1
Adaptable, Deployable Entry and Placement Technology (ADEPT) – Overview of FY15 Accomplishments P. Wercinski § , C. Brivkalns § , A. Cassell § , YK Chen § , T. Boghozian*, R. Chinnapongse § , M. Gasch § , S. Gorbunov # , C. Kruger § , A. Makino § , F. Milos § , O. Nishioka § , D. Prabhu*, B, Smith § , T. Squire § , G. Swanson*, E. Venkatapathy § , B. Yount § , and K. Zarchi § § NASA ARC; *ERC Inc.Moffe[ Field, CA; # Jacobs Technology, Inc.Moffe[ Field, CA 5mm Acknowledgements This work is funded by NASA’s Game Changing Development Program under the Space Technology Mission Directorate and the Science Mission Directorate Authors also acknowledge tesCng assistance from US Army 7x10 Wind Tunnel Facility and NASA Ames Arcjet Facility Background – What is ADEPT? 0.7m AeroLoads WindTunnel Tesang (May 2015) NanoADEPT is the applicaCon of ADEPT for small spacecraN where volume is a limiCng constraint NanoSats, CubeSats, other secondary payloads, etc. Why NanoADEPT? Achieve rapid technology development extensible to large ADEPT applicaCons Give rise to novel applicaCons for small spacecraN by offering an entry system 1mClass (Nano) ADEPT 1Meter Diameter ETU TPS Weaving 1m (Nano) ADEPT Systemlevel Technology Development Approach 0.35m SPRITEC Pathfinder Arcjet Tesang Results (Sept 2015) Summary 0.7m Deployment Prototype (Sept 2015) Multi-layer 3D woven carbon fabric Top layers “ablate” away during entry heat pulse Folds like an umbrella while stowed Seams Stitched with carbon thread Resin infused Tensioned over ribs Edge restraint rope (carbon) Ablator nose cap 0.7 m diameter 1m Nano-ADEPT (Mars) 16m Lifting ADEPT Human Mars Exploration 6m ADEPTVITaL (Venus) Gore” Joint Rib Deployed Stowed ADEPT is an atmospheric entry architecture for missions to most planetary bodies with atmospheres. Current Technology development project funded under STMD Game Changing Development Program (FY12 start) Stowed inside the launch vehicle shroud and deployed in space prior to entry. Low ballisCc coefficient (< 50 kg/m2) provides a benign deceleraCon and thermal environment to the payload. Hightemperature ribs support 3D woven carbon fabric to generate drag and withstand high heaCng. 0.7 m diameter Nano-ADEPT shown with notional 2U chassis payload Deployment Prototypes Subsonic Aeroloads Wind Tunnel Sounding Rocket Flight Test System-Level Arc Jet (SPRITE-C) Ejection from primary spacecraft Deployment Pre-Entry orientation Peak heat rate Thermo-structural loads FSI Landing loads Aero stability Shear pressure Component Structural Loads Shape Knowledge Gore Deflection (Static FSI) Fabric edge buzz/flutter (Dynamic FSI) Flight-like design Deployment reliability Interface with primary payload Achievable fabric pre-tension Tip-off rates Tech Maturation for Mission Infusion Tension maintenance under load Fabric system Primary geometric features of system-level arc jet tests (SPRITE-C) Θ c = 55º R n = 0.13 m R b = 0.18 m Rn/Rb= 0.72 Primary geometric features of deployment prototypes, subsonic aeroloads wind tunnel test articles, sounding rocket flight test, and some DRMs 0.70 m Θ c = 70º R n = 0.25 m R b = 0.35 m Rn/Rb= 0.71 • Strategy addresses technical challenges with four systemlevel tests • Common geometric features between design reference missions (DRMs), ground tests, and flight test provide groundtoflight traceability 1 2 2 1 1 1 Config. Config. OBJECTIVE: Characterize response of system level design features under relevant aerothermal environments. –UClize flightlike interface designs (Nose/fabric, Nose/Joint, Joint/Rib, Trailing Edge Closeout) APPROACH: A relevant scale, 360 degree test aracle allows for tesang of mulaple design features –Heavily instrumented 4 test arCcles –Mars entry relevant environments •HeaCng rates on fabric (4080 W/cm 2 ) IMPACT: Fabric Acreage Joint/Rib/Gore Interface Rib Tip Close-out Nose/Rib/Joint Interface Nose/Fabric Interface Graphite Nose Trailing Edge Close-Out Warp Fibers Weft Fibers Achieves systemlevel aerothermal performance in relevant environments Embedded InstrumentaCon InsulaCng Fabric Skirt Design SPRITEC Pathfinder Test Aracle #2 ConformalPICA Nose, 6 Layer Carbon Fabric, Phenolic Resin joint NASA Image of the Day: Oct 6, 2015 h[p://www.nasa.gov/ Dual heat pulse (2 separate 40s and 60s exposures – 7.5 kJ/cm 2 total stagnaCon point heat load PreTest PostTest ADEPT in Payload Canister (Folded fabric not shown) Spring actuated deployment proposed for sounding rocket configuraaon Fast operaCon for SR mission Cmeline Simple (No motors, bageries or control system) Challenges include: Tight packaging between ADEPT “cubesat payload” and available diameter within sounding rocket Long stroke with high force required at end of stroke to tension fabric (contrary to typical spring behavior) Nose cap movement needed to prevent wrinkling of fabric at nose cap interface AccommodaCng fabric interfaces and folding into Cghtly packaged stowed state Approach: ¼ model designed and built for proof of concept, design debug, bench tesCng & idenCfying improvements Full deployment prototype designed & built based on findings from ¼ model debug & test Deployment prototype successfully tested for funcCon Plan to use prototype for tesCng with modified carbon fabric skirt and for separaCon from SR canister Lessons learned will be applied to SR flight unit design Deployment Prototype Features Fullscale for sounding rocket configuraCon Target fabric pretension of 10 lb/in (per flight requirements) Designed for 4layer carbon fabric Twostage deployment mechanism triggers highforce springs near end of travel to tension fabric Linear guide rails (4) maintain even deployment Nose cap movement is integrated with 2 nd stage of deployment mechanism Pulls nose cap down against fabric at end of travel to eliminate gaps Endoftravel latches lock ADEPT in the deployed state 1/4 Model Proof of Concept CAD Model Deployed State Prototype Stowed State Prototype Deployed State Test Objecave Instrumentaaon Obtain staCc deflected shape and pressure distribuCons while varying pretension at dynamic pressures and angles of agack relevant to NanoADEPT entry condiCons at Earth, Mars, and Venus. Photogrammetry; String potenCometers; Outer Mold Line (OML) staCc pressure taps Observe dynamic aeroelasCc behavior (buzz/fluger) if it occurs as a funcCon of pretension, dynamic pressure, and angle of agack. High speed video; Strut load cells Obtain aerodynamic forces and moments as a funcCon of pretension, dynamic pressure, and angle of agack. Internal balance TesCng was completed in seven business days at the US Army’s 7x10 Foot Wind Tunnel located at NASA Ames (27Apr to 5May 2015) Shared funding was provided through NASA STMD GCDP ADEPT program (FY15) and a NASA Ames Center InnovaCon Fund Award (FY14) Flightlike carbon fabric skirt includes key features such as carbon yarn sCtching and seam resin infusion All test objecaves were met. Rich data set was obtained using noninvasive instrumentaaon Data products and observaaons made during tesang will be used to refine computaaonal models of NanoADEPT Bonus experiment of asymmetric shape demonstrates that an asymmetric deployable blunt body can be used to generate measureable lio Photogrammetry and high speed video data were recorded at most test points Solid arCcle was tested first. Solid model has ‘infinite tension’ used to directly compare with CFD undeflected shape predicCons Q sweeps from 0100 psf (bounds peak dynamic pressure for NanoADEPT Mars DRMs and some entry from LEO DRMs) AoA/Yaw from 20 to +20 Fabric test arCcle covered same range of Q and AoA as the solid test arCcle Four pretension “nut setngs” were planned: 20, 10, 5, 2 lbf/in Behavior of test arCcle warranted modificaCon of test matrix in real Cme ~40% loss of pretension aNer the first run at 20 lbf/in due to fabric relaxaCon Fabric was completely slack at 5 lbf/in nut setng Added to test matrix during test execuCon: 20 lbf/in pretension based on intunnel measurement (postrelaxaCon) Asymmetric shape (bonus experiment) Photron High Speed Video (500 fps) Photogrammetry 3D Imaging NanoADEPT Solid Test Ar?cle @ +20 deg AoA Control Room • StaCc pressure taps on both test arCcles provided repeatable data (example shown below: solid test arCcle pressure coefficient @ 100 psf) • InstrumentaCon integraCon approach worked well and could be repeated for flight test Fabric test ar+cle pressure coefficient @ 100 psf (20 lbf/in measured pretension) C P 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 -20º AoA 0º AoA +20º AoA Pressure tap ADEPT brings High Value return on technical development progress under limited budgets. System level tesCng in Arcjets and with Sounding Rocket using common configuraCon – Huge Challenge for EDL! - SPRITE arcjet tesCng of scaled ADEPT configuraCon (ablaCng nose, ribs, gores with joints, and trailing edge) - SR Flight will address exoatmospheric deploy with flight relevant hardware and aero stability through criCcal supersonictransonic flight regime Near Term Development Success will Enable: - ADEPT 1m class infusion ready for Discovery 2017 AO - Highly visible, flight test experience advances confidence and reduces implementaCon risk for ADEPT entry architecture - CharacterizaCon and experience using ‘real hardware’ performance applied to larger scale ADEPT applicaCons - FY1617 Flight test is key step to subsequent ADEPT demonstraCon of guided lioing flight Prototype Deployed with Surrogate Fabric Conformal PICA Nose Cap

