29
Nomenclature r radius, mm angle of a single thermoelectric leg, degree half of the angle between two legs, degree High performance and thermal stress analysis of a segmented annular thermoelectric generator Samson Shittu a Guiqiang Li a, [email protected] Xudong Zhao a, [email protected] Xiaoli Ma a Yousef Golizadeh Akhlaghi a Emmanuel Ayodele b a School of Engineering and Computer Science, University of Hull, HU6 7RX, UK b Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, LS2 9JT, UK Corresponding authors. Abstract Annular thermoelectric generators can eliminate the thermal contact resistance formed due to geometry mismatch when flat-plate thermoelectric generators are used with round shaped heat source or heat sink. Therefore, in this study, the numerical simulation of a segmented annular thermoelectric generator (SATEG) is investigated using three-dimensional finite element analysis. The thermoelectric and mechanical performance of the segmented annular thermoelectric generator is studied by considering temperature dependent thermoelectric material properties and elastoplastic behaviour of copper and the welding layer (solder). The influence of segmented pin geometry on the performance of the segmented annular thermoelectric generator is investigated and comparison is made with non-segmented annular thermoelectric generators. COMSOL 5.3 Multiphysics software is used to investigate the effects of heat source temperature, thermoelectric leg length and leg angle on the electrical and mechanical performance of the segmented and non-segmented annular thermoelectric generators. Results show that the segmented annular thermoelectric generator has a greater efficiency compared to the annular thermoelectric generator (ATEG) with Bismuth telluride material when the temperature difference is greater than 100 K. In addition, the efficiency of the SATEG is found to be 21.7% and 82.9% greater than that of the Bismuth telluride ATEG and Skutterudite ATEG respectively at 200 K temperature difference. Finally, the results show that increase in thermoelectric leg length can reduce the thermal stress and electrical performance of the segmented and non-segmented thermoelectric generators. Results obtained from this study would influence the design and optimization of segmented annular thermoelectric generators. Keywords: Segmented thermoelectric generator; Annular thermoelectric generator; Finite element method; Power generation; Thermal stress θ 1 θ 2 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

© 2019. This manuscript version is made available under

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Nomenclature

r

radius,mm

angleofasinglethermoelectricleg,degree

halfoftheanglebetweentwolegs,degree

Highperformanceandthermalstressanalysisofasegmentedannularthermoelectricgenerator

SamsonShittua

GuiqiangLia,⁎

[email protected]

XudongZhaoa,⁎

[email protected]

XiaoliMaa

YousefGolizadehAkhlaghia

EmmanuelAyodeleb

aSchoolofEngineeringandComputerScience,UniversityofHull,HU67RX,UK

bInstituteofRobotics,AutonomousSystemsandSensing,UniversityofLeeds,LS29JT,UK

⁎Correspondingauthors.

Abstract

Annularthermoelectricgeneratorscaneliminatethethermalcontactresistanceformedduetogeometrymismatchwhenflat-platethermoelectricgeneratorsareusedwithroundshapedheatsourceorheatsink.Therefore,inthisstudy,thenumerical

simulationofasegmentedannularthermoelectricgenerator(SATEG)isinvestigatedusingthree-dimensionalfiniteelementanalysis.Thethermoelectricandmechanicalperformanceofthesegmentedannularthermoelectricgeneratorisstudiedbyconsidering

temperaturedependentthermoelectricmaterialpropertiesandelastoplasticbehaviourofcopperandtheweldinglayer(solder).Theinfluenceofsegmentedpingeometryontheperformanceofthesegmentedannularthermoelectricgeneratorisinvestigated

andcomparison ismadewithnon-segmentedannular thermoelectricgenerators.COMSOL5.3Multiphysicssoftware isused to investigate theeffectsofheatsource temperature, thermoelectric leg lengthand legangleon theelectricalandmechanical

performanceofthesegmentedandnon-segmentedannularthermoelectricgenerators.Resultsshowthatthesegmentedannularthermoelectricgeneratorhasagreaterefficiencycomparedtotheannularthermoelectricgenerator(ATEG)withBismuthtelluride

materialwhenthetemperaturedifferenceisgreaterthan100 K.Inaddition,theefficiencyoftheSATEGisfoundtobe21.7%and82.9%greaterthanthatoftheBismuthtellurideATEGandSkutteruditeATEGrespectivelyat200 Ktemperaturedifference.

Finally,theresultsshowthatincreaseinthermoelectricleglengthcanreducethethermalstressandelectricalperformanceofthesegmentedandnon-segmentedthermoelectricgenerators.Resultsobtainedfromthisstudywouldinfluencethedesignand

optimizationofsegmentedannularthermoelectricgenerators.

Keywords:Segmentedthermoelectricgenerator;Annularthermoelectricgenerator;Finiteelementmethod;Powergeneration;Thermalstress

θ1

θ2

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

anglebetweenoutercopperandlegs,degree

totallegangle,degree

L

lengthofthermoelectriclegs,mm

nh

hotsegmentn-typematerial

nc

coldsegmentn-typematerial

ph

hotsegmentp-typematerial

pc

coldsegmentp-typematerial

Qin

inputheatflux,W/m2

Qout

outputheatflux,W/m2

RL

loadresistance,

Pout

outputpower,W

specificheatcapacity,J/kg/K

T

temperature,K

E

young’smodulus,GPa

θ3

θ

Ω

CP

z

figureofmerit

Greeksymbols

seebeckcoefficient

efficiency,%

electricalconductivity,S/m

thermalconductivity,W/m/K

density,Kg/m3

electricalresistivity,

Abbreviations

SATEG

segmentedannularthermoelectricgenerator

ATEG

annularthermoelectricgenerator

TEG

thermoelectricgenerator

Bi2Te3

Bismuthtelluride

CoSb3

Cobaltantimony

PbTe

leadtelluride

SiGe

α

η

σ

κ

ρd

ρ

Ωm

silicongermanium

Subscripts

c

coldside

h

hotside

1IntroductionRenewable energy sources have an enormous potential because in principle, they can exceed theworld’s energy demandexponentially. Therefore, a paradigmshift to renewable energy can ensure the simultaneous attainment of the goals of reducing

greenhousegasemissionsandensuringreliable,timelyandcost-efficientdeliveryofenergy[1,2].Oneoftheimportantfactorstoimprovethequalityoflifeofpeopleistheavailabilityofcheapandabundantenergywithlowenvironmentalandecologicalhazards.Solar

energyisoneofthebestenergysourceswithalowimpactontheenvironmentalnegatively[3].About40%offuelenergyiswastedasexhaustgasininternalcombustionenginevehicles,30%isdissipatedintheenginecoolant,5%islostasradiationandfrictionwhile

25%isreservedforvehiclemobilityandaccessories[4].Recentadvancesinthermoelectricmaterialprocessinghasincreasedthepotentialforalternatorstobereplacedbythermoelectricpowergenerationusingwasteheatrecoveryinautomobiles[5].Athermoelectric

generator isasolidstateheatenginewhichcandeliverelectricalpowertoaloadviaSeebeckeffectprovidingthereisatemperaturedifferencemaintainedacrossitsthermoelements[6].Therefore, theuseofathermoelectricgeneratorcanpotentiallyprovidemore

electricalenergyfromwasteheatandreducetheuseoffossilfuel.Theapplicationofthermoelectricgeneratorwasteheatrecoveryinautomobileshasbeenstudiedbyseveralresearchers[4,5,7,8].Thermoelectricgeneratorshavealsobeenappliedinwearablesensors

[9–12],micropowergeneration[13],wirelesssensornetwork[14],spacepower[15]andbuildings[16].

Thermoelectricdevicesaresmall,lightweightandreliableenergyconvertersthatproducenonoiseorvibrationbecausetheyhavenomovingmechanicalpart[17–19].Notwithstanding,theirlowconversionefficiencyhaslimitedtheirwideapplication[20].To

solvethisproblem,manyresearchershavetriedtwomainmethods;materialoptimizationandgeometryoptimization.Thetwomainfactorsthatinfluencetheefficiencyofathermoelectricgeneratorare;thermoelectricmaterialpropertiesandtemperaturedifferenceacross

thegenerator.Thetemperaturedifference ,betweenthehotside( )andthecoldside( )determinestheupperlimitoftheefficiencythroughtheCarnotefficiency .Whilethethermoelectricmaterialdetermineshowclose,theefficiencycanbetothe

Carnotthroughthethermoelectricfigureofmerit,z,which isdefinedby .Where istheSeebeckcoefficient, is the thermalconductivityand is theelectrical resistivitywhichallvarywith temperature [21].For thermoelectricmaterials,highelectrical

conductivity,lowthermalconductivityandhighSeebeckcoefficientisdesirable[22].Thus,materialswithhighfigureofmeritcanincreasetheefficiencyofthermoelectricgenerators.

