p and d are orthogonal, then the work is zero (why?). If α > 90°, then W < 0, which means that in the displacement one has to do work against the force. (Think of swimming across a river at some angle against the current.)

continued373

Page 42: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 177. Work done by a force

373

Page 43: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 3 Component of a Force in a Given Direction

What force in the rope in Fig. 178 will hold a car of 5000 lb in equilibrium if the ramp makes an angle of 25° with the horizontal?

Solution. Introducing coordinates as shown, the weight is a = [0, –5000] because this force points downward, in the negative y-direction. We have to represent a as a sum (resultant) of two forces, a = c + p, where c is the force the car exerts on the ramp, which is of no interest to us, and p is parallel to the rope, of magnitude (see Fig. 178)

continued

373

Page 44: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 178. Example 3

373

Page 45: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

and direction of the unit vector u opposite to the direction of the rope; here γ = 90° – 25° = 65° is the angle between a and p. Now a vector in the direction of the rope is

so that

continued373

Page 46: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Since |u| = 1 and γ > 0, we see that we can also write our result as

Answer : About 2100 lb.

374

Page 47: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

We use the concept of the component or projection of a vector a in the direction of a vector b (≠ 0), defined by (see Fig. 179)

(10)

Thus p is the length of the orthogonal projection of a on a straight line l parallel to b, taken with the plus sign if pb has the direction of b and with the minus sign if pb has the direction opposite to b; see Fig. 179.

continued374

Page 48: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 179. Component of a vector a in the direction of a vector b

374

Page 49: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Multiplying (10) by |b|/|b| = 1, we have a • b in the numerator and thus

(11)

374

Page 50: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 180. Projections p of a on b and q of b on a

The projection p of a in the direction of b and the projection q = |b| cos γ of b in the direction of a.

374

Page 51: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 4 Orthonormal Basis

By definition, an orthonormal basis for 3-space is a basis {a, b, c} consisting of orthogonal unit vectors. It has the great advantage that the determination of the coefficients in representations v = l1a + l2b + l3c of a given vector v is very simple. We claim that l1 = a • v, l2 = b • v, l3 = c • v. Indeed, this follows simply by taking the inner products of the representation with a, b, c, respectively, and using the orthonormality of the basis, a • v = l1a • a + l2a • b + l3a • c = l1, etc.

For example, the unit vectors i, j, k in (8), Sec. 9.1, associated with a Cartesian coordinate system form an orthonormal basis, called the standard basis with respect to the given coordinate system.

375

Page 52: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 5 Orthogonal Straight Lines in the Plane

Find the straight line L1 through the point P: (1, 3) in the xy-plane and perpendicular to the straight line L2: x – 2y + 2 = 0; see Fig. 181.

continued

375

Page 53: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 181. Example 5

375

Page 54: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Solution. The idea is to write a general straight line L1: a1x + a2y = c as a • r = c with a = [a1, a2] ≠ 0 and r = [x, y], according to (2). Now the line L1* through the origin and parallel to L1 is a • r = 0. Hence, by Theorem 1, the vector a is perpendicular to r. Hence it is perpendicular to L1* and also to L1 because L1 and L1* are parallel. a is called a normal vector of L1 (and of L1*).

Now a normal vector of the given line x – 2y + 2 = 0 is b = [1, –2]. Thus L1 is perpendicular to L2 if b•a = a1 – 2a2 = 0, for instance, if a = [2, 1]. Hence L1 is given by 2x + y = c. It passes through P: (1, 3) when 2 • 1 + 3 = c = 5. Answer : y = –2x + 5. Show that the point of intersection is (x, y) = (1.6, 1.8).

375

Page 55: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 6 Normal Vector to a Plane

Find a unit vector perpendicular to the plane 4x + 2y + 4z = –7.

Solution. Using (2), we may write any plane in space as

(13)

where a = [a1, a2, a3] ≠ 0 and r = [x, y, z]. The unit vector in the direction of a is (Fig. 182)

continued

375

Page 56: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Dividing by a, we obtain from (13)

(14)

From (12) we see that p is the projection of r in the direction of n. This projection has the same constant value c/|a| for the position vector r of any point in the plane. Clearly this holds if and only if n is perpendicular to the plane. n is called a unit normal vector of the plane (the other being –n).

continued

375

Page 57: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Furthermore, from this and the definition of projection it follows that |p| is the distance of the plane from the origin. Representation (14) is called Hesse’s normal form of a plane. In our case, a = [4, 2, 4], c = –7, |a| = 6, n = 1/6a = [2/3, 1/3, 2/3], and the plane has the distance 7/6 from the origin.

continued

375

Page 58: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 182. Normal vector to a plane

375

Page 59: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

9.3 Vector Product (Cross Product)

continued

Vector Product (Cross Product, Outer Product) of Vectors(1)

DEFINITION

The vector product (also called cross product or outer product) a × b (read “a cross b”) of two vectors a and b is the vector v = a × bas follows. If a and b have the same or opposite direction, or if a = 0 or b = 0, then v = a × b = 0. In any other case v = a × b has the length(1)

377

Page 60: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Vector Product (Cross Product, Outer Product) of Vectors(2)

DEFINITION

This is the area of the blue parallelogram in Fig. 183. γ is the angle between a and b (as in Sec. 9.2). The direction of v = a × b is perpendicular to both a and b and such that a, b, v, in this order, form a right-handed triple as in Figs. 183 ~ 185 (explanation below).

continued

377

Page 61: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 183. Vector product

377

Page 62: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

In components, let a = [a1, a2, a3] and b = [b1, b2, b3]. Then v = [v1, v2, v3] = a × b has the components

(2)

Here the Cartesian coordinate system is right-handed, as explained below.