! …...• Top layers “ablate” away during entry heat pulse! • Folds like an umbrella while stowed! Seams ! • Stitched with carbon thread! • Resin infused! • Tensioned

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ! …...• Top layers “ablate” away during entry heat pulse! • Folds like an umbrella while stowed! Seams ! • Stitched with carbon thread! • Resin infused! • Tensioned

     Adaptable,  Deployable  Entry  and  Placement  Technology  (ADEPT)  –  Overview  of  FY15  Accomplishments  P.  Wercinski§,  C.  Brivkalns§,  A.  Cassell§,  Y-­‐K  Chen§,  T.  Boghozian*,  R.  Chinnapongse§,  M.  Gasch§,  S.  Gorbunov#,  C.  Kruger§,  A.  Makino§,  

F.  Milos§,  O.  Nishioka§,  D.  Prabhu*,  B,  Smith§,  T.  Squire§,  G.  Swanson*,  E.  Venkatapathy§,  B.  Yount§,  and  K.  Zarchi§  §  NASA  ARC;    *ERC  Inc.-­‐Moffe[  Field,  CA;  #Jacobs  Technology,  Inc.-­‐Moffe[  Field,  CA    

5mm  

Acknowledgements    

•  This  work  is  funded  by  NASA’s  Game  Changing  Development  Program  under  the  Space  Technology  Mission  Directorate  and  the  Science  Mission  Directorate  

•  Authors  also  acknowledge  tesCng  assistance  from  US  Army  7x10  Wind  Tunnel  Facility  and  NASA  Ames  Arcjet  Facility  

Background  –  What  is  ADEPT?    

0.7m  AeroLoads  Wind-­‐Tunnel  Tesang  (May  2015)    

Nano-­‐ADEPT  is  the  applicaCon  of  ADEPT  for  small  spacecraN  where  volume  is  a  limiCng  constraint  

•  NanoSats,  CubeSats,  other  secondary  payloads,  etc.  

 Why  Nano-­‐ADEPT?  

