8
Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top studen CHEAT SHEET PHYS1205: Integrated Physics University of Newcastle 1 1D Motion Vector – A measurement with both magnitude and direction (e.g. Displacement) Scalar – A measurement with only magnitude (e.g. distance) Average Velocity !"# = βˆ† βˆ† Instantaneous Velocity !"#$ = Average Acceleration !"# = βˆ† βˆ† Instantaneous Acceleration !"#$ = Final Velocity !" = !" + ! Final Displacement with Avg. Velocity ! = ! + 1 2 ( !" + !" ) Final Displacement with Velocity and Acceleration ! = ! + !" + 1 2 ! ! Final Velocity without Time !" ! = !" ! + 2 ! ! βˆ’ ! Objects in Freefall – Acceleration is –g (9.8m/s 2 ) 2 Vectors and 2D Motion Vector Addition – Tip to Tail Vector Subtraction – From the negative to the positive, or add the negative ( βˆ’ = + (βˆ’ )) Vector Multiplication/Division by a Scalar – Only magnitude is multiplied or divided. Direction is reversed for negative scalars. Vector Components β€’ Length = ! ! + ! ! β€’ Direction = tan !! ! ! Unit Vectors: = x + y Projectile Motion β€’ Position ! = ! + ! + 1 2 ! β€’ Initial Horizontal Velocity !" = ! cos β€’ Initial Vertical Velocity !" = ! sin

· PDF fileTitle: Microsoft Word - Newcastle PHYS1205.docx

  • Upload
    vuthien

  • View
    221

  • Download
    2

Embed Size (px)

Citation preview

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET

PHYS1205: Integrated Physics University of Newcastle

1 1D Motion Vector – A measurement with both magnitude and direction (e.g. Displacement)

Scalar – A measurement with only magnitude (e.g. distance)

Average Velocity

𝑣!"# =βˆ†π‘₯βˆ†π‘‘

Instantaneous Velocity

𝑣!"#$ =𝑑π‘₯𝑑𝑑

Average Acceleration

π‘Ž!"# =βˆ†π‘£βˆ†π‘‘

Instantaneous Acceleration

π‘Ž!"#$ =𝑑π‘₯𝑑𝑑

Final Velocity

𝑣!" = 𝑣!" + π‘Ž!𝑑

Final Displacement with Avg. Velocity

π‘₯! = π‘₯! +  12(𝑣!" + 𝑣!")𝑑

Final Displacement with Velocity and Acceleration

π‘₯! = π‘₯! + 𝑣!"𝑑 +12π‘Ž!𝑑!

Final Velocity without Time

𝑣!"! = 𝑣!"! + 2π‘Ž! π‘₯! βˆ’ π‘₯!

Objects in Freefall – Acceleration is –g (9.8m/s2)

2 Vectors and 2D Motion Vector Addition – Tip to Tail

Vector Subtraction – From the negative to the positive, or add the negative (𝐴 βˆ’ 𝐡 = 𝐴 + (βˆ’π΅))

Vector Multiplication/Division by a Scalar – Only magnitude is multiplied or divided. Direction is reversed for negative scalars.

Vector Components

β€’ Length

𝐴 = 𝐴!!+ 𝐴!

!  

β€’ Direction

πœƒ =   tan!!𝐴!𝐴!

Unit Vectors:

𝐴 = 𝐴x𝚀 + 𝐴yπš₯

Projectile Motion

β€’ Position

π‘Ÿ! = π‘Ÿ! + 𝑣!𝑑 +12𝑔𝑑!

β€’ Initial Horizontal Velocity

𝑣!" = 𝑣! cos πœƒ

β€’ Initial Vertical Velocity

𝑣!" = 𝑣! sin πœƒ

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET

Uniform Circular Motion

β€’ Centripetal Acceleration

π‘Ž! =𝑣!

π‘Ÿ

β€’ Overall Acceleration

|π‘Ž| = π‘Ž!! + π‘Ž!!