377

Page 63: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Right-Handed Triple. A triple of vectors a, b, v is right-handed if the vectors in the given order assume the same sort of orientation as the thumb, index finger, and middle finger of the right hand when these are held as in Fig. 184. We may also say that if a is rotated into the direction of b through the angle γ(< π)then v advances in the same direction as a right-handed screw would if turned in the same way (Fig. 185).

continued

377

Page 64: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 184. Right-handed triple of vectors a, b, v

377

Page 65: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 185. Right-handed screw

377

Page 66: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Right-Handed Cartesian Coordinate System. The system is called right-handed if the corresponding unit vectors i, j, k in the positive directions of the axes (see Sec. 9.1) form a right-handed triple as in Fig. 186a. The system is called left-handed if the sense of k is reversed, as in Fig. 186b. In applications, we prefer right-handed systems.

continued

378

Page 67: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 186. The two types of Cartesian coordinate systems

(a) Right-handed (b) Left-handed

378

Page 68: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

(2**)

For a left-handed system the determinant has a minus sign in front.

378

Page 69: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 1 Vector Product

For the vector product v = a × b of a = [1, 1, 0] and b = [3, 0, 0] in right-handed coordinates we obtain from (2)

We confirm this by (2**):

To check the result in this simple case, sketch a, b, and v. Can you see that two vectors in the xy-plane must always have their vector product parallel to the z-axis (or equal to the zero vector)?

378

Page 70: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 2 Vector Products of the Standard Basis Vectors

(3)

We shall use this in the next proof.

379

Page 71: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

continued

General Properties of Vector Products(1)

THEOREM 1

(a) For every scalar l,

(4)

(b) Cross multiplication is distributive with respect to vector addition; that is,

(5)

379

Page 72: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

General Properties of Vector Products(2)

THEOREM 1

(c) Cross multiplication is not commutative but anticommutative; that is,

(6) b × a = –(a × b) (Fig. 187).

(d) Cross multiplication is not associative; that is, in general,

(7) a × (b × c) ≠ (a × b) × c

so that the parentheses cannot be omitted.

continued

379

Page 73: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 187. Anticommutativity of cross multiplication

379

Page 74: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Typical Applications of Vector ProductsE X A M P L E 3 Moment of a Force

In mechanics the moment m of a force p about a point Q is defined as the product m = |p|d, where d is the (perpendicular) distance between Q and the line of action L of p (Fig. 188). If r is the vector from Q to any point A on L, then d = |r| sin γ (Fig. 188) and

m = |r| |p| sin γ.

continued

380

Page 75: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Since γ is the angle between r and p, we see from (1) that m = |r × p|. The vector

(8) m = r × p

is called the moment vector or vector moment of p about Q. Its magnitude is m. If m ≠ 0, its direction is that of the axis of the rotation about Q that p has the tendency to produce. This axis is perpendicular to both r and p.

continued

380

Page 76: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 188. Moment of a force p

380

Page 77: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 4 Moment of a Force

Find the moment of the force p in Fig. 189 about the center Q of the wheel.

continued

380

Page 78: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 189. Moment of a force p

380

Page 79: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Solution. Introducing coordinates as shown in Fig. 189, we have

(Note that the center of the wheel is at y = –1.5 on the y-axis.) Hence (8) and (2**) give

continued

380

Page 80: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

This moment vector is normal (perpendicular) to the plane of the wheel; hence it has the direction of the axis of rotation about the center of the wheel that the force has the tendency to produce. m points in the negative z-direction, the direction in which a right-handed screw would advance if turned in that way.

380

Page 81: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 5 Velocity of a Rotating Body

A rotation of a rigid body B in space can be simply and uniquely described by a vector w as follows. The direction of w is that of the axis of rotation and such that the rotation appears clockwise if one looks from the initial point of w to its terminal point. The length of w is equal to the angular speed ω (> 0)of the rotation, that is, the linear (or tangential) speed of a point of B divided by its distance from the axis of rotation.

continued

381

Page 82: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Let P be any point of B and d its distance from the axis. Then P has the speed ωd. Let r be the position vector of P referred to a coordinate system with origin 0 on the axis of rotation. Then d = |r| sin γ, where γ is the angle between w and r. Therefore,

continued

381

Page 83: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

From this and the definition of vector product we see that the velocity vector v of P can be represented in the form (Fig. 190)

(9) v = w × r

This simple formula is useful for determining v at any point of B.

continued

381

Page 84: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 190. Rotation of a rigid body

381

Page 85: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Scalar Triple Product

The most important product of vectors with more than two factors is the scalar triple product or mixed triple product of three vectors a, b, c. It is denoted by (a b c) and defined by

(10*) (a b c) = a • (b × c)

continued

381

Page 86: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Because of the dot product it is a scalar. In terms of components a = [a1, a2, a3], b = [b1, b2, b3], c = [c1, c2, c3] we can write it as a third-order determinant. For this we set b × c = v = [v1, v2, v3]. Then from the dot product in components [formula (2) in Sec. 9.2] and from (2*) with b and c instead of a and b we first obtain

continued

381

Page 87: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

The sum on the right is the expansion of a third-order determinant by its first row. Thus

(10)

381

Page 88: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Properties and Applications of Scalar Triple Products

THEOREM 2

(a) In (10) the dot and cross can be interchanged:

(11)

(b) Geometric interpretation. The absolute value |(a b c)| of (10) is the volume of the parallelepiped (oblique box) with a, b, c as edge vectors (Fig. 191).