• Achieve  rapid  technology  development  extensible  to  large  ADEPT  applicaCons  

• Give  rise  to  novel  applicaCons  for  small  spacecraN  by  offering  an  entry  system    

1m-­‐Class  (Nano)  ADEPT    

1-­‐Meter  Diameter  ETU  TPS  Weaving  

1m  (Nano)  ADEPT  System-­‐level  Technology  Development  Approach      

   

0.35m  SPRITE-­‐C  Pathfinder  Arcjet  Tesang  Results  (Sept  2015)    

Summary  

0.7m  Deployment  Prototype  (Sept  2015)    

Multi-layer 3D woven carbon fabric •  Top layers “ablate” away

during entry heat pulse •  Folds like an umbrella

while stowed Seams •  Stitched with carbon thread • Resin infused •  Tensioned over ribs

Edge restraint rope (carbon)

Ablator nose cap

0.7 m diameter

1m Nano-ADEPT (Mars)

16m Lifting ADEPT Human Mars Exploration 6m  ADEPT-­‐VITaL    

(Venus)  

“Gore”  

Joint  

Rib  

Deployed  

Stowed  

•  ADEPT  is  an  atmospheric  entry  architecture  for  missions  to  most  planetary  bodies  with  atmospheres.  -­‐  Current  Technology  development  project  funded  under  

STMD  Game  Changing  Development  Program  (FY12  start)  -­‐  Stowed  inside  the  launch  vehicle  shroud  and  deployed  in  

space  prior  to  entry.  -­‐  Low  ballisCc  coefficient  (<  50  kg/m2)  provides  a  benign  

deceleraCon  and  thermal  environment  to  the  payload.  -­‐  High-­‐temperature  ribs  support  3D  woven  carbon  fabric  to  

generate  drag  and  withstand  high  heaCng.  

0.7 m diameter Nano-ADEPT shown with notional 2U chassis payload

Deployment Prototypes Subsonic Aeroloads

Wind Tunnel

Sounding Rocket

Flight Test System-Level A

rc Jet

(SPRITE-C)

Ejection from primary spacecraft

Deployment

Pre-Entry orientation

Peak heat rate

Thermo-structural loads

FSI

Landing loads

Aero stability

Shear pressure

Component Structural Loads

Shape Knowledge

Gore Deflection (Static FSI)

Fabric edge buzz/flutter

(Dynamic FSI)

Flight-like design

Deployment reliability

Interface with primary payload

Achievable fabric pre-tension

Tip-off rates Tech Maturation for

Mission Infusion

Tension maintenance under load

Fabric system

Primary geometric features of system-level arc

jet tests (SPRITE-C)

Θc = 55º Rn= 0.13 m Rb= 0.18 m Rn/Rb= 0.72

Primary geometric features of deployment prototypes, subsonic

aeroloads wind tunnel test articles, sounding rocket flight

test, and some DRMs

0.70 m

Θc = 70º Rn= 0.25 m Rb= 0.35 m Rn/Rb= 0.71

• Strategy  addresses  technical  challenges  with  four  system-­‐level  tests  • Common  geometric  features  between  design  reference  missions  (DRMs),  ground  tests,  and  flight  test  provide  ground-­‐to-­‐flight  traceability  

1

2

2

1 1

1

Config.

Config.

• OBJECTIVE:    Characterize  response  of  system  level  design  features  under  relevant  aerothermal  environments.  – UClize  flight-­‐like  interface  designs  (Nose/fabric,  Nose/Joint,  Joint/Rib,  Trailing  Edge  Close-­‐out)  

• APPROACH:  A  relevant  scale,  360  degree  test  aracle  allows  for  tesang  of  mulaple  design  features    – Heavily  instrumented  4  test  arCcles    – Mars  entry  relevant  environments  • HeaCng  rates  on  fabric  (40-­‐80  W/cm2)  

• IMPACT:      

Fabric Acreage Joint/Rib/Gore

Interface

Rib Tip Close-out

Nose/Rib/Joint Interface

Nose/Fabric  Interface  

Graphite  Nose  

Trailing Edge Close-Out

Warp Fibers

Weft Fibers

Achieves  system-­‐level  aerothermal  performance  in  relevant  environments      

Embedded  InstrumentaCon   InsulaCng  Fabric  Skirt  Design  

SPRITE-­‐C  Pathfinder  Test  Aracle  #2    Conformal-­‐PICA  Nose,  6  Layer  Carbon  Fabric,  Phenolic  Resin  joint    