β€’ Period

𝑇 =2πœ‹π‘Ÿπ‘£

Relative Velocity

π‘Ÿ!" = π‘Ÿ!" + 𝑣!"𝑑

3 Force and Motion Newton’s 1st Law - In the absence of external forces, when viewed from an inertial reference frame, an object at rest will remain at rest and an object in motion continues in motion with a constant velocity

Newton’s 2nd Law - Net Force is the product of Mass and Acceleration

𝛴𝐹 = π‘šπ‘Ž

Newton’s 3rd Law - If two objects interact, the force that object one is exerting on object 2 is equal and opposite to that object two is exerting on object one

𝐹!" =  βˆ’𝐹!"

Equilibrium

𝛴𝐹 = 0

Friction

β€’ Kinetic Friction

𝐹 = πœ‡!𝑁

β€’ Static Friction

𝐹 ≀ πœ‡!𝑁

Circular Motion Dynamics

𝐹 = π‘šπ‘Ž! = π‘šπ‘£!

π‘Ÿ

4 Work, Energy and Power Scalar/Dot Product

𝐴 βˆ™ 𝐡 = π΄π΅π‘π‘œπ‘ πœƒ

Work

β€’ Same Direction as Displacement

π‘Š = πΉβˆ†π‘Ÿ

β€’ Different Direction to Displacement

π‘Š = πΉβˆ†π‘Ÿπ‘π‘œπ‘ πœƒ

β€’ Work by Varying Force

π‘Š!"# = 𝐹!!!

!!𝑑π‘₯

Hooke’s Law

𝐹! = βˆ’π‘˜π‘₯

Kinetic Energy

𝐾𝐸 =12π‘šπ‘£!

Work-Kinetic Energy Theorem

π›΄π‘Š = π›₯𝐾𝐸

Potential Energy

β€’ Gravitational

π‘ˆ = π‘šπ‘”π›₯𝑦

β€’ Elastic

π‘ˆ =12π‘˜π‘₯!

Conservative Force - Work done is independent of the path taken by an object (e.g. Gravity)

Non-conservative Force - Work done dependent on the motion of the object (e.g. Friction)

Conservation of Energy

β€’ Mechanical Energy

𝐸!"#! = 𝐾𝐸 + π‘ˆ

β€’ Total Energy

𝐸!"! = 𝐾𝐸 + π‘ˆ + 𝐸!"#

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET

β€’ Non-Conservative Force Absent

βˆ†πΈ!"#! = 0

β€’ Non-Conservative Force Present

βˆ†πΈ!"! = 0

Power

πœ‘ =π‘‘π‘Šπ‘‘π‘‘

5 Momentum Momentum

𝑝 = π‘šπ‘£

Impulse

β€’ Definition

𝐼 = βˆ†π‘

β€’ For Constant Force

𝐼 = 𝐹𝑑

β€’ For Non-Constant Force

𝐼 = 𝐹.𝑑𝑑!!

!!

Collisions

β€’ Conservation of Momentum (All Collisions)

𝑝! = 𝑝!

β€’ Conservation of KE (Elastic Collisions)

𝐾𝐸! = 𝐾𝐸!

β€’ Perfectly Inelastic

π‘š!𝑣!! +π‘š!𝑣!! = (π‘š! +π‘š!)𝑣!

β€’ Perfectly Elastic

π‘š!𝑣!! +π‘š!𝑣!! = π‘š!𝑣!! +π‘š!𝑣!!

12π‘š!𝑣!!! +

12π‘š!𝑣!!! =

12π‘š!𝑣!!! +

12π‘š!𝑣!!!

6 Rotation Arc Length

𝑠 = π‘Ÿπœƒ

Translational Velocity

𝑣 = πœ”π‘Ÿ

Translational Acceleration

π‘Ž = π›Όπ‘Ÿ

Average Angular Velocity

πœ”!"# =βˆ†πœƒβˆ†π‘‘

Instantaneous Angular Velocity

πœ”π’Šπ’π’”π’• =π‘‘πœƒπ‘‘π‘‘

Instantaneous Angular Acceleration

𝛼!"#$ =π‘‘πœ”π‘‘π‘‘

Final Angular Velocity

πœ”! = πœ”! +  Ξ±t

Final Angular Displacement

πœƒ! =  ΞΈ! + Ο‰t + Ξ±t!

