地下暗物质粒子 ( 直接 ) 探测研究 高能物理研究所 吕军光

  • Upload
    celine

  • View
    161

  • Download
    11

Embed Size (px)

DESCRIPTION

地下暗物质粒子 ( 直接 ) 探测研究 高能物理研究所 吕军光. 1 . 直接探测暗物质粒子背景 2. 利用惰性液体探测方法 3. 利用闪烁晶体探测方法. 暗物质的存在证据. 星系旋转曲线. 大尺度结构. 微波背景辐射. 暗物质基本特点: 宇宙学时间尺度上稳定。 参与引力作用,电中性。 非重子物质 非相对论性运动 Local mass density of DM near Solar System ~0.3 Ge V /cm3 Velocity of DM particles in Milky Way: ~ 220 km/s. 强引力透镜. - PowerPoint PPT Presentation

Citation preview

  • ()

    1.2.3.

  • Local mass density of DM near Solar System ~0.3 GeV /cm3Velocity of DM particles in Milky Way: ~ 220 km/s

  • Galaxy configurationDark matter halo*

  • WIMPRecoiled nucleusDirect detection of galactic dark matterEvent rate < 1/kg/dayWIMP densityD=0.3 GeV/c2/cm3

  • (SI) WIMPLArLXeCsI30/1.5/1

  • Experimen Target Type Status Site NationANAIS NaI annual modulationconstruction Canfranc SpainDAMA/NaI NaI annual modulationconcluded LNGS INFN-ITALYDAMA/LIBRA NaI annual modulation running LNGS INFN-ITALYDAMA/1 ton NaI annual modulation R&D LNGS INFN-ITALYNAIAD NaI PSD concluded Boulby UKHDMS Ge ionization concluded LNGS INFN-ITALYKIMS CsI PSD R&D Y2L KoreaCaf2-Kamioka CaF2 PSD running Kamioka JapanDAMA/LXe LXe PSD running LNGS INFN-ITALYWARP LAr 2 phase running LNGS INFN-ITALYXENON 10 LXe 2 phase running LNGS INFN-ITALYZeplin II LXe 2 phase running Boulby UKZeplin III LXe 2 phase installation Boulby UKArDM LAr 2 phase R&D Canfranc SpainLUX LXe 2 phase R&D Dusel USACLEAN LNe PSD R&D USADEAP LAr PSD R&D SNOLAB(CANADA) USA XMASS LXe PSD construction Kamioka JapanCDMS Ge bolometer running Soudan USACRESST CaWO4 bolometer running LNGS INFN-ITALY-ItalyEDELWEISS Ge bolometer running Frejus FranceROSEBUD Ge, sap,tung bolometer R&D Canfranc SpainCOUPP F SH droplet R&D Fermilab USA PICASSO F SH droplet running+R&D SNOLAB CANADASIMPLE F SH droplet running+R&D Bas Bruit FranceDrift CS2 gas TPC R&D Boulby UKMIMAC 3He gas TPC R&D

  • Double-Phase Noble Liquids LXe detects prompt (S1) light signalafter a particle interacts in the active xenon drifts the charge, extracts into the gas phase and detects as proportional light (S2)

  • Double-Phase Noble Liquids LXeXENON10

  • Recent results of a liquid noble gas experiment: XENON10Experimental site:Gran Sasso (1400 m depth)Target material:natXeTarget mass:5.4 kg (tot: 15 kg)Used exposure:136 kg day

  • Double-Phase Noble Liquids LXe(Double-Phase,~3

  • Double-Phase Noble Liquids LArArDM

  • Double-Phase Noble Liquids LArTime ns

    tagged ( 22Na) Neutron (AmBe)Fprompt=Q(

  • LArLXeScintillationand Ionization read outliquid ArVolume for shieldingFiducial volumeTHGEM+ LM Fiducial VolumeLArLArLArLArLAr77 K87 K

  • Double-Phase Noble Liquids LAr(Double-PhaseDouble-PhaseD-P

  • (Noble Liquids)():1, :PMT() :

    2,(CsIGaN)GEM(CsI )+() :

  • Electron avalanche in LAr+LXe at the tip of needle

  • Electron avalanche in LAr+LXe at the tip of needle

  • (Noble Liquids) ():1, 1) 2) APD 3) (LAr)

    2,(CsIGaN) GEM()+

  • (CsI(Na)):1,(PMT) Noble Liquids 3D,:(2Cm),(
  • 2.5x2.5x2.5cm ESR

  • n Gamma (200ns/)

  • 14MeV

  • 14MeV1, 2 CHAN: CsI(Na)1 CHAN: CsI(Na)2 CHAN:

  • n/ Quenching factor

  • (Pu239)/(Am241)

  • 5kev-Ee():0.2ns/chan

  • 1kev-Ee():0.2ns/chan

  • 0.5-6kev

  • cut

  • (Pu239)/(Am241)

  • 3D--MC200x200x200 mm PMT50mm, 96PMT : 12 p.e./KeV(25,25,4.9)mm sigma/z : 0.75mm(25,25,93.1)mm sigma/z: 1.2mm

  • CsICsI()CsI2

  • CsI(Na):1.: CsI(/) +NaI(0.01%)(/) ?2.()3.

    : PMTCsI(Na)(~16%

  • Internal background137Cs : t 1/2= 30.07 year (Artificial) b decay to 137Ba* (Q = 1175.6 keV) 2 min life time, emitting 661.6 keV gamma Hard to reject134Cs : t 1/2 = 2.065 year : Artificial+ 133Cs(n,) b to 134Ba* (Q=2058.7 keV) prompt emission Can be rejected easily : not a problemRadioisotopes in the crystal87Rb : t 1/2 = 4.75 x 1010 year (27.8% nat. abun.) b Beta deacy to 87Sr (Q=282.3 keV) no emission Hard to reject reduction technique in material is known1.07 cpd/ppb0.35 cpd/mBq/kg @ 10 keV0.07 cpd/mBq0.005 cpd/mBq137Cs : 10 mBq/kg134Cs : 20 mBq/kg87Rb : 10 ppbGeant Simulation

  • Quenching factors, q, measured by neutron sources or by neutron beams for some detectors and nucleidifferences are often present in different experimental determinations of q for the same nuclei in the same kind of detectore.g. in doped scintillators q depends on dopant and on the impurities/trace contaminants; in LXe e.g.on trace impurities, on initial UHV, on presence of degassing/releasing materials in the Xe, on thermodynamical conditions, on possibly applied electric field, etc.Some time increases at low energy in scintillators (dL/dx) and more

    recoil/electron response ratio measured with a neutron source or at a neutron generatorEx. of different q determinations for GeQuenching factor

  • **