(c) Linear independence. Three vectors in R3 are linearly independent if and only if their scalar triple product is not zero.

continued382

Page 89: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 191. Geometric interpretation of a scalar triple product

382

Page 90: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 6 Tetrahedron

A tetrahedron is determined by three edge vectors a, b, c, as indicated in Fig. 192. Find its volume when a = [2, 0, 3], b = [0, 4, 1], c = [5, 6, 0].

continued

382

Page 91: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 192. Tetrahedron

383

Page 92: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Solution. The volume V of the parallelepiped with these vectors as edge vectors is the absolute value of the scalar triple product

Hence V = 72. The minus sign indicates that if the coordinates are right-handed, the triple a, b, c is left-handed. The volume of a tetrahedron is 1/6 of that of the parallelepiped (can you prove it?), hence 12.

Can you sketch the tetrahedron, choosing the origin as the common initial point of the vectors? What are the coordinates of the four vertices?

383

Page 93: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

9.4 Vector and Scalar Functions and Fields. Derivatives

We now begin with vector calculus. This calculus concerns two kinds of functions, namely, vector functions, whose values are vectors

depending on the points P in space, and scalar functions, whose values are scalars

depending on P. Here, P is a point in the domain of definition, which in applications is a (three-dimensional) domain or a surface or a curve in space.

continued

384

Page 94: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

We say that a vector function defines a vector field, a

nd a scalar function defines a scalar field in that domain or on that surface or curve. Examples of vector functions are shown in Figs. 193–196. Examples of scalar fields are the temperature field in a body or the pressure field of the air in the earth’s atmosphere. Vector and scalar functions may also depend on time t or on some other parameters.

Notation. If we introduce Cartesian coordinates x, y, z, then instead of v(P) we can also write

continued

384

Page 95: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 193 Field of tangent vectors of a curve

384

Page 96: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 194. Field of normal vectors of a surface

384

Page 97: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 1 Scalar Function (Euclidean Distance in Space)

The distance ƒ(P) of any point P from a fixed point P0 in space is a scalar function whose domain of definition is the whole space. ƒ(P) defines a scalar field in space. If we introduce a Cartesian coordinate system and P0 has the coordinates x0, y0, z0, then ƒ is given by the well-known formula

continued

385

Page 98: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

where x, y, z are the coordinates of P. If we replace the given Cartesian coordinate system with another such system by translating and rotating the given system, then the values of the coordinates of P and P0 will in general change, but ƒ(P) will have the same value as before. Hence ƒ(P) is a scalar function. The direction cosines of the straight line through P and P0 are not scalars because their values depend on the choice of the coordinate system.

385

Page 99: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 2 Vector Field (Velocity Field)

At any instant the velocity vectors v(P) of a rotating body B constitute a vector field, called the velocity field of the rotation. If we introduce a Cartesian coordinate system having the origin on the axis of rotation, then (see Example 5 in Sec. 9.3)

(1)

continued

385

Page 100: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

where x, y, z are the coordinates of any point P of B at the instant under consideration. If the coordinates are such that the z-axis is the axis of rotation and w points in the positive z-direction, then w = ωk and

An example of a rotating body and the corresponding velocity field are shown in Fig. 195.

continued

385

Page 101: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 195. Velocity field of a rotating body

385

Page 102: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 3 Vector Field (Field of Force, Gravitational Field)

Let a particle A of mass M be fixed at a point P0 and let a particle B of mass m be free to take up various positions P in space. Then A attracts B. According to Newton’s law of gravitation the corresponding gravitational force p is directed from P to P0, and its magnitude is proportional to 1/r2, where r is the distance between P and P0, say,

(2)

continued

385

Page 103: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Here G = 6.67 • 10-8 cm3/(gm • sec2) is the gravitational constant. Hence p defines a vector field in space. If we introduce Cartesian coordinates such that P0 has the coordinates x0, y0, z0 and P has the coordinates x, y, z, then by the Pythagorean theorem,

Assuming that r > 0 and introducing the vector

continued

386

Page 104: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

we have |r| = r, and (–1/r)r is a unit vector in the direction of p; the minus sign indicates that p is directed from P to P0 (Fig. 196). From this and (2) we obtain

(3)

This vector function describes the gravitational force acting on B.

continued

386

Page 105: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 196. Gravitational field in Example 3

386

Page 106: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Similarly, a vector function v(t) of a real variable t is said to have the limit l as t approaches t0, if v(t) is defined in some neighborhood of t0 (possibly except at t0) and

(6)

Then we write

(7)

Here, a neighborhood of t0 is an interval (segment) on the t-axis containing t0 as an interior point (not as an endpoint).

continued

Vector Calculus

387

Page 107: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Continuity. A vector function v(t) is said to be continuous at t = t0 if it is defined in some neighborhood of t0 (including at t0 itself!) and

(8)

If we introduce a Cartesian coordinate system, we may write

Then v(t) is continuous at t0 if and only if its three components are continuous at t0.

We now state the most important of these definitions.

387

Page 108: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Derivative of a Vector Function

DEFINITION

A vector function v(t) is said to be differentiable at a point t if the following limit exists:

(9)

This vector v’(t) is called the derivative of v(t). See Fig. 197.

continued

387

Page 109: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 197. Derivative of a vector function

387

Page 110: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

In components with respect to a given Cartesian coordinate system,

(10)

Hence the derivative v‘(t) is obtained by differentiating each component separately. For instance, if v = [t, t2, 0], then v' = [1, 2t, 0].

387

Page 111: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Rules:

and in particular

(11)

(12)

(13)

388

Page 112: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 4 Derivative of a Vector Function of Constant Length

Let v(t) be a vector function whose length is constant, say, |v(t)| = c. Then |v|2 = v • v = c2, and (v • v)' = 2v • v' = 0, by differentiation [see (11)]. This yields the following result. The derivative of a vector function v(t) of constant length is either the zero vector or is perpendicular to v(t).