Omeretal. [23]developeda theoreticalmodel tooptimize thegeometryof the thermoelectricelement legsandpredict theperformanceof thegenerator.Theyargued thatgeometryoptimization isvery important forhighpowergeneration.Thegeometry

optimizationofthermoelectricgeneratorshavealsobeenappliedsuccessfullytohybridphotovoltaicsystemstoincreasetheiroverallperformance[24–28].Inaddition,heatpipeshavebeenincorporatedintothermoelectricgeneratorstoenhancetheirperformanceand

reducecost[29–32].Thesestudieshaveshowntheimportanceofoptimizingthegeometryofthermoelectricelementsforimprovedperformance.

Researchintosegmentedthermoelectricgenerator(STEG)hasincreasedsignificantlywithinthelastfewyears.Thisisbecauseunderidealconditions,thesegmentationofdifferentmaterialscanenablethecombinationofamaterialwithhighefficiencyathigh

temperaturewithadifferentmaterialwithhighefficiencyat low temperature.Thus,bothmaterialswilloperateonly in theirmostefficient temperature rangeandenhance theoverallperformance [21].Hadjistassouetal. [33]presentedadesignmethodology foran

analyticalmodelusedtostudytheperformanceofasegmentedthermoelectricgenerator.TheirresultsshowedthatthesegmentedTEG(ThermoelectricGenerator)providedapeakefficiencyof5.29%foratemperaturedifferenceof324.6 K.Atwo-pairsegmentedTEG

whichattainedamaximumspecificpowerdensityof42.9 W/kgat498 °CwasfabricatedbyKimetal.[34]andtheresultsobtainedwasingoodagreementwiththeiranalyticalmodel.Zhangetal.[35]utilizedanumericalmethodtostudyasegmentedthermoelectric

generator.Itwasdiscoveredthattheoptimallengthratioformaximumoutputpowerandefficiencyisdependentonthematerialproperties,heattransferconditionsandgeometrystructure.Similarresearchonaninnovativesegmentedthermoelectricgeneratorwascarried

out by the same authors [36–38]. In their study, they considered the effect of tapering and segmented pin configuration in a thermoelectric generator and the general conclusion drawnwas that their innovative TEGperformed better than the singlematerial pin

configurationTEG.Inonecase,theyfoundthattheextendedlegconfigurationincreasedthermoelectricefficiencyby8%[38].

Morerecently,anattemptwasmadebyLiuetal.[39]todesignasolarthermoelectricgeneratorwhichhadacombinationofsegmentedmaterialsandasymmetricallegs.Athree-dimensionalanalysismethodwasemployedandCOMSOLMultiphysicssoftware

wasusedforthisanalysis.Itwasfoundthatincomparisonwithtwodifferentnon-segmenteddesigns,thesegmenteddesignincreasedoutputpowerby14.9%and16.6%respectivelyatanoptimizedleglengthratio.Anoptimizeddesignforasegmentedthermoelectric

generatorwasalsopresentedbyGeetal.[40].BismuthtellurideandSkutteruditewereusedasthecoldandhotsidematerialsrespectively.TheirresultsshowedthattheoutputpowerandconversionefficiencyofthesegmentedTEGweregreaterthanthoseofthe

SkutteruditeTEGwithoutsegmentation.Ouyangetal.[41]performeda3DfiniteelementanalysisonasegmentedthermoelectricgeneratorusingANSYSsimulationsoftwareandtheyfoundthatthesegmentationofthermoelectricmaterialswithhighfigureofmeritcan

offer<1$/Wcost-performanceratio.

ΔT Th Tc

α κ ρ

Heatfromroundshapedheatsourcesorheatsinkscanbeeffectivelyutilizedbyathermoelectricgeneratorwithannularshapedlegs.Theconventionalflatplateconfigurationofthermoelectricgeneratorsissuitableforapplicationswheretheflowofheatis

perpendiculartotheceramicplates.Thus,suchaconfigurationwillbeunsuitableforsystemsinwhichtheheatflowisinaradialdirectionorforcylindricalheatsources.Tosolvethisproblem,Minetal.[42]developedanovelring-structuredthermoelectricmoduleto

overcomethedrawbacksoftheflatplatemodulesandtheyobtainedanelectricoutputpowerof30mWwhenatemperaturedifferenceof70 Kwasapplied.Subsequently,Bauknechtetal.[43]usedcomputationalfluiddynamics(CFD)tooptimizetheperformanceofan

annularthermoelectricgenerator(ATEG).Withinthelastfouryears,therehasbeenasignificantincreaseintheresearchintoannularthermoelectricgenerators.Shenetal.[44]performedatheoreticalinvestigationonanannularthermoelectricgenerator.Theyusedan

annularshapedparametertocharacterizetheperformanceofthedeviceandtheresultsobtainedshowedthattheinfluenceoftheshapedparameterwasseriouslyaffectedbytheexternalload.Kaushiketal.[45]developedanexoreversiblethermodynamicmodelforan

annularthermoelectricgeneratorconsideringJouleheating,FourierheatandThomsoneffectusingenergyandexergyanalysis.TheyobservedthattheATEG’soutputpower,energyandexergyefficiencywereactuallylowerthanthoseoftheflatplatethermoelectric

generator.Ayearlater,thesameauthors[46]performedanenergyandexergyanalysisonasolarheatpipeannularthermoelectricgenerator.Thistimehowever,theyfoundthattheoutputpowerandoverallexergyefficiencyofthesolarannularthermoelectricgenerator

were0.52%and0.40%greaterthanthoseofthesolarflatplatethermoelectricgeneratorrespectively.Shenetal.[47]performedatheoreticalanalysistostudytheperformanceofannularthermoelectriccouplesunderaconstantheatflux.Intheirstudy,theyusedfinite

elementmethodtoinvestigatethetemperaturedependencyofthermoelectricmaterialsandThomsoneffect.Theirresultsindicatedthattheleveloftheinputheatfluxmustbecontrolledtoprotectthedevicefromdamage.Similarly,Asaadietal.[48]studiedthethermal

andelectricalperformanceofanATEGunderpulsedheatfluxusingfiniteelementmethod.TheyconcludedthattransientpulsedheatingenhancedtheoutputpowerandefficiencyoftheATEGcomparedtoconstantsteadystateheating.

Zhangetal.[49]investigatedtheinfluenceofthermoelectricleggeometryconfigurationandcontactresistanceontheperformanceofanATEG.Theyfoundthatthemaximumoutputpowerperunitmassisattainedwhentheleggeometryparameterm = −1whilethevalueofmhadno influenceon theefficiencyof the idealATEGmodel.Thesameauthorsalso investigated theeffectsof internalandexternal interface layerson theperformanceofanannular thermoelectricgeneratorusingaphenomenologicalmodel [50].A

significantreductionintheperformanceoftheATEGwasobservedwhentheinfluenceofinterfacelayerswasconsidered.Fanetal.[51]carriedoutathreedimensionalnumericalstudyonanATEGanditwasobservedthatincreasingthethermocoupleleglengthscould

reducethermoelectricperformancebutimprovemechanicalreliability.Consideringsegmentedannularthermoelectricgenerator(SATEG),Shenetal.[47]theoreticallystudiedsuchasystemtoobtainitsefficiencyandpoweroutput.TheyfoundthattheSATEGperformed

betterthantheATEGasthetemperatureratiowasbeingincreased.

Researchers[52–56]havebeendrawntotheinvestigationofthethermalstressdevelopedinathermoelectricgeneratorduetothefactthatitoperatesinatemperaturedifferenceenvironmentandthermalstressiscausedbythedifferenceinthermalexpansion

behavioursoftheTEGmaterials.Inaddition,thestudyofthermalstressisimportantbecauseitprovidesinformationonthelocationofhighstressinthemodules,thereliabilityofthemodulesandthisinformationcanpotentiallyhelpincreasethelifespanofthemodules.