Final Angular Velocity without Time

Ο‰!! = πœ”!! +  2Ξ±(ΞΈ! βˆ’ ΞΈ!)

Final Angular Displacement with Avg. Velocity

ΞΈ! = ΞΈ! +12(Ο‰! + Ο‰!)t

Kinetic Energy of Rotation

𝐾! =  πœ”!

2π‘š! π‘Ÿ!!

Moment of Inertia

β€’ General

𝐼 =   πœŒπ‘Ÿ!  π‘‘𝑉

β€’ Sphere

𝐼 =25π‘šπ‘Ÿ!

β€’ Cylinder

𝐼 =12π‘šπ‘Ÿ!

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET

β€’ Disk

𝐼 = π‘šπ‘Ÿ!

Parallel Axis Theorem

𝐼 = 𝐼!"×𝑀𝐷!

Torque

β€’ Using Radius

𝜏 = π‘ŸπΉπ‘ π‘–π‘›πœ™

β€’ Using Perpendicular Distance

𝜏 = 𝐹𝑑

β€’ Net Torque

π›΄πœ = 𝐼𝛼

and

𝐸! = π‘šπ‘!

Angular Momentum

β€’ Angular Momentum

𝐿 = πΌπœ”

β€’ The Conservation of Momentum

𝐿! = 𝐿!

7 Waves, Oscillations and SHM Wave Number

π‘˜ =2πœ‹πœ†

Wave Equation

𝑦 π‘₯, 𝑑 = 𝐴𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ + πœ™

Speed of Wave on a String

𝑣 =π‘‡πœ‡

Simple Harmonic Motion

β€’ General Equation

π‘₯ 𝑑 = π΄π‘π‘œπ‘ (πœ”π‘‘ + πœ™)

β€’ Acceleration

π‘Ž! = βˆ’πœ”!π‘₯

β€’ Angular Frequency

πœ” =π‘˜π‘š

β€’ Period

𝑇 =2πœ‹πœ”

β€’ Frequency

𝑓 =πœ”2πœ‹

=1𝑇

β€’ Energy

𝐸!"#! =12π‘˜π΄!

β€’ Velocity

𝑣 =  Β±πœ” 𝐴! βˆ’ π‘₯!

β€’ SHM and Circular Motion – Uses SHM formulae for each direction of movement

β€’ SHM and the Pendulum o Period

𝑇 = 2πœ‹πΏπ‘”

o Physical Pendulum

𝑇 = 2πœ‹πΌ

π‘‘π‘šπ‘”

8 Sound and EM Waves Bulk Modulus

𝐡 = βˆ’βˆ†π‘ƒβˆ†π‘‰/𝑉

Sound Wave Displacement

𝑠 π‘₯, 𝑑 = 𝑠!"#cos  (π‘˜π‘₯ βˆ’ πœ”π‘‘)

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET

Sound Wave Pressure

β€’ Including Bulk Modulus

βˆ†π‘ƒ = 𝐡𝑠!"#sin  (π‘˜π‘₯ βˆ’ πœ”π‘‘)

β€’ Without Bulk Modulus

βˆ†π‘ƒ!"# = πœŒπ‘£πœ”π‘ !"#

Density

𝜌 =π‘šπ‘‰

Speed of Sound

β€’ Formula

𝜈 =  π΅πœŒ

β€’ Dependence on Temperature

𝑣 =  331 1 +𝑇!273

EM Waves

β€’ Electrical Component

𝐸 = 𝐸!sin  (π‘˜π‘₯ βˆ’ πœ”π‘‘)

β€’ Magnetic Component

𝐡 = 𝐡!sin  (π‘˜π‘₯ βˆ’ πœ”π‘‘)

Intensity of a Sound Wave

β€’ Per Unit Area

𝐼 =βˆ†π‘ƒ!"# !

2𝜌𝜈

β€’ In Three Dimensions

𝐼 β‰‘π‘ƒπ‘œπ‘€π‘’π‘Ÿ!"#4πœ‹π‘Ÿ!