388

Page 113: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Partial Derivatives of a Vector Function

Our present discussion shows that partial differentiation of vector functions of two or more variables can be introduced as follows. Suppose that the components of a vector function

are differentiable functions of n variables t1, , ‥‥ tn. Then the partial derivative of v with respect to tm is denoted by ∂v/∂tm and is defined as the vector function

continued

388

Page 114: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Similarly, second partial derivatives are

and so on.

388

Page 115: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 5 Partial Derivatives

Let r(t1, t2) = a cos t1 i + a sin t1 j + t2k. Then

388

Page 116: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

9.5 Curves. Arc Length. Curvature. Torsion

Curves C in space may occur as paths of moving bodies. This and other applications motivate parametric representations with parameter t, which may be time or something else (see Fig. 198)

(1)

continued

389

Page 117: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 198. Parametric representation of a curve

389

Page 118: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Parametric representations (1) have a key advantage over representations of a curve C in terms of its projections into the xy-plane and into the xz-plane, that is,

(2) y = ƒ(x), z = g(x)

(or by a pair of equations with y or with z as the independent variable). The advantage is that in (1) the coordinates x, y, z play the same role: all three are dependent variables. Moreover, the sense of increasing t, called the positive sense on C, induces an orientation of C, a direction of travel along C. The sense of decreasing t is then called the negative sense on C, given by (1).

390

Page 119: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 1 Circle

The circle x2 + y2 = 4, z = 0 in the xy-plane with center 0 and radius 2 can be represented parametrically by

r(t) = [2 cos t, 2 sin t, 0] or simply by r(t) = [2 cos t, 2 sin t] (Fig. 199)

where 0 ≤ t ≤ 2. Indeed, x2 + y2 = (2 cos t)2 + (2 sin t)2 = 4(cos2 t + sin2 t) = 4. For t = 0 we have r(0) = [2, 0], for t = 1/2π we get r(1/2π) = [0, 2], and so on. The positive sense induced by this representation is the counterclockwise sense.

continued

390

Page 120: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

If we replace t with t* = –t, we have t = –t* and get

r*(t*) = [2 cos (–t*), 2 sin (–t*)] [2 cos t*, –2 sin t*].

This has reversed the orientation, and the circle is now oriented clockwise.

continued

390

Page 121: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 199. Circle in Example 1

390

Page 122: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 2 Ellipse

The vector function

(3) r(t) = [a cos t, b sin t, 0] = a cos t i b sin t j (Fig. 200)

represents an ellipse in the xy-plane with center at the origin and principal axes in the direction of the x and y axes. In fact, since cos2 t + sin2 t = 1, we obtain from (3)

If b = a, then (3) represents a circle of radius a.

continued

390

Page 123: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 200. Ellipse in Example 2

390

Page 124: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 3 Straight Line

A straight line L through a point A with position vector a in the direction of a constant vector b (see Fig. 201) can be represented parametrically in the form

(4) r(t) = a + tb = [a1 + tb1, a2 + tb2, a3 + tb3].

If b is a unit vector, its components are the direction cosines of L. In this case, |t| measures the distance of the points of L from A. For instance, the straight line in the xy-plane through A: (3, 2) having slope 1 is (sketch it)

r(t) = [3, 2, 0] + t [1, 1, 0] = [3 + t, 2 + t, 0].

continued

391

Page 125: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 201. Parametric representation of a straight line

391

Page 126: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 4 Circular Helix

The twisted curve C represented by the vector function

(5) r(t) = [a cos t, a sin t, ct] = a cos t i + a sin t j + ct k (c ≠ 0)

is called a circular helix. It lies on the cylinder x2 + y2 = a2. If c > 0, the helix is shaped like a right-handed screw (Fig. 202). If c < 0, it looks like a left-handed screw (Fig. 203). If c = 0, then (5) is a circle.

continued

391

Page 127: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 202. Right-handed circular helix

391

Page 128: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 203. Left-handed circular helix

391

Page 129: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

A simple curve is a curve without multiple points, that is, without points at which the curve intersects or touches itself.

continued

391

Page 130: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 204. Curves with multiple points

392

Page 131: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Tangent to a Curve

The tangent to a simple curve C at a point P of C is the limiting position of a straight line L through P and a point Q of C as Q approaches P along C. See Fig. 205.

If C is given by r(t), and P and Q correspond to t and t + ∆t, then a vector in the direction of L is

(6)

In the limit this vector becomes the derivative

(7)continued

392

Page 132: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

provided r(t) is differentiable, as we shall assume from now on. If r'(t) ≠ 0, we call r'(t) a tangent vector of C at P because it has the direction of the tangent. The corresponding unit vector is the unit tangent vector (see Fig. 205)

(8)

Note that both r' and u point in the direction of increasing t. Hence their sense depends on the orientation of C. It is reversed if we reverse the orientation.

continued

392

Page 133: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 205. Tangent to a curve

392

Page 134: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

It is now easy to see that the tangent to C at P is given by

(9) q(w) = r + wr' (Fig. 206).

This is the sum of the position vector r of P and a multiple of the tangent vector r' of C at P. Both vectors depend on P. The variable w is the parameter in (9).

continued

392

Page 135: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 206. Formula (9) for the tangent to a curve

392

Page 136: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 5 Tangent to an Ellipse

Find the tangent to the ellipse 1/4x2 + y2 = 1 at P: .