Gaoet al. [57] performed a parametric analysis to study the thermal stress developed in a thermoelectric generator. Anisotropicmaterial propertieswere used, and their results revealed that both the shear stress and vonMises stress initially decreased as the

thermoelectric leglengthincreased.Al-Merbatietal.[58]studiedtheinfluenceofpingeometryontheperformanceofathermoelectricgenerator.Theyfoundthatmaximumthermalstresscanbereducedbychangingthegeometryconfigurationofthethermoelectric

generator.Similarly,Wuetal.[59]performedathermalstressanalysisforseveralthermoelectricmodulegeometryconfigurations.Inaddition,differentheatfluxconditionswereconsidered,anditwasfoundthatthethicknessoftheceramicmoduleanddistancebetween

thermoelectriclegsinfluencedonthethermalstressinthemodule.Erturunetal.[60]alsofoundthatvaryingleggeometrycanhelpreducethethermalstressdevelopedinathermoelectricgenerator.

Thermalstress inasegmentedthermoelectricgeneratorhasalsobeenstudiedby[61–63].Jiaetal.[61]developeda3Dfiniteelementmodel tostudy themechanicalperformanceofasegmentedthermoelectricgenerator.Theyfoundthatconsidering the

elastoplaticdeformationofthecopperstripsandweldingstripscansignificantlyreducethethermalstressinthedevice.Mingetal.[62,63]studiedthethermalstressinasegmentedthermoelectricgeneratorundergaussian,parabolicanduniformheatfluxconditions.

Resultsobtainedrevealedthatthepositionbetweenthehotendofthealuminaandcopperhavethehighestpossibilitytocrackinthemodule.

ThedetailedliteraturereviewaboveshowsthecurrentworksinTEG,STEG,ATEG,SATEGandthermoelectricgeneratorthermalstress.Thesignificanceofgeometryoptimization,annularshape,segmentationandthermalstressanalysiscanbeclearlyseen.

However,thereareonlyafewliteraturesavailableonthestudyofsegmentedannularthermoelectricgenerators.Infact,thereisonlyoneavailableliteratureonSATEG[47]however,thisstudywasconductedusingatheoreticalapproachandthermalstressanalysiswas

notconsidered.Also,thereisonlyoneavailableliteratureonthestudyofATEGmechanicalperformance[51].Therefore,thisresearchseekstofill inthegapsandprovidebetterknowledgeonthethermoelectricandmechanicalperformanceofasegmentedannular

thermoelectric generator. This research investigates the influence of segmented pin geometry on the performance of annular thermoelectric generators. The thermoelectric andmechanical performance of theSATEG is studied using three-dimensional numerical

simulation.Tothebestofourknowledge,thisstudyisthefirstof itskindandwouldprovidevaluableinformationonthepotentialofsegmentedannularthermoelectricgenerators.FiniteelementmethodisusedtoperformtheanalysisandCOMSOL5.3Multiphysics

softwareisemployed.Thetemperaturedependenceofthermoelectricmaterialproperties isconsideredtoensureaccuracyoftheperformancepredictionsandtheinfluenceof leg length, legangleratioandtemperaturedifferenceontheoutputpower,efficiencyand

thermalstressoftheSATEGarestudied.Finally,acomparisonbetweentheperformanceoftheSATEGandATEGispresented.

Theremainingpartof thispaper isorganizedas follows;Section2providesadetailedgeometricmodeldescriptionandTEGequivalentcircuit.Section3describes thenumericalmodelused for theanalysis including the thermoelectricand thermalstress

analyses,materialproperties,boundaryconditions,computationprocedureandmodelvalidation.Section4describestheresultsobtainedandanalysisoftheresults.Finally,Section5providestheconclusionsdrawnfromthisstudy.

2GeometricmodeldescriptionThesegmentedannularthermoelectricgenerator(SATEG)geometryisshowninFig.1,anditconsistsofaluminaceramics,copper,weldinglayerandthermoelectriclegs.Thefunctionofthealuminaceramicistopreventelectricalconductivitybutenablethermal

conductivity.Thecopperisaconductivematerialwhichallowsanelectricalcircuittobeformedinthegenerator.Theweldinglayer(solder)helpstoreducethethermalstressinthedevicewhiletwodifferentthermoelectricmaterialsareusedforthedifferentsegmentsof

theSATEG.InFig.1a, representstheangleofasinglethermoelectricleg, representshalfoftheanglebetweentwolegsand representstheanglebetweenthecoldside(outer)copperandthethermoelectriclegs.Theradiusofeachofthecomponentsofthe

SATEGarerepresentedby to asshowninFig.1a.Inaddition,thelengthofthethermoelectriclegcanbeobtainedfrom: .Forsimplificationpurposes,thelengthsofthep-typeandn-typethermoelectricmaterialsareassumedequal.Also,the

lengthsofthethermoelectricelements(n-typeandp-type)inthecoldsegmentareassumedtobeequaltothoseofthehotsegment.Inordertoincreasethespeedofcalculation,onlyoneunicoupleisanalysedasshowninFig.1b.Thedifferentgeometriesanalysed

correspondingtothedifferentleglengthandlegangleoftheSATEGandATEGstudiedaredrawnwithAutoCADsoftwareandimportedintoCOMSOLindividually.Eachgeometryisthenanalysedundersimilarconditionsandtheperformanceisobserved.Thegeometric

parametersusedinthesimulationarelistedinTable1.Furthermore,thegeometryofthenon-segmentedannularthermoelectricgeneratoranalysedinthisstudyisshowninFig.2.Forallofthedrawings(SATEG,ATEG)theradiusofthecoldsideceramiciskeptconstant

andisthebeginningofeachdrawing.TheonlydifferencebetweentheSATEGandATEGstudiedisthesegmentationoftheTEGintotwodifferentthermoelectricpairsandmaterials.Allothercomponents,legangleandleglengthareexactlythesamewiththoseofthe

SATEG.ThisistoensuresimilaritybetweentheSATEGandATEGsothatpropercomparisoninperformancecanbemade.Inaddition,Bismuthtelluride(Bi2Te3)isthematerial(n-typeandp-type)usedonthecoldsegment(ncandpc)whileCoSb3Skutteruditematerial

(n-typeandp-type) isusedonthehotsegment(nhandph).Theadditionofanexternal loadresistanceRLhelps toclose theelectriccircuitso that theoutputpowercanbemeasured.When theexternal load isequal to the internal resistanceof the thermoelectric

generator,maximumpowercanbegenerated.

θ1 θ2 θ3

r1 r10 L=r7-r6=r5 - r4

Table1Geometricparametersofthesegmentedannularthermoelectricgenerator.

r1(mm) r2(mm) r3(mm) r4(mm) r5(mm) r6(mm) r7(mm) r8(mm) r9(mm) r10(mm) Length(mm) Depth(mm) Angle(degree)

Ceramic Dependsonstudy – – – – – – – 29.2 30 0.8 2 –

Copper – Dependsonstudy – – – – – 28.8 – – 0.4 1 –

Solder – – Dependsonstudy – – – 28.6 – – – 0.2 1 –

Fig.1SATEGgeometry;(a)schematicdiagramand(b)three-dimensionalview.

Bi2Te3Legs – – – – – Dependsonstudy – – – – r7-r6 1 –

CoSb3Legs – – – Dependsonstudy Dependsonstudy – – – – – r5-r4 1 –

– – – – – – – – – – – – Dependsonstudy

– – – – – – – – – – – – Dependsonstudy

– – – – – – – – – – – 1

*“Dependsonstudy”meansthevaluechangesbasedontheparametricstudybeingconsidered.Forexample,if ,then , , , , and .However,if ,4or5,theradiusvalueschange

accordingly.

2.1ThermoelectricgeneratorequivalentelectricalcircuitAsimplifiedequivalentelectricalcircuitofathermoelectricgeneratorisshowninFig.3.Thiscircuithelpstounderstandthebasicoperationofathermoelectricpowergenerator.Whenthereisnoloadconnection,theopencircuitvoltage(VOC)isgivenas,

where istheSeebeckcoefficientand isthetemperaturedifferencebetweenthehotsideandcoldsideofthethermoelectricgenerator.

θ1

θ2

θ3

L=2 r6=26.6 r5=26.4 r4=24.4 r3=24.2 r2=23.8 r1=23 L=3

Fig.2ATEGgeometry;(a)three-dimensionalviewand(b)frontview.