Sound Levels in Decibels

𝛽 = 10 log𝐼𝐼!

Doppler Effect

𝑓′ =𝑣 + 𝑣!𝑣 βˆ’ 𝑣!

𝑓

Reflection of a Pulse

β€’ When a pulse hits a fixed boundary, reflection is inverted

β€’ When a pulse hits a free boundary, reflection is not inverted

β€’ When a pulse moves from a light to a heavy string the reflected pulse is inverted

β€’ When a pulse moves from a heavy to a light string, the reflection is not inverted

Superposition

𝑦 = 2𝐴𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ +πœ™2cos

πœ™2

Interference

π‘π‘Žπ‘‘β„Ž  π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’πœ†

Γ—2πœ‹ = π‘β„Žπ‘Žπ‘ π‘’  π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’

Standing Waves on a String

β€’ Formula

𝑦 = 2𝐴𝑠𝑖𝑛 π‘˜π‘₯ cos  (πœ”π‘‘)

β€’ Amplitude

π‘Žπ‘šπ‘ = 2𝐴𝑠𝑖𝑛(π‘˜π‘₯)

β€’ Nodes

π‘₯ =π‘›πœ†2  (π‘€β„Žπ‘’π‘Ÿπ‘’  π‘› = 0, 1, 2… )

β€’ Antinodes

π‘₯ =π‘›πœ†4  π‘€β„Žπ‘’π‘Ÿπ‘’  π‘› = 1, 3, 5… )

Boundary Conditions on a String

𝑓! =𝑛2𝐿

π‘‡πœ‡

Standing Waves in an Air Column

β€’ Closed Pipe

𝑓! =π‘›πœˆ4𝐿  (π‘€β„Žπ‘’π‘Ÿπ‘’  π‘› = 1, 3, 5… )

β€’ Open Pipe

𝑓! =π‘›πœˆ2𝐿  (π‘€β„Žπ‘’π‘Ÿπ‘’  π‘› = 1, 2, 3… )

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET

β€’ End Effects

𝐿 =π‘›πœ†2βˆ’ 2  Γ—  π‘’𝑛𝑑  π‘’𝑓𝑓𝑒𝑐𝑑𝑠

9 Fluids Fluids at Rest

β€’ Density

𝑝 =π‘šπ‘‰

β€’ Pressure

𝑃 =𝐹𝐴

β€’ Pressure in Liquids

𝑝 = 𝑝! + 𝑝𝑔𝑑

β€’ Gauge Pressure

𝑝! = 𝑝 βˆ’ 1π‘Žπ‘‘π‘š

β€’ Barometers

𝑝!"#$% = π‘π‘”β„Ž

β€’ Manometers

𝑝!"#$% = 1π‘Žπ‘‘π‘š + π‘π‘”β„Ž

β€’ Archimedes Principle

𝐹! = 𝑝!𝑉!𝑔

Fluids in Motion

β€’ Equation of Continuity

𝑣!𝐴! = 𝑣!𝐴!

β€’ Bernoulli’s Equation

𝑝! +12𝑝𝑣!! + 𝑝𝑔𝑦! = 𝑝! +

12𝑝𝑣!! + 𝑝𝑔𝑦!

10 Ray Optics Refraction

𝑛!π‘ π‘–π‘›πœƒ! = 𝑛!π‘ π‘–π‘›πœƒ!  (𝑆𝑛𝑒𝑙𝑙!𝑠  πΏπ‘Žπ‘€)

Total Internal Reflection

πœƒ! = sin!!𝑛!𝑛!

Spherical Mirrors

β€’ Focal Length

𝑓 =12π‘Ÿ

β€’ Image Distance (thin lens equation)

1𝑃+1𝑖=1𝑓

Image Formation

β€’ Magnification

π‘š = βˆ’π‘–π‘

Thin Lens Equations

β€’ Focal Length

1𝑓= 𝑛 βˆ’ 1

1π‘Ÿ!βˆ’1π‘Ÿ!

β€’ Focal Length (convex lens)

1𝑓=𝑛 βˆ’ 1π‘Ÿ!