Solution. Equation (3) with semi-axes a = 2 and b = 1 gives r(t) = [2 cos t, sin t]. The derivative is r'(t) = [–2 sin t, cos t]. Now P corresponds to t = π/4 because

Hence r(π/4) = . From (9) we thus get the answer

To check the result, sketch or graph the ellipse and the tangent

393

Page 137: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Length of a Curve

(10)

l is called the length of C, and C is called rectifiable. Formula (10) is made plausible in calculus for plane curves and is proved for curves in space in [GR8] listed in App. 1. The practical evaluation of the integral (10) will be difficult in general. Some simple cases are given in the problem set.

393

Page 138: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Arc Length s of a CurveE X A M P L E 6 Circular Helix. Circle. Arc Length as Parameter

The helix r(t) = [a cos t, a sin t, ct] in (5) has the derivative r'(t) = [–a sin t, a cos t, c]. Hence r' • r' = a2 + c2, a constant, which we denote by K2. Hence the integrand in (11) is constant, equal to K, and the integral is s = Kt. Thus t = s/K, so that a representation of the helix with the arc length s as parameter is

(15)

A circle is obtained if we set c = 0. Then K = a, t = s/a, and a representation with arc length s as parameter is

394

Page 139: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Curves in Mechanics. Velocity. Acceleration

Curves play a basic role in mechanics, where they may serve as paths of moving bodies. Then such a curve C should be represented by a parametric representation r(t) with time t as parameter. The tangent vector (7) of C is then called the velocity vector v because, being tangent, it points in the instantaneous direction of motion and its length gives the speed |v| = |r'| =

= ds/dt; see (12). The second derivative of r(t) is called the acceleration vector and is denoted by a. Its length |a| is called the acceleration of the motion. Thus

(16) v(t) = r'(t), a(t) = v'(t) = r''(t).

continued

394

Page 140: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Tangential and Normal Acceleration. Whereas the velocity vector is always tangent to the path of motion, the acceleration vector will generally have another direction, so that it will be of the form

(17) a = atan + anorm,

where the tangential acceleration vector atan is tangent to the path (or, sometimes, 0) and the normal acceleration vector anorm is normal (perpendicular) to the path (or, sometimes, 0).

395

Page 141: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Now the length of atan is the projection of a in the direction of v, given by (11) in Sec. 9.2 with b = v; that is, |atan

| = a • v/|v|. Hence atan is this expression times the unit vector (1/|v|)v in the direction of v; that is,

(18*)

395

Page 142: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 7 Centripetal Acceleration. Centrifugal Force

The vector function

(with fixed i and j) represents a circle C of radius R with center at the origin of the xy-plane and describes the motion of a small body B counterclockwise around the circle. Differentiation gives the velocity vector

v is tangent to C. Its magnitude, the speed, is

continued

395

Page 143: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Hence it is constant. The speed divided by the distance R from the center is called the angular speed. It equals ω, so that it is constant, too. Differentiating the velocity vector, we obtain the acceleration vector

(19)

continued

396

Page 144: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

This shows that a = –ω2r (Fig. 208), so that there is an acceleration toward the center, called the centripetal acceleration of the motion. It occurs because the velocity vector is changing direction at a constant rate. Its magnitude is constant, |a| = ω2|r| = ω2R. Multiplying a by the mass m of B, we get the centripetal force ma. The opposite vector –ma is called the centrifugal force. At each instant these two forces are in equilibrium.

We see that in this motion the acceleration vector is normal (perpendicular) to C; hence there is no tangential acceleration.

continued

396

Page 145: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 208. Centripetal acceleration a

396

Page 146: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 8 Superposition of Rotations. Coriolis Acceleration

A projectile is moving with constant speed along a meridian of the rotating earth in Fig. 209. Find its acceleration.

continued

396

Page 147: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 209. Example 8. Superposition of two rotations

396

Page 148: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Solution. Let x, y, z be a fixed Cartesian coordinate system in space, with unit vectors i, j, k in the directions of the axes. Let the earth, together with a unit vector b, be rotating about the z-axis with angular speed ω > 0 (see Example 7). Since b is rotaing together with the earth, it is of the form

b(t) = cos ωt i + sin ωt j.

Let the projectile be moving on the meridian whose plane is spanned by b and k (Fig. 209) with constant angular speed γ > 0. Then its position vector in terms of b and k is

r(t) = R cos γt b(t) + R sin γt k (R = Radius of the earth).

continued

396

Page 149: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

This is the model. The rest is calculation. The result will be unexpected and highly relevant for air and space travel. The first and second derivatives of b with respect to t are

(20)

The first and second derivatives of r(t) with respect to t are

(21)

continued

397

Page 150: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

By analogy with Example 7 and because of b" = –ω2b in (20) we conclude that the first term in a (involving ω in b"!) is the centripetal acceleration due to the rotation of the earth. Similarly, the third term in the last line (involving γ!) is the centripetal acceleration due to the motion of the projectile on the meridian M of the rotating earth.

continued

397

Page 151: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

The second, unexpected term –2γR sin γt b' in a is called the Coriolis acceleration (Fig. 209) and is due to the interaction of the two rotations. On the Northern Hemisphere, sin γt > 0 (for t > 0; also γ > 0 by assumption), so that acor has the direction of –b', that is, opposite to the rotation of the earth. |acor| is maximum at the North Pole and zero at the equator. The projectile B of mass m0 experiences a force –m0acor opposite to m0acor, which tends to let B deviate from M to the right (and in the Southern Hemisphere, where sin γt < 0, to the left). This deviation has been observed for missiles, rockets, shells, and atmospheric air flow.