NASA  Image  of  the  Day:  Oct  6,  2015  h[p://www.nasa.gov/  

Dual  heat  pulse  (2  separate  40s  and  60s  exposures  –  7.5  kJ/cm2  total  stagnaCon  point  heat  load  

Pre-­‐Test  

Post-­‐Test  

ADEPT  in  Payload  Canister  (Folded  fabric  not  shown)  

•  Spring  actuated  deployment  proposed  for  sounding  rocket  configuraaon  

•  Fast  operaCon  for  SR  mission  Cmeline  •  Simple  (No  motors,  bageries  or  control  system)  

•  Challenges  include:  •  Tight  packaging  between  ADEPT  “cubesat  payload”  and  available  

diameter  within  sounding  rocket  •  Long  stroke  with  high  force  required  at  end  of  stroke  to  tension  fabric  

(contrary  to  typical  spring  behavior)  •  Nose  cap  movement  needed  to  prevent  wrinkling  of  fabric  at  nose  cap  

interface  •  AccommodaCng  fabric  interfaces  and  folding  into  Cghtly  packaged  

stowed  state  •  Approach:  

•  ¼  model  designed  and  built  for  proof  of  concept,  design  debug,  bench  tesCng  &  idenCfying  improvements  

•  Full  deployment  prototype  designed  &  built  based  on  findings  from  ¼  model  debug  &  test  

•  Deployment  prototype  successfully  tested  for  funcCon  •  Plan  to  use  prototype  for  tesCng  with  modified  carbon  fabric  skirt  

and  for  separaCon  from  SR  canister  •  Lessons  learned  will  be  applied  to  SR  flight  unit  design  

•  Deployment  Prototype  Features  •  Full-­‐scale  for  sounding  rocket  configuraCon  •  Target  fabric  pre-­‐tension  of  10  lb/in  (per  flight  requirements)  •  Designed  for  4-­‐layer  carbon  fabric  •  Two-­‐stage  deployment  mechanism  triggers  high-­‐force  springs  near  end  

of  travel  to  tension  fabric  •  Linear  guide  rails  (4)  maintain  even  deployment  •  Nose  cap  movement  is  integrated  with  2nd  stage  of  deployment  

mechanism  •  Pulls  nose  cap  down  against  fabric  at  end  of  travel  to  eliminate  gaps  

•  End-­‐of-­‐travel  latches  lock  ADEPT  in  the  deployed  state    

1/4  Model  Proof  of  Concept  

CAD  Model  -­‐  Deployed  State  

Prototype  Stowed  State  

Prototype  Deployed  State  

Test  Objecave   Instrumentaaon  Obtain  staCc  deflected  shape  and  pressure  distribuCons  while  varying  pre-­‐tension  at  dynamic  pressures  and  angles  of  agack  relevant  to  Nano-­‐ADEPT  entry  condiCons  at  Earth,  Mars,  and  Venus.  

Photogrammetry;  String  potenCometers;  

Outer  Mold  Line  (OML)  staCc  pressure  taps  

Observe  dynamic  aeroelasCc  behavior  (buzz/fluger)  if  it  occurs  as  a  funcCon  of  pre-­‐tension,  dynamic  pressure,  and  angle  of  agack.  