β€’ Thin Lens Equation in i

𝑖 =𝑃𝑓𝑃 βˆ’ 𝑓

β€’ Thin lens equation in P

𝑃 =𝑖𝑓𝑖 βˆ’ 𝑓

β€’ Magnification in terms of P and f

π‘š =𝑓

𝑃 βˆ’ 𝑓

β€’ Magnification in terms of i and f

π‘š =𝑖 βˆ’ 𝑓𝑓

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET

Thin Lens Images

Lens P Real? Orientation m

Convex <F No ↑ ↑

= F N/A N/A N/A

> F Yes ↓ ↑

= 2F Yes ↓ -

> 2F Yes ↓ ↓

Concave < F No ↑ ↑

= F N/A N/A N/A

> F No ↑ ↑

= 2F No ↑ -

> 2F No ↑ ↓

Two Lens System

π‘š!"! = π‘š!π‘š!

Optical Instruments

β€’ Simple Magnifying Lens

π‘š! =25𝑓

β€’ Compound Microscope

π‘š = βˆ’π‘ π‘“!"

Γ—25𝑓!"

β€’ Refracting Telescope

π‘š!" = βˆ’π‘“!"𝑓!"

11 Wave Optics Path Difference

β€’ Constructive

π›₯π‘Ÿ = π‘šπœ†  (π‘€β„Žπ‘’π‘Ÿπ‘’  π‘š = 1, 2, 3… )

β€’ Destructive

π›₯π‘Ÿ = π‘š +12πœ†  (π‘€β„Žπ‘’π‘Ÿπ‘’  π‘š = 1, 2, 3… )

Interference of Light in Double Slit

β€’ Angles for Bright Fringes

πœƒ! =π‘šπœ†π‘‘

β€’ Distances of Bright Fringes

𝑦! =πΏπ‘šπœ†π‘‘

β€’ Angles for Dark Fringes

πœƒβ€²! =π‘š + 12 πœ†

𝑑

β€’ Distances of Dark Fringes

𝑦′! =π‘š + 12 πΏπœ†

𝑑

β€’ Distances Between Fringes

βˆ†π‘¦ =πœ†πΏπ‘‘

Interference of Light in Single Slit

β€’ Angles for Dark Fringes

πœƒ! =π‘πœ†π‘Ž

β€’ Distances for Dark Fringes

𝑦! =π‘πœ†πΏπ‘Ž

β€’ Width of Central Maximum

𝑀 =2πœ†πΏπ‘Ž

Circular Aperture Diffraction

𝑀 =2.44πœ†πΏπ·

Interferometer

𝑑 =π‘πœ†2

Learn your uni course in one day. Check spoonfeedme.com for free video summaries, notes and cheat sheets by top students.

CHEAT SHEET

12 Charge Coulomb’s Law

𝐹 =πΎπ‘ž!π‘ž!π‘Ÿ!

Electrical Field

β€’ Vector Equation

𝐸 =πΉπ‘ž

β€’ Electrical Field of a Point Charge

𝐸 =πΎπ‘žπ‘Ÿ!

Electrical Potential

π‘ˆ!"!# = π‘‰π‘ž

13 Electrical Circuits Current

β€’ Definition

𝐼 =π›₯π‘žπ›₯𝑑

β€’ Conservation of Charge

𝛴𝐼!" = 𝛴𝐼!"#

Ohm’s Law

𝐼 =π›₯𝑉𝑅

Power and Energy

β€’ Power delivered by an emf

𝑃!"# = 𝐼𝛦

β€’ Power Dissipated by a Resistor

𝑃! =π›₯𝑉! !

𝑅

14 Units and Constants Particle Kinematics in One Dimension

β€’ g = 9.8m/s2

Particle Dynamics

β€’ N = kg.m/s2

Work and Energy

β€’ J = Nm = kg.m2/s

β€’ W = J/s

β€’ 1Hp = 746W

Fluids

β€’ Pa = N/m2

Charge

β€’ e- = -1.60 Γ— 10-19 C

β€’ K = 8.99 Γ— 109 Nm2/C2

β€’ V = J/C

Electrical Circuits

β€’ A = C/s

β€’ Ξ© = V/A