397

Page 152: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Curvature and Torsion. Optional

The orthonormal vector triple u, p, b is called the trihedron of C. Shows the names of the three straight lines in the directions of u, p, b, which are the intersections of the osculating plane, the normal plane, and the rectifying plane.

continued

398

Page 153: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 210. Trihedron. Unit vectors u, p, b and planes

397

Page 154: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

9.6 Calculus Review: Functions of Several Variables. OptionalChain Rules

Chain Rule(1)

THEOREM 1

Let w = ƒ(x, y, z) be continuous and have continuous first partial derivatives in a domain D in xyz-space. Let x = x(u, v), y = y(u, v), z = z(u, v) be functions that are continuous and have first partial derivatives in a domain B in the uv-plane, where B is such that for every point (u, v) in B, the corresponding point [x(u, v), y(u, v), z(u, v)] lies in D. See Fig. 211. Then the function w = ƒ(x(u, v), y(u, v), z(u, v))

continued

401

Page 155: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Chain Rule(2)

THEOREM 1

is defined in B, has first partial derivatives with respect to u and v in B, and

(1)

401

Page 156: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

In calculus, x, y, z are often called the intermediate variables, in contrast with the independent variables u, v and the dependent variable w.

continued

401

Page 157: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 211. Notations in Theorem 1

400

Page 158: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Special Cases of Practical Interest

If w = ƒ(x, y) and x = x(u, v), y = y(u, v) as before, then (1) becomes

(2)

continued

401

Page 159: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

If w = ƒ(x, y, z) and x = x(t), y = y(t), z = z(t), then (1) gives

(3)

If w = ƒ(x, y) and x = x(t), y = y(t), then (3) reduces to

(4)

401

Page 160: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 1 Chain Rule

If w = x2 – y2 and we define polar coordinates r, θ by x = r cos θ, y = r sin θ, then (2) gives

402

Page 161: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Mean Value Theorems

Mean Value Theorem

THEOREM 2

Let ƒ(x, y, z) be continuous and have continuous first partial derivatives in a domain D in xyz-space. Let P0: (x0, y0, z0) and P: (x0 + h, y0 + k, z0 + l) be points in D such that the straight line segment P0P joining these points lies entirely in D. Then

(6)

the partial derivatives being evaluated at a suitable point of that segment.

402

Page 162: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

9.7 Gradient of a Scalar Field. Directional Derivative

Gradient

DEFINITION 1

The gradient of a given scalar function ƒ(x, y, z) is denoted by grad ƒ or (read nabla ƒ) and is the vector function defined by

(1)

Here x, y, z are Cartesian coordinates in a domain in 3-space in which ƒ is defined and differentiable. (For curvilinear coordinates see App. 3.4.)

403

Page 163: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

The notation is suggested by the differential operator (read nabla) defined by

(1*)

404

Page 164: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Directional Derivative

DEFINITION 2

The directional derivative Dbƒ or dƒ/ds of a function ƒ(x, y, z) at a point P in the direction of a vector b is defined by (see Fig. 213)

(2)

Here Q is a variable point on the straight line L in the direction of b, and |s| is the distance between P and Q. Also, s > 0 if Q lies in the direction of b (as in Fig. 213), s < 0 if Q lies in the direction of –b, and s = 0 if Q = P.

continued404

Page 165: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 213. Directional derivative

404

Page 166: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

(5)

ATTENTION! If the direction is given by a vector a of any length (≠ 0), then

(5*)

405

Page 167: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 1 Gradient. Directional Derivative

Find the directional derivative of ƒ(x, y, z) = 2x2 + 3y2 + z2 at P: (2, 1, 3) in the direction of a = [1, 0, –2].

Solution. grad ƒ = [4x, 6y, 2z] gives at P the vector grad ƒ(P) = [8, 6, 6]. From this and (5*) we obtain, since |a| = ,

The minus sign indicates that at P the function ƒ is decreasing in the direction of a.

405

Page 168: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Gradient Is a Vector. Maximum Increase

Vector Character of Gradient. Maximum Increase

THEOREM 1

Let ƒ(P) = ƒ(x, y, z) be a scalar function having continuous first partial derivatives in some domain B in space. Then grad ƒ exists in B and is a vector, that is, its length and direction are independent of the particular choice of Cartesian coordinates. If grad ƒ(P) ≠ 0 at some point P, it has the direction of maximum increase of ƒ at P.

405

Page 169: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Gradient as Surface Normal Vector

The tangent vectors of all curves on S passing through P will generally form a plane, called the tangent plane of S at P. The normal of this plane (the straight line through P perpendicular to the tangent plane) is called the surface normal to S at P.

Grad ƒ is orthogonal to all the vectors r' in the tangent plane, so that it is a normal vector of S at P.

continued

406

Page 170: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 214. Gradient as surface normal vector

406

Page 171: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Gradient as Surface Normal Vector

THEOREM 2

Let ƒ be a differentiable scalar function in space. Let ƒ(x, y, z) = c = const represent a surface S. Then if the gradient of ƒ at a point P of S is not the zero vector, it is a normal vector of S at P.

406

Page 172: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 2 Gradient as Surface Normal Vector. Cone

Find a unit normal vector n of the cone of revolution z2 = 4(x2 + y2) at the point P: (1, 0, 2).

Solution. The cone is the level surface ƒ = 0 of ƒ(x, y, z) = 4(x2 + y2) – z2. Thus (Fig. 215),

n points downward since it has a negative z-component. The other unit normal vector of the cone at P is –n.

continued

406

Page 173: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 215. Cone and unit normal vector n

407

Page 174: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Vector Fields That Are Gradients of Scalar Fields(“Potentials”)

At the beginning of this section we mentioned that some vector fields have the advantage that they can be obtained from scalar fields, which can be handled more easily. Such a vector field is given by a vector function v(P), which is obtained as the gradient of a scalar function, say, v(P) = grad ƒ(P). The function ƒ(P) is called a potential function or a potential of v(P). Such a v(P) and the corresponding vector field are called conservative because in such a vector field, energy is conserved; that is, no energy is lost (or gained) in displacing a body (or a charge in the case of an electrical field) from a point P to another point in the field and back to P. We show this in Sec. 10.2.

continued

407

Page 175: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Conservative fields play a central role in physics and engineering. A basic application concerns the gravitational force (see Example 3 in Sec. 9.4) and we show that it has a potential which satisfies Laplace’s equation, the most important partial differential equation in physics and its applications.