High  speed  video;    Strut  load  cells  

Obtain  aerodynamic  forces  and  moments  as  a  funcCon  of  pre-­‐tension,  dynamic  pressure,  and  angle  of  agack.   Internal  balance  

•  TesCng  was  completed  in  seven  business  days  at  the  US  Army’s  7x10  Foot  Wind  Tunnel  located  at  NASA  Ames  (27-­‐Apr  to  5-­‐May  2015)  

•  Shared  funding  was  provided  through  NASA  STMD  GCDP  ADEPT  program  (FY15)  and  a  NASA  Ames  Center  InnovaCon  Fund  Award  (FY14)  

Flight-­‐like  carbon  fabric  skirt  includes  key  features  such  as  carbon  yarn  sCtching  and  seam  resin  infusion  

•  All  test  objecaves  were  met.    •  Rich  data  set  was  obtained  using  non-­‐invasive  instrumentaaon  •  Data  products  and  observaaons  made  during  tesang  will  be  used  to  refine  computaaonal  models  of  Nano-­‐ADEPT  

•  Bonus  experiment  of  asymmetric  shape  demonstrates  that  an  asymmetric  deployable  blunt  body  can  be  used  to  generate  measureable  lio  

•  Photogrammetry  and  high  speed  video  data  were  recorded  at  most  test  points  

•  Solid  arCcle  was  tested  first.      –  Solid  model  has  ‘infinite  tension’  used  to  directly  compare  with  CFD  undeflected  

shape  predicCons  –  Q  sweeps  from  0-­‐100  psf  (bounds  peak  dynamic  pressure  for  Nano-­‐ADEPT  Mars  

DRMs  and  some  entry  from  LEO  DRMs)  –  AoA/Yaw  from  -­‐20  to  +20  

•  Fabric  test  arCcle  covered  same  range  of  Q  and  AoA  as  the  solid  test  arCcle  –  Four  pre-­‐tension  “nut  setngs”  were  planned:  20,  10,  5,  2  lbf/in  

•  Behavior  of  test  arCcle  warranted  modificaCon  of  test  matrix  in  real  Cme  –  ~40%  loss  of  pre-­‐tension  aNer  the  first  run  at  20  lbf/in  due  to  fabric  relaxaCon  –  Fabric  was  completely  slack  at  5  lbf/in  nut  setng  

•  Added  to  test  matrix  during  test  execuCon:  –  20  lbf/in  pre-­‐tension  based  on  in-­‐tunnel  measurement  (post-­‐relaxaCon)  –  Asymmetric  shape  (bonus  experiment)  

Photron  High  Speed    Video  (500  fps)    

Photogrammetry  3D  Imaging  

Nano-­‐ADEPT  Solid  Test  Ar?cle  @  +20  deg  AoA  

Control  Room  

•  StaCc  pressure  taps  on  both  test  arCcles  provided  repeatable  data  (example  shown  below:  solid  test  arCcle  pressure  coefficient  @  100  psf)  

•  InstrumentaCon  integraCon  approach  worked  well  and  could  be  repeated  for  flight  test  

Fabric  test  ar+cle  pressure  coefficient  @  100  psf  (20  lbf/in  measured  pre-­‐tension)  

C P

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

-20º AoA

0º AoA +20º AoA

C P

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C P

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C P

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Pressure tap

•  ADEPT  brings  High  Value  return  on  technical  development  progress  under  limited  budgets.        •  System  level  tesCng  in  Arcjets  and  with  Sounding  Rocket  using  common  configuraCon  –  Huge  Challenge  for  EDL!  - SPRITE  arcjet  tesCng  of  scaled  ADEPT  configuraCon  (ablaCng  nose,  ribs,  gores  with  joints,  and  trailing  edge)  

- SR  Flight  will  address  exo-­‐atmospheric  deploy  with  flight  relevant  hardware  and  aero  stability  through  criCcal  supersonic-­‐transonic  flight  regime  

•  Near  Term  Development  Success  will  Enable:  -  ADEPT  1m  class  infusion  ready  for  Discovery  2017  AO  -  Highly  visible,  flight  test  experience  advances  confidence  and  reduces  implementaCon  risk  for  ADEPT  entry  architecture  

-  CharacterizaCon  and  experience  using  ‘real  hardware’  performance    applied  to  larger  scale  ADEPT  applicaCons  

-  FY16-­‐17  Flight  test  is  key  step  to  subsequent  ADEPT  demonstraCon  of  guided  lioing  flight  

Prototype  Deployed  with  Surrogate  Fabric  

Conformal  PICA  Nose  Cap