(1)

α ΔT=Th-TC

Whenanexternalloadresistance(RL)isconnected,theoutputvoltageofthethermoelectricgenerator(VL)isgivenas,

where istheinternalresistanceoftheTEGand istheTEGcurrentwhichisgivenas,

TheoutputpoweroftheTEG(PL)canthusbeobtainedas,

Therequiredpoweroutputforaparticularapplicationcanbeobtainedbycombiningseveralthermoelectricmodules.Inaddition,theoutputvoltageandpowerofthethermoelectricgeneratorcanbeincreasedbyapplyingahightemperaturedifferenceonthe

TEGandbymatchingtheexternalloadresistancetotheinternalresistanceoftheTEG.

Asidestheoutputpowerofathermoelectricgenerator,itselectricalpowerdensityisanotherimportantmetricwhichdirectlyinfluencestheTEGperformanceandcostratiowhichisveryimportantforwasteheatrecoveryapplications.Thewaystoimprovethe

thermoelectricgeneratorpowerdensity include: improvingthematerial figureofmerit, increasingthetemperaturedifferenceacrosstheTEGandoptimizingthermoelectricelementdimensionsandfillingfactors [64].Therefore,thisresearchfocusesonoptimizingthe

thermoelectricelementdimensions.

3NumericalmodelTheanalysisofthesegmentedannularthermoelectricgeneratorisdividedintotwomainsub-sectionswhichare:thermoelectricanalysisandthermalstressanalysis.Thethermoelectricanalysiswouldprovideresultsrelatingtotheoutputpowerandefficiencyof

thesystemwhilethethermalstressanalysiswouldprovideresultsrelatingtothemechanicalperformanceofthesystem.

3.1GoverningequationsofthermoelectricanalysisThegoverningequationofthethermoelectricanalysisaresolvedusingCOMSOL5.3Multiphysicssoftwarewhichisbasedonfiniteelementmethod.ThethermoelectricanalysisemployedtakesintoaccountthePeltiereffect,Fouriereffect,Jouleeffectand

Thomsoneffect.

Theheatflowequationinthethermoelectricanalysiscanbeexpressedas[20]:

where isthedensity, isspecificheatcapacity, istemperature, isheatfluxvectorand istheheatgenerationrateperunitvolume.

Theelectricchargecontinuityequationscanbeexpressedas

Fig.3EquivalentelectricalcircuitofaTEG.

(2)

Rin I

(3)

(4)

(5)

ρd Cp T

where istheelectriccurrentdensityvectorand istheelectricfluxdensityvector.

Eqs.(5)and(6)arecoupledusingthefollowingthermoelectricconstitutiveequations[65],

where istheSeebeckcoefficientmatrix, representsthethermalconductivitymatrixand istheelectricalconductivitymatrix.

where istheelectricfieldintensityvectorand istheelectricscalarpotential.

Thecoupledthermoelectricequationscanbeobtainedbycombiningtheaboveequationsas,

where representsthedielectricpermittivitymatrix.

Finally,thecoupledthermoelectricgoverningequationscanrewrittenas,

3.2GoverningequationsofthermalstressanalysisSince the thermalconductivityof thematerialsconsideredare temperaturedependent, the thermoelectricmodule isnotentirelyone-dimensional.Thus, thermodynamicandmechanicalcharacteristicsof thesystem in thez-axisdirectionarenonlinear.The

temperaturefieldisusedtocalculatethethermalstressfieldsincetemperatureinfluencesdeformationsinthesystem.

Thethermodynamicequationcanbeexpressas[59],

where and .Thetemperaturefieldisobtainedbythenumericalsimulationandisusedinthethermalstressanalysis.

Thermalstressisgeneratedduetotheunevenexpansionofthematerialsmakingupthethermoelectricgenerator.Theequationsgoverningthedisplacement–strainrelationsforthethermalstresscanbeexpressedas[62],

Thestress–strainrelationcanbeexpressedinadimensionlessformusinganonsymmetricalJacobianmatrixas,

(6)

(7)

(8)

[α] [κ]

(9)

φ

(10)

(11)

[ε]

(12)

(13)

(14)

(15)

(16)

Thethreeprincipalstressarerepresentedas , and respectively.ThevonMisesequivalentstresscanbeobtainedfromthefourthstrengththeoryofmechanicsofmaterialsalsoknownasthedistortionofenergytheory.Itdescribesthetotalcombined

stressesinallthreedimensionsas,

Thedifficultyencounteredintryingtosolvetheaboveequationsanalyticalduetothetemperaturedependenceofthematerialpropertiesnecessitatestheneedtousefiniteelementmethodtoobtainthesolutiontotheseequations.Theelectrical,thermaland

mechanicalbehavioursofthethermoelectricgeneratorcanbeobtainedfromthecoupledequationsdescribedabove.

3.3MaterialpropertiesThematerialsusedinthisstudyhavebeencarefullychosenconsideringtheirtemperaturerangesforoptimumperformance.Theperformanceofthethermoelectricgeneratorisaffectedbythechoiceofmaterialused.Basedontheoptimaloperatingtemperature,

thermoelectricmaterialscanbedividedintothreeranges:lowtemperature < 500 K(e.g.Bi2Te3basedmaterials),middletemperature500–900 K(e.g.PbTebasedmaterials)andhightemperature > 900 K(e.g.SiGebasedmaterials)[6].Usually,Bi2Te3basedmaterialsare

usedforthelowtemperaturepartofthesegmentedthermoelectricgeneratorbecauseitisknowntobethethermoelectricmaterialwiththebestperformanceatlowtemperatureranges.Whileformiddleorhighertemperaturepartofthesegmentedleg,severalmaterials

suchasSkutterudite(CoSb3),Zintlphasematerials,half-Heuslerandleadtelluride(PbTe)couldbeused[66].Therefore,Bismuthtelluride(Bi2Te3)isusedasthelowtemperaturematerialforthecoldsegmentbecauseofitshighfiguremeritandSkutteruditematerial

(CoSb3)isselectedasthemediumtemperaturematerialforthehotsegmentbecauseofitsgoodperformanceandstrongmechanicalcharacteristics.Inaddition,thecombinationofBi2Te3andCoSb3thermoelectricmaterialshavebeenusedtostudytheperformanceof

SATEG[47],STEG[20,61]andfavourableresultswereobtained.

Themaximumallowabletemperatureforthelowtemperaturematerial(Bi2Te3)usedinthisstudyis498 Kwhilethatofthehightemperaturematerial(CoSb3)is798 K[20].Thetemperaturedependentthermoelectricpropertiesofthematerialsusedinthisstudy

areshowninFig.4whiletheremainingmaterialpropertiesusedinthenumericalsimulationarelistedinTable2.

(17)

σ1 σ2 σ3

(18)

Table2Propertiesofothermaterialsusedinnumericalsimulation[51,57,58,67–69].

Materials Thermalconductivity,

Electricalconductivity,

Specificheat

capacity,

Density, Coefficientofthermalexpansion,

Ceramic 25 1e-12 800 3970 0.68e-5

Copper 385 5.9e7 386 8930 1.7e-5

Fig.4Temperaturedependentthermoelectricproperties[47]:(a)thermalconductivity,(b)electricalresistivity,(c)Seebeckcoefficient.

Solder 55 2e7 210 7240 2.7e-5

Bi2Te3 – – 154.4 7740 0.8e-5

0.8e-5

1.32e-5

CoSb3 – – 238.7 7582 6.36e-6

Inthisstudy,ceramicandthermoelectricmaterials(Bi2Te3andCoSb3)areconsideredtobebrittlematerials.Thus,theyieldstressofBi2Te3is112 MPa[58]andtheidealstrengthofCoSb3is14.1 GPa[67].Copperandwieldinglayer(solder)areconsideredtobe

elastoplasticmaterials.Therefore,theyieldstressandtangentialmodulusofcopper70 MPaand24 GParespectively.Whilethoseofsolderare26 MPaand8.9 GParespectivelytoo[51].

3.4BoundaryconditionsThebasicassumptionsmadeinthisnumericalsimulationtosimplifythemodelwithoutsignificantdeviationsfromtherealconditionare:

(a) Allothersurfacesexceptthehotandcoldsurfacesareadiabatic.

(b) Electricalcontactresistanceandthermalcontactresistanceareignored.

(c) Heatlossesduetoconvectionandradiationonallsurfacesareneglected.