407

Page 176: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Gravitational Field. Laplace’s Equation(1)

THEOREM 3

The force of attraction

(8)

between two particles at points P0: (x0, y0, z0) and P: (x, y, z) (as given by Newton’s law of gravitation) has the potential ƒ(x, y, z) = c/r, where r (> 0) is the distance between P0 and P.

continued

407

Page 177: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Gravitational Field. Laplace’s Equation(2)

THEOREM 3

Thus p = grad ƒ = grad (c/r). This potential ƒ is a solution of Laplace’s equation

(9)

[ (read nabla squared ƒ) is called the Laplacian of ƒ.]

407

Page 178: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

9.8 Divergence of a Vector Field

To begin, let v(x, y, z) be a differentiable vector function, where x, y, z are Cartesian coordinates, and let v1, v2, v3 be the components of v. Then the function

(1)

is called the divergence of v or the divergence of the vector field defined by v. For example, if

continued

410

Page 179: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Another common notation for the divergence is

with the understanding that the “product” (∂/∂x)v1 in the dot product means the partial derivative ∂v1/∂x, etc. This is a convenient notation, but nothing more. Note that • v means the scalar div v, whereas ƒ means the vector grad ƒ defined in Sec. 9.7.

410

Page 180: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Invariance of the Divergence

THEOREM 1

The divergence div v is a scalar function, that is, its values depend only on the points in space (and, of course, on v) but not on the choice of the coordinates in (1), so that with respect to other Cartesian coordinates x*, y*, z* and corresponding components v1*, v2*, v3* of v,

(2)

411

Page 181: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Presently, let us turn to the more immediate practical task of gaining a feel for the significance of the divergence as follows. Let ƒ(x, y, z) be a twice differentiable scalar function. Then its gradient exists,

continued

411

Page 182: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

and we can differentiate once more, the first component with respect to x, the second with respect to y, the third with respect to z, and then form the divergence,

Hence we have the basic result that the divergence of the gradient is the Laplacian (Sec. 9.7),

(3)

411

Page 183: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 1 Gravitational Force. Laplace’s Equation

The gravitational force p in Theorem 3 of the last section is the gradient of the scalar function ƒ(x, y, z) = c/r, which satisfies Laplaces equation = 0. According to (3) this implies that div p = 0 (r > 0).

411

Page 184: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 2 Flow of a Compressible Fluid. Physical Meaning of the Divergence

We consider the motion of a fluid in a region R having no sources or sinks in R, that is, no points at which fluid is produced or disappears. The concept of fluid state is meant to cover also gases and vapors. Fluids in the restricted sense, or liquids (water or oil, for instance), have very small compressibility, which can be neglected in many problems. Gases and vapors have large compressibility; that is, their density ρ(= mass per unit volume) depends on the coordinates x, y, z in space (and may depend on time t). We assume that our fluid is compressible.

continued

412

Page 185: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

We consider the flow through a rectangular box B of small edges ∆x, ∆y, ∆z parallel to the coordinate axes (Fig. 216), (∆ is a standard notation for small quantities; of course, it has nothing to do with the notation for the Laplacian in (11) of Sec. 9.7.) The box B has the volume ∆V = ∆x ∆y ∆z. Let v = [v1, v2, v3] v1i + v2 j + v3k be the velocity vector of the motion. We set

(4)

continued

412

Page 186: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

and assume that u and v are continuously differentiable vector functions of x, y, z, and t (that is, they have first partial derivatives which are continuous). Let us calculate the change in the mass included in B by considering the flux across the boundary, that is, the total loss of mass leaving B per unit time. Consider the flow through the left of the three faces of B that are visible in Fig. 216, whose area is ∆x ∆z. Since the vectors v1i and v3k are parallel to that face, the components v1 and v3 of v contribute nothing to this flow. Hence the mass of fluid entering through that face during a short time interval ∆t is given approximately by

continued

412

Page 187: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

where the subscript y indicates that this expression refers to the left face. The mass of fluid leaving the box B through the opposite face during the same time interval is approximately (u2)y+∆y ∆x ∆z ∆t, where the subscript y + ∆y indicates that this expression refers to the right face (which is not visible in Fig. 216). The difference

continued

412

Page 188: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

is the approximate loss of mass. Two similar expressions are obtained by considering the other two pairs of parallel faces of B. If we add these three expressions, we find that the total loss of mass in B during the time interval t is approximately

where

continued

412

Page 189: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

This loss of mass in B is caused by the time rate of change of the density and is thus equal to

If we equate both expressions, divide the resulting equation by ∆V ∆t, and let ∆x, ∆y, ∆z, and ∆t approach zero, then we obtain

or

(5)

continued

412

Page 190: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

This important relation is called the condition for the conservation of mass or the continuity equation of a compressible fluid flow.

If the flow is steady, that is, independent of time, then ∂ρ/∂t = 0 and the continuity equation is

(6)

If the density ρ is constant, so that the fluid is incompressible, then equation (6) becomes

(7)

continued

413

Page 191: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

This relation is known as the condition of incompressibility. It expresses the fact that the balance of outflow and inflow for a given volume element is zero at any time. Clearly, the assumption that the flow has no sources or sinks in R is essential to our argument.