(d) Theheatsource(hotsurface)andheatsink(coldsurface)areconsideredasthermalboundaryconditionswithfixedtemperaturevalues.

(e) Afixedconstraintboundaryconditionisappliedonthehotsurfaceofthethermoelectricgeneratorwhileallotherboundariesarefree.

(f) Nodifferenceinpropertiesasafunctionofpositionexist.

Thethermoelectricgenerators(SATEGandATEG)areassumedtobecooledbyaheatsinkwhichisconnectedtothecoldsurface.Afixedtemperaturevalueof298 Kisappliedtothecoldsurfacetocoolthegeneratorandthisvalueiskeptconstantthroughout

thestudy.Thiscanberepresentedas,

3.5ComputationprocedureCOMSOL5.3MultiphysicssoftwareisusedtoperformthefiniteelementanalysisandobtainthethermoelectricandmechanicalperformancedataoftheSATEGandATEGstudied.Thestudyiscarriedoutundersteady-stateconditionandtheelectricalcircuit

interfaceinCOMSOLisusedtodescribetheloadresistance .Azeroelectricpotentialisappliedatthecopperelectrodeonthecoldsurfacen-legwhileaterminalisconnectedtothecopperelectrodeonthecoldsurfacep-leg.Allthematerialsareconsideredaslinear

(15 (Kindlychangethisequation(15)to(19).))

RL

elasticmaterialsandtheirrespectivepropertiesarelistedinTable2.

Thethermoelectriccouplingequationscanbeusedtoobtain theheat input( ) to thehotsurfaceof the thermoelectricgenerators (SATEGandATEG).Theelectricalperformanceof the thermoelectricgenerator isdetermined from itsoutputpowerand

efficiency,whicharedefinedas[51],

where istheoutputpowerand isthecircuitelectriccurrent.

Thetotallegangleofthethermoelectricgeneratorcanbeexpressedas,

3.6ModelvalidationMeshconvergencetestisperformedforthenumericalmodelusingfiniteelementmethod.AstructuredmeshisgeneratedforthecomputationdomainusingCOMSOL’sbuilt-inmeshcomponentandasimulationmeshmethodemployedin[51]isemployedinthis

study.AlongthepathL1showninFigs.1band2a,severalcasesofdistributionofmeshelementsareapplied.Afixednumberofelementsisappliedalongthatpathandthenumberofelements(N)arevariedtotestthemeshconvergence.ItcanbeseenfromtheFig.5

thatthemeshconvergencesandtheresultsarealmostidenticaltherefore,N = 20isselectedinallsimulations(SATEGandATEG)toensureaccuracyandconvergence.

Inorder tovalidate themodelandnumerical simulationmethodsused in thisstudy, thesimulationwhichwasconductedby [52] isconsidered.Thesimulationsconditionsare reset inaccordance to theonesusedby theauthorsand thesamesimulation

Qin

(16) (Kindlychangethisequation(16)to(20))

(17) (Kindlychangethisequation(17)to(21))

Pout I

(18) (Kindlychangethisequation(18)to(22))

Fig.5MeshconvergencetestfortheSATEG’s(a)vonMisesstress(thermalanalysis)(b)voltage(thermoelectricanalysis).

parametersareused.Thethermalstresspredictionsfromthepresentstudyandpreviousstudy[52]areshowninFig.6.Itcanbeseenclearlythatbothresultsareveryidenticalthereforeresultsobtainedfromthispresentstudyarejustifiable.

4ResultsanddiscussionTheresultsobtainedfromthisstudyarepresentedinthesectionsbelowandanalysisoftheseresults isalsodone.TheinfluenceofseveralparametersonthethermoelectricandmechanicalperformanceofboththeSATEGandATEGareanalysedinthis

section.

4.1EffectofheatsourcetemperatureDuetothefactthattheinputheatflux( isdependentontheloadresistance,thereisavariationbetweentheoptimumloadresistanceformaximumoutputpowerandefficiencyfordifferentsegmentationcase[61].Therefore,tobetterobservetheeffectof

segmentationontheconversionefficiencywhichisthemostimportantperformanceindicatorconsideredinthisstudy,thecalculationsarecarriedoutataconstantloadresistancecondition.Sincetheheatsinktemperatureiskeptconstantthroughoutthisstudy,theeffect

oftheheatsourcetemperatureontheelectricalperformanceoftheSATEGandATEGcanbeseeninFig.7.IncreaseintemperaturedifferenceleadstoanincreaseintheefficiencyandoutputpoweroftheSATEGandATEG.Thisisanormalandexpectedphenomenon.

However,theadvantageoftheSATEGovertheBismuthtellurideATEGintermsofefficiencycanbeclearlysincewhenthetemperaturedifferencestartsincreasingfrom100 KasshowninFig.7a.ItisalsoobviousthattheSkutteruditeATEG’sefficiencyislowerthanthe

othertwoandtheSATEGisthebestperformingdeviceinalltemperatureranges.TheconversionefficiencyoftheSATEGis21.7%and82.9%greaterthanthatoftheBismuthtellurideATEGandSkutteruditeATEGrespectivelyatatemperaturedifferenceof200 Kas

showninFig.7a.Furthermore,Fig.7bprovesthepointthattheoptimumloadresistanceforefficiencyandoutputpoweraredifferent.ItcanbeseenthatalthoughtheSATEGhasthehighestefficiencyatthatloadresistance,itsoutputpowerisactuallylowerthanthatof

theBismuthtellurideATEG.However,theadvantageoftheSATEGisitsbetterperformanceoverahighertemperaturerangecomparedtothelimitedtemperaturerangeofBismuthtelluride.Therefore,theSATEGcanbeusedbeyondthemaximumtemperaturerangefor

Bismuthtelluride(498 K)thus,ithasahigherpotentialcomparedtotheothertwosingle-materialATEGforrecoveringwasteatalargetemperaturedifference.

Fig.6Validationofpresentnumericalsimulationwithpreviousstudy[52].

ThemechanicalperformanceoftheSATEGandATEGunderdifferentheatsourcetemperaturecanbeseenfromFig.8.ThefigureclearlyshowsthesignificanceofsegmentationasthemaximumvonMisesstressinthelegsoftheSATEGislowerthanthatin

theATEG.ItcanalsobeseenthattheheatsourcetemperatureandmaximumvonMisesstressinthelegsofboththeSATEGandATEGhavealinearrelationship.ThemaximumstresslevelinthelegsoftheBismuthtellurideATEGisbelowtheyieldstressofthe

materialevenatitsmaximumallowabletemperaturerange.However,theBismuthtelluridematerialintheSATEGwillfailthemechanicalstrengthtestoncethetemperaturedifferenceappliedontheSATEGisgreaterthan400 K.Atatemperaturedifferenceof200 K,the

maximumvonMisesstressinthelegsoftheBismuthtelluridematerialintheSATEGislowerby35.4%comparedtothatoftheBismuthtellurideATEG.Whileat500 Ktemperaturedifference,themaximumvonMisesstressinthelegsoftheSkutteruditematerialinthe

SATEGislowerby5.7%comparedtothatoftheSkutteruditeATEG.Therefore,SATEGhasabettermechanicalperformancecomparedtotheATEGasshowninFig.8.

Fig.7VariationofSATEGandATEG(a)efficiencyand(b)outputpowerwithtemperaturedifferencewhen , , and .L=2 θ1=6 θ2=2

4.2EffectofthermoelectricleglengthTheeffectofthermoelectricleglengthontheelectricalperformanceofBismuthtellurideATEG,SkutteruditeATEGandSATEGcanbeseeninFigs.9–11respectively.Itcanbeseenthattheefficiencyandoutputpowerforeachofthedevicesfollowthesame

trend.Thelengthofthethermoelectricleghasasignificantinfluenceontheperformanceanditisfoundthatshortthermoelectricleglengthprovidesbetterelectricalperformancethanlongerthermoelectricleglength.FromFig.9a,itcanbeseenthattheefficiencyofthe

deviceusingtheshortestleglength( )consideredinthisstudyis35.7%greaterthanthatofthedeviceusingthelongestleglength( )consideredinthisstudy.Similarly,theoutputpowerwhen is73.1%greaterthantheoutputpowerwhen asshownin

Fig.9b.Thisshowshowsignificanttheinfluenceoftheleglengthisontheelectricalperformance.InthecaseoftheSkutteruditeATEG,theinfluenceoftheleglengthoverthedeviceefficiencyisnotthatobvious(Fig.10a)unlikewhenitsoutputpowerisconsideredas

showninFig.10b.TheoutputpoweroftheSkutteruditeATEGwhen is59.4%greaterthanitsoutputpowerwhen asseeninFig.10b.ThesametrendisobservedinFig.11aandbfortheefficiencyandoutputpoweroftheSATEG.Inaddition,anefficiencyand

outputpowerenhancementof45.3%and79.1%respectivelyisobservedwhentheSATEGthermoelectricleglengthisreducedfrom to .

Fig.8VariationofmaximumvonMisesstressinlegsofSATEGandATEGwithtemperaturedifferencewhen , and .L=2 θ1=6 θ2=2

L=2 L=5 L=2 L=5

L=2 L=5

L=5 L=2

Fig.9VariationofBismuthtellurideATEGleglengthwith(a)Efficiencyand(b)Outputpowerwhen , ,and .θ1=3 θ2=3

Fig.10VariationofSkutteruditeATEGleglengthwith(a)Efficiencyand(b)Outputpowerwhen , ,and .θ1=3 θ2=3

TheeffectofthethermoelectricleglengthonthemechanicalperformanceofthethermoelectricdevicesisshowninFigs.12and13.IncreaseinthermoelectricleglengthhasapositiveeffectonthevonMisesstressdevelopedintheleg.AsshowninFig.12,the

lowestvonMisesstressisobservedwhentheleglengthishigh( )forboththeSATEGandATEG.ThemaximumvonMisesstressintheBismuthtelluridematerialisreducedby20.4%and7.9%fortheATEGandSATEGrespectivelywhenthethermoelectricleg

lengthis increasedfrom to .Thisshows that increasing the thermoelectric leg lengthcan improve themechanical reliabilitybut reduce theelectricalperformanceof the thermoelectricdevicesand this finding is inagreementwith [51].Theadvantageof

segmentationcanalsobeseenfromFig.12asthemaximumvonMisesstressintheBismuthtelluridematerialoftheSATEGislowerthanthatoftheATEGforallleglength.Inaddition,Fig.13alsoshowstheeffectofleglengthonthemechanicalperformanceofthe

SATEGandATEG.However,thetrendobservedisslightlydifferentduetothedifferenceinthematerialanditsmechanicalproperties.ItcanbeseenfromFig.13thatthethermoelectricleglengthof providesthelowestvonMisesstressinthelegsoftheSkutterudite

materialoftheSATEG.

Fig.11VariationofSATEGleglengthwith(a)Efficiencyand(b)Outputpowerwhen , ,and .θ1=3 θ2=3

L=5

L=2 L=5

L=4

4.3EffectofthermoelectriclegangleTheeffectofthethermoelectriclegangleontheefficiencyandoutputpoweroftheSATEGisshowninFig.14aandbrespectively.Itcanbeseenfrombothfiguresthattheefficiencyandoutputpowerdecreaseswhen increases.Thisimpliesthatasmallangle

betweentheSATEGthermoelectriclegs(n-typeandp-type)canenhancetheefficiencyandoutputpowerofthedevice.Also,itcanbeseenthatshortthermoelectriclegsprovidethebestperformanceintermsofefficiencyandoutputpower.Fig.14aandbshowthatthe

optimumgeometryoftheSATEGformaximumelectricalperformanceiswhen , and .ItcanbeseenfromFig.14aandbthatatoptimumlength( ),anefficiencyandoutputpowerenhancementof17.8%and55.5%canbeachievedrespectivelyjust

byreducingtheanglebetweenthethermoelectriclegsfrom to .

Fig.12EffectofBismuthtelluridethermoelectricleglengthinSATEGandATEGwhen and .θ1=6 θ2=2

Fig.13EffectofSkutteruditethermoelectricleglengthinSATEGandATEGwhen and .θ1=6 θ2=2

θ2

L=2 θ2=2 θ=8 L=2

θ2=5 θ2=2

Theeffectof the leg lengthon themaximumvonMisesstress in theBismuth telluridematerialof theSATEGcanbeseen inFig.15a.Forall the thermoelectric leg lengthsconsidered, themaximumvonMisesstressdecreasesas theanglebetween the

thermoelectriclegsincreasesfrom to .ThisshowsthattheelectricalandmechanicalperformanceoftheSATEGhaveaninverserelationshipwhenleglengthand/orlegangleisbeingvaried.Therefore,anoptimumgeometrymustbeobtainedwhichwill

satisfyboththeelectricalrequirementandmechanicalreliabilityoftheSATEG.Inaddition,Fig.15ashowsthatatoptimummechanicalreliabilitylength( ),athermalstressdecreaseof5.67%canbeachievedjustbyincreasingtheanglebetweenthethermoelectric

legsfrom to .Fig.15bshowstheeffectoflegangleonthemaximumvonMisesstresspresentintheSkutteruditematerialoftheSATEG.Thetrendobservedinthiscase(Fig.15b)isoppositetothatinFig.15a.Thisimpliesthatwhileanincreaseintheangle

betweenthethermoelectriclegsfrom to leadstoadecreaseinthemaximumvonMisesstresspresentintheBismuthtelluridematerial(coldsegment)oftheSATEG,anoppositeeffectiscreatedintheSkutteruditematerial(hotsegment).Therefore,theleg

angleandleglengthofthesegmentedannularthermoelectricgeneratormustbecarefullychosentosatisfylowstressrequirementsinbothsegmentsofthedevice.

Fig.14VariationofleganglewithSATEG(a)efficiencyand(b)outputpowerwhen , and .θ=8 Th=623K RL=0.001

θ2=2 θ2=5

L=5

θ2=2 θ2=5

θ2=2 θ2=5

4.4SATEGvonMisesstressnephogramThevonMisesstressnephograminthecoldandhotsegmentofthesegmentedannularthermoelectricgeneratorcanbeseeninFigs.16and17respectively.ItcanbeseenclearlythatthemaximumvonMisesstressoccursatthehotsurfaceofthethermoelectric

legswhichisindirectcontactwiththesolder.ItcanalsobeseenthatthemaximumvonMisesstressoccurattheedgeofthethermoelectriclegsthus,thatregioncaneasilybreakoff.Thermalstressintensityisaveryimportantfactorthatinfluencesthelifecycleofa

thermoelectricgenerator.Sincethemechanicalmaterialproperties(e.g.Young’smodulus,Coefficientofthermalexpansion)ofeachofthecomponentsintheTEGaredifferent,thermalstresswillbegeneratedwheneveralargetemperaturegradientisapplied.Asseen

fromFigs.16and17,thepositionsthataremostlikelytocrackarethecontactareasbetweenthehotsurfaceofthethermoelectriclegsandthesolderstrips,andtheedgesofthelegs.ItshouldbenotedthatthestressvaluesshowninFigs.16and17areobtainedwhile

consideringtheelastoplasticcharacteristicsofthecopperandsoldermaterials.Ifthisisnotconsidered,themaximumvonMisesstressinthelegswillbehigher.

Fig.15VariationofleganglewithmaximumvonMisesstressin(a)Bismuthtellurideand(b)SkutteruditematerialsoftheSATEGwhen and .θ=8

Fig.16NephogramofthevonMisesstressinBismuthtelluridematerialoftheSATEGwhen , , ,(a) ,(b) ,(c) and(d) .L=2 Th=623K θ2=3 θ1=3 θ1=5 θ1=7 θ1=9

5ConclusionIn this study, the thermoelectric andmechanical performance of a segmented annular thermoelectric generator has been investigated using finite element analysis. The influence of segmented pin geometry on the performance of annular thermoelectric

generatorshasbeenstudiedindetailandacomparisonbetweenthesegmentedannularthermoelectricgeneratorandnon-segmentedannularthermoelectricgeneratorshasbeenmade.COMSOL5.3Multiphysicssoftwarewasusedtoperformthenumericalsimulations

andtemperaturedependentthermoelectricmaterialpropertieswereconsidered.Bismuthtelluride(Bi2Te3)materialwithamaximumoperatingtemperatureof498 KandCoSb3basedSkutteruditematerialwithamaximumoperatingtemperatureof798 Kwereusedasthecoldandhotsegmentmaterialsrespectively. Inaddition, theelastoplasticbehaviourofcopperandthewelding layer(solder)wereaccount for in thesimulationstoensureaccuratepredictionsof thethermalstressdeveloped in thethermoelectricgenerators.All the

geometriesof theSATEGandATEGanalysedcorresponding to thedifferent leg lengthand legangleconsideredweredrawnwithAutoCAD2018softwareand theywere individually imported intoCOMSOLfor thenumericalsimulations.Theeffectsofheatsource

temperature,thermoelectricleglengthandleganglewereinvestigatedandtheresultingnephogramfromthethermalstresssimulationoftheSATEGwasprovidedforvisualrepresentationofthemaximumvonMisesstresslocations.Someoftheimportantconclusions

fromthisresearchare:

1. TheadvantageoftheSATEGovertheBismuthtellurideATEGintermsofefficiencybecomesclearwhenthetemperaturedifferenceisgreaterthan100 K.