From this discussion you should conclude and remember that, roughly speaking, the divergence measures outflow minus inflow.

continued

413

Page 192: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Fig. 216. Physical interpretation of the divergence

412

Page 193: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

9.9 Curl of a Vector Field

Gradient (Sec. 9.7), divergence (Sec. 9.8), and curl are basic in connection with fields, and we now define and discuss the curl.

Let v(x, y, z) = [v1, v2, v3] = v1i + v2j + v3k be a differentiable vector function of the Cartesian coordinates x, y, z. Then the curl of the vector function v or of the vector field given by v is defined by the “symbolic” determinant

continued

414

Page 194: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

(1)

This is the formula when x, y, z are right-handed. If they are left-handed, the determinant has a minus sign in front (just as in (2**) in Sec. 9.3).

Instead of curl v one also uses the notation rot v (suggested by “rotation”; see Example 2).

414

Page 195: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 1 Curl of a Vector Function

Let v = [yz, 3zx, z] = yzi + 3zxj + zk with right-handed x, y, z. Then (1) gives

414

Page 196: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 2 Rotation of a Rigid Body. Relation to the Curl

We have seen in Example 5, Sec. 9.3, that a rotation of a rigid body B about a fixed axis in space can be described by a vector w of magnitude in the direction of the axis of rotation, where ω (> 0) is the angular speed of the rotation, and w is directed so that the rotation appears clockwise if we look in the direction of w. According to (9), Sec. 9.3, the velocity field of the rotation can be represented in the form

v = w × r

continued

414

Page 197: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

where r is the position vector of a moving point with respect to a Cartesian coordinate system having the origin on the axis of rotation. Let us choose right-handed Cartesian coordinates such that the axis of rotation is the z-axis. Then (see Example 2 in Sec. 9.4)

w = [0, 0, ω] = ωk, v = w × r = [–ωy, ωx, 0] = –ωyi + ωx j.

Hence

This proves the following theorem.415

Page 198: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Rotating Body and Curl

THEOREM 1

The curl of the velocity field of a rotating rigid body has the direction of the axis of the rotation, and its magnitude equals twice the angular speed of the rotation.

415

Page 199: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Grad, Div, Curl

THEOREM 2

Gradient fields are irrotational. That is, if a continuously differentiable vector function is the gradient of a scalar function ƒ, then its curl is the zero vector,

(2) curl (grad ƒ) = 0.

Furthermore, the divergence of the curl of a twice continuously differentiable vector function v is zero,

(3) div (curl v) = 0.

415

Page 200: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

E X A M P L E 3 Rotati onal and Irrotational Fields

The field in Example 2 is not irrotational. A similar velocity field is obtained by stirring tea or coffee in a cup. The gravitational field in Theorem 3 of Sec. 9.7 has curl p = 0. It is an irrotational gradient field.

415

Page 201: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Invariance of the Curl

THEOREM 3

curl v is a vector. That is, it has a length and direction that are independent of the particular choice of a Cartesian coordinate system in space. (Proof in App. 4.)

416

Page 202: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

SUMMARY OF CHAPTER 9

All vectors of the form a = [a1, a2, a3] = a1i + a2j + a3k constitute the real vector space R3 with componentwise vector addition

(1)

and componentwise scalar multiplication (c a scalar, a real number)

(2)

For instance, the resultant of forces a and b is the sum a + b.

continued

417

Page 203: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

The inner product or dot product of two vectors is defined by

(3)

where γ is the angle between a and b. This gives for the norm or length |a| of a

(4)

as well as a formula for γ. If a • b = 0, we call a and b orthogonal. The dot product is suggested by the work W = p • d done by a force p in a displacement d.

continued

418

Page 204: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

The vector product or cross product v = a × b is a vector of length

(5)

and perpendicular to both a and b such that a, b, v form a right-handed triple. In terms of components with respect to right-handed coordinates,

(6)

continued

418

Page 205: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

The vector product is suggested, for instance, by moments of forces or by rotations.

CAUTION! This multiplication is anticommutative, a × b = –b × a, and is not associative.

An (oblique) box with edges a, b, c has volume equal to the absolute value of the scalar triple product

(7)

continued

418

Page 206: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Sections 9.4 ~ 9.9 extend differential calculus to vector functions

and to vector functions of more than one variable (see below). The derivative of v(t) is

(8)

Differentiation rules are as in calculus. They imply (Sec. 9.4)

continued

418

Page 207: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Curves C in space represented by the position vector r(t) have r'(t) as a tangent vector (the velocity in mechanics when t is time), r'(s) (s arc length, Sec. 9.5) as the unit tangent vector, and |r''(s)| = κ as the curvature (the acceleration in mechanics).

Vector functions v(x, y, z) = [v1(x, y, z), v2(x, y, z), v3(x, y, z)] represent vector fields in space. Partial derivatives with respect to the Cartesian coordinates x, y, z are obtained componentwise, for instance,

continued

418

Page 208: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

The gradient of a scalar function ƒ is

(9)

The directional derivative of ƒ in the direction of a vector a is

(10)

The divergence of a vector function v is

(11)

continued

419

Page 209: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

The curl of v is

(12)

or minus the determinant if the coordinates are left-handed.

continued

419

Page 210: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

Some basic formulas for grad, div, curl are (Secs. 9.7–9.9)

(13)

(14)

(15)

continued

419

Page 211: 歐亞書局 P Chapter 9 Vector Differential Calculus. Grad, Div, Curl

歐亞書局 P

(16)

(17)

For grad, div, curl, and in curvilinear coordinates see App. A3.4.

419