2. TheefficiencyoftheSATEGis21.7%and82.9%greaterthantheefficiencyoftheBismuthtellurideATEGandSkutteruditeATEGrespectivelyat200 Ktemperaturedifference.

3. ThemaximumvonMisesstressinthelegsoftheBismuthtelluridematerialintheSATEGis35.4%lowerthanthatoftheBismuthtellurideATEGat200 Ktemperaturedifference.

4. Efficiencyandoutputpowerenhancementof45.3%and79.1%respectivelywereobservedwhentheSATEGleglengthwasreducedfrom to .Therefore,shorterthermoelectriclegsprovidebetterelectricalperformance.

5. Increaseinthermoelectricleglengthleadstodecreaseinthermalstressandanincreaseinelectricalperformance.Therefore,increasingthermoelectricleglengthcanimprovethemechanicalreliabilitybutreducetheelectricalperformanceofthethermoelectricgenerator.

Fig.17NephogramofthevonMisesstressinSkutteruditematerialoftheSATEGwhen , , ,(a) ,(b) ,(c) and(d) .L=2 Th=623K θ2=3 θ1=3 θ1=5 θ1=7 θ1=9

L=5 L=2

6. TheoptimumgeometryformaximumelectricalperformanceoftheSATEGstudiediswhen , and .Thisgeometryprovidesthebestelectricalperformanceforthesystem.

7. TheMaximumvonMisesstressintheSATEGdecreasesastheanglebetweenthethermoelectriclegsincreasesfrom to forallleglengthsconsidered.

8. Thepositionsmostlikelytocrackarethecontactareasbetweenthehotsurfaceofthethermoelectriclegsandthesolderstrips,andtheedgesofthelegs.

ConflictofinterestNone.

AcknowledgementThisstudywassponsoredbytheProjectofEUMarieCurieInternationalincomingFellowshipsProgram(745614).TheauthorswouldalsoliketoexpressourappreciationforthefinancialsupportsfromEPSRC(EP/R004684/1)and InnovateUK

(TSB70507-481546)fortheNewtonFund–China-UKResearchandInnovationBridgesCompetition2015Project‘AHighEfficiency,LowCostandBuildingIntegrate-ableSolarPhotovoltaic/Thermal(PV/T)systemforSpaceHeating,HotWaterand

PowerSupply’andDongGuanInnovationResearchTeamProgram(No.2014607101008).

References[1]O.Ellabban,H.Abu-RubandF.Blaabjerg,Renewableenergyresources:currentstatus,futureprospectsandtheirenablingtechnology,RenewSustainEnergyRev39,2014,748–764.

[2]N.L.Panwar,S.C.KaushikandS.Kothari,Roleofrenewableenergysourcesinenvironmentalprotection:areview,RenewSustainEnergyRev15,2011,1513–1524.

[3]K.H.Solangi,M.R.Islam,R.Saidur,N.A.RahimandH.Fayaz,Areviewonglobalsolarenergypolicy,RenewSustainEnergyRev15,2011,2149–2163.

[4]J.Yang,Potentialapplicationsofthermoelectricwasteheatrecoveryintheautomotiveindustry,IntConfThermoelectrICTProc2005,2005,155–159.

[5]K.M.Saqr,M.K.MansourandM.N.Musa,Patientexpectationsforhealthsupervisionadviceincontinuityclinic:experiencefromateachinghospitalinThailand,IntJAutomotTechnol9,2008,155–160.

[6]D.M.Rowe,Thermoelectrics,anenvironmentally-friendlysourceofelectricalpower,RenewEnergy16,1999,1251–1256.

[7]Y.Y.Hsiao,W.C.ChangandS.L.Chen,Amathematicmodelofthermoelectricmodulewithapplicationsonwasteheatrecoveryfromautomobileengine,Energy35,2010,1447–1454.

[8]G.Shu,X.Ma,H.Tian,H.Yang,T.ChenandX.Li,Configurationoptimizationofthesegmentedmodulesinanexhaust-basedthermoelectricgeneratorforenginewasteheatrecovery,Energy160,2018,612–624.

[9]L.Francioso,C.DePascali,I.Farella,C.Martucci,P.Cretì,P.Siciliano,etal.,Flexiblethermoelectricgeneratorforwearablebiometricsensors,ProcIEEESensors196,2010,747–750.

[10]S.J.Kim,J.H.WeandB.J.Cho,Awearablethermoelectricgeneratorfabricatedonaglassfabric,EnergyEnvironSci7,2014,1959–1965.

[11]F.Suarez,D.P.Parekh,C.Ladd,D.Vashaee,M.D.DickeyandM.C.Öztürk,Flexiblethermoelectricgeneratorusingbulklegsandliquidmetalinterconnectsforwearableelectronics,ApplEnergy202,2017,736–745.

[12]S.Qing,A.Rezania,L.A.RosendahlandX.Gou,Designofflexiblethermoelectricgeneratorashumanbodysensor,MaterTodayProc5,2018,10338–10346.

[13]R.AmatyaandR.J.Ram,Solarthermoelectricgeneratorformicropowerapplications,JElectronMater39,2010,1735–1740.

[14]D.Madan,Z.Wang,P.K.WrightandJ.W.Evans,Printedflexiblethermoelectricgeneratorsforuseonlowlevelsofwasteheat,ApplEnergy156,2015,587–592.

[15]P.PichanusakornandP.Bandaru,Nanostructuredthermoelectrics,MaterSciEngRRep67,2010,19–63.

[16]W.He,G.Zhang,X.Zhang,J.Ji,G.LiandX.Zhao,Recentdevelopmentandapplicationofthermoelectricgeneratorandcooler,ApplEnergy143,2015,1–25.

[17]S.B.RiffatandX.Ma,Thermoelectrics:areviewofpresentandpotentialapplications,ApplThermEng23,2003,913–935.

[18]G.Li,S.Shittu,T.M.O.Diallo,M.Yu,X.ZhaoandJ.Ji,Areviewofsolarphotovoltaic-thermoelectrichybridsystemforelectricitygeneration,Energy158,2018,41–58.

L=2 θ2=2 θ=8

θ2=2 θ2=5

[19]D.Champier,Thermoelectricgenerators:areviewofapplications,EnergyConversManage140,2017,167–181.

[20]J.Xiao,T.Yang,P.Li,P.ZhaiandQ.Zhang,Thermaldesignandmanagementforperformanceoptimizationofsolarthermoelectricgenerator,ApplEnergy93,2012,33–38.

[21]G.J.Snyder,Applicationofthecompatibilityfactortothedesignofsegmentedandcascadedthermoelectricgenerators,ApplPhysLett84,2004,2436–2438.

[22]M.HamidElsheikh,D.A.Shnawah,M.F.M.Sabri,S.B.M.Said,M.HajiHassan,M.B.AliBashir,etal.,Areviewonthermoelectricrenewableenergy:principleparametersthataffecttheirperformance,RenewSustainEnergyRev30,2014,337–355.

[23]SO.Designoptimizationofthermoelectricdevicesforsolarpowergeneration.pdf.SolEnergyMaterSolCells11998;53:67–82. (Kindlycorrectthiscitationtobe:S.A.Omer,D.G.Infield,Designoptimizationofthermoelectricdevicesforsolarpowergeneration,SolEnergyMaterSolCells53,1998,67-82.)

[24]S.Shittu,G.Li,X.ZhaoandX.Ma,SeriesofdetailcomparisonandoptimizationofthermoelectricelementgeometryconsideringthePVeffect,RenewEnergy2018. (Kindlycorrectthiscitationtobe:S.Shittu,G.Li,X.Zhao,X.Ma,SeriesofdetailcomparisonandoptimizationofthermoelectricelementgeometryconsideringthePVeffect,RenewEnergy130,2019,930–42.)

[25]G.Li,X.Zhao,Y.Jin,X.Chen,J.JiandS.Shittu,PerformanceAnalysisandDiscussionontheThermoelectricElementFootprintforPV–TEMaximumPowerGeneration,JElectronMater47,2018,5344–5351.

[26]G.Li,X.ZhaoandJ.Ji,Conceptualdevelopmentofanovelphotovoltaic-thermoelectricsystemandpreliminaryeconomicanalysis,EnergyConversManage126,2016,935–943.

[27]G.Li,K.Zhou,Z.Song,X.ZhaoandJ.Ji,Inconsistentphenomenonofthermoelectricloadresistanceforphotovoltaic–thermoelectricmodule,EnergyConversManage161,2018,155–161.

[28]G.Li,X.ChenandY.Jin,Analysisoftheprimaryconstraintconditionsofanefficientphotovoltaic-thermoelectrichybridsystem,Energies10,2017,1–12.

[29]G.Li,G.Zhang,W.He,J.Ji,S.Lv,X.Chen,etal.,Performanceanalysisonasolarconcentratingthermoelectricgeneratorusingthemicro-channelheatpipearray,EnergyConversManage112,2016,191–198.

[30]W.He,Y.Su,Y.Q.Wang,S.B.RiffatandJ.Ji,Astudyonincorporationofthermoelectricmoduleswithevacuated-tubeheat-pipesolarcollectors,RenewEnergy37,2012,142–149.

[31]G.Li,W.Feng,Y.Jin,X.ChenandJ.Ji,Discussiononthesolarconcentratingthermoelectricgenerationusingmicro-channelheatpipearray,HeatMassTransf53,2017,3249–3256.

[32]G.Li,J.Ji,G.Zhang,W.He,X.ChenandH.Chen,Performanceanalysisonanovelmicro-channelheatpipeevacuatedtubesolarcollector-incorporatedthermoelectricgeneration,IntJEnergyRes40,2016,2117–2127.

[33]C.Hadjistassou,E.KyriakidesandJ.Georgiou,Designinghighefficiencysegmentedthermoelectricgenerators,EnergyConversManage66,2013,165–172.

[34]H.S.Kim,K.Kikuchi,T.Itoh,T.IidaandM.Taya,Designofsegmentedthermoelectricgeneratorbasedoncost-effectiveandlight-weightthermoelectricalloys,MaterSciEngBSolid-StateMaterAdvTechnol185,2014,45–52.

[35]G.Zhang,L.Fan,Z.Niu,K.Jiao,H.Diao,Q.Du,etal.,Acomprehensivedesignmethodforsegmentedthermoelectricgenerator,EnergyConversManage106,2015,510–519.

[36]H.Ali,B.S.YilbasandF.A.Al-Sulaiman,Segmentedthermoelectricgenerator:influenceofpinshapeconfigurationonthedeviceperformance,Energy111,2016,439–452.

[37]H.Ali,B.S.YilbasandA.Al-Sharafi,Innovativedesignofathermoelectricgeneratorwithextendedandsegmentedpinconfigurations,ApplEnergy187,2017,367–379.

[38]H.AliandB.S.Yilbas,Innovativedesignofathermoelectricgeneratorofextendedlegswithtaperingandsegmentedpinconfiguration:thermalperformanceanalysis,ApplThermEng123,2017,74–91.

[39]H.-B.Liu,J.-H.Meng,X.-D.WangandW.-H.Chen,Anewdesignofsolarthermoelectricgeneratorwithcombinationofsegmentedmaterialsandasymmetricallegs,EnergyConversManage175,2018,11–20.

[40]Y.Ge,Z.Liu,H.SunandW.Liu,Optimaldesignofasegmentedthermoelectricgeneratorbasedonthree-dimensionalnumericalsimulationandmulti-objectivegeneticalgorithm,Energy147,2018,1060–1069.

[41]Z.OuyangandD.Li,Designofsegmentedhigh-performancethermoelectricgeneratorswithcostinconsideration,ApplEnergy221,2018,112–121.

[42]G.MinandD.M.Rowe,Ring-structuredthermoelectricmodule,SemicondSciTechnol22,2007,880–883.

[43]A.Bauknecht,T.Steinert,C.SpenglerandG.Suck,Analysisofannularthermoelectriccoupleswithnonuniformtemperaturedistributionbymeansof3-Dmultiphysicssimulation,JElectronMater42,2013,1641–1646.

[44]Z.G.Shen,S.Y.WuandL.Xiao,Theoreticalanalysisontheperformanceofannularthermoelectriccouple,EnergyConversManage89,2015,244–250.

[45]S.C.KaushikandS.Manikandan,TheinfluenceofThomsoneffectintheenergyandexergyefficiencyofanannularthermoelectricgenerator,EnergyConversManage103,2015,200–207.

[46]S.ManikandanandS.C.Kaushik,Energyandexergyanalysisofsolarheatpipebasedannularthermoelectricgeneratorsystem,SolEnergy135,2016,569–577.

[47]Z.-G.Shen,X.Liu,S.Chen,S.-Y.Wu,L.XiaoandZ.-X.Chen,Theoreticalanalysisonasegmentedannularthermoelectricgenerator,Energy157,2018,297–313.

[48]S.Asaadi,S.KhalilaryaandS.Jafarmadar,Numericalstudyonthethermalandelectricalperformanceofanannularthermoelectricgeneratorunderpulsedheatpowerwithdifferenttypesofinputfunctions,EnergyConversManage167,2018,102–112

[49]A.B.Zhang,B.L.Wang,D.D.Pang,J.B.Chen,J.WangandJ.K.Du,Influenceofleggeometryconfigurationandcontactresistanceontheperformanceofannularthermoelectricgenerators,EnergyConversManage166,2018,337–342.

[50]A.B.Zhang,B.L.Wang,D.D.Pang,L.W.He,J.Lou,J.Wang,etal.,Effectsofinterfacelayersontheperformanceofannularthermoelectricgenerators,Energy147,2018,612–620.

[51]S.FanandY.Gao,Numericalsimulationonthermoelectricandmechanicalperformanceofannularthermoelectricgenerator,Energy150,2018,38–48.

[52]B.S.Yilbas,S.S.AkhtarandA.Z.Sahin,Thermalandstressanalysesinthermoelectricgeneratorwithtaperedandrectangularpinconfigurations,Energy114,2016,52–63.

[53]T.Clin,S.Turenne,D.VasilevskiyandR.A.Masut,Numericalsimulationofthethermomechanicalbehaviorofextrudedbismuthtelluridealloymodule,JElectronMater38,2009,994–1001.

[54]Y.Mu,G.Chen,R.Yu,G.Li,P.ZhaiandP.Li,EffectofgeometricdimensionsonthermoelectricandmechanicalperformanceforMg2Si-basedthermoelectricunicouple,MaterSciSemicondProcess17,2014,21–26.

[55]L.BakhtiaryfardandY.S.Chen,Designandanalysisofathermoelectricmoduletoimprovetheoperationallife,AdvMechEng7,2015,1–22.

[56]S.Turenne,T.Clin,D.VasilevskiyandR.A.Masut,Finiteelementthermomechanicalmodelingoflargeareathermoelectricgeneratorsbasedonbismuthtelluridealloys,JElectronMater39,2010,1926–1933.

[57]J.-L.Gao,Q.-G.Du,X.-D.ZhangandX.-Q.Jiang,ThermalstressanalysisandstructureparameterselectionforaBi2Te3-basedthermoelectricmodule,JElectronMater40,2011,884–888.

[58]A.S.Al-Merbati,B.S.YilbasandA.Z.Sahin,Thermodynamicsandthermalstressanalysisofthermoelectricpowergenerator:influenceofpingeometryondeviceperformance,ApplThermEng50,2013,683–692.

[59]Y.Wu,T.Ming,X.Li,T.Pan,K.PengandX.Luo,Numericalsimulationsonthetemperaturegradientandthermalstressofathermoelectricpowergenerator,EnergyConversManage88,2014,915–927.

[60]U.Erturun,K.ErermisandK.Mossi,Effectofvariousleggeometriesonthermo-mechanicalandpowergenerationperformanceofthermoelectricdevices,ApplThermEng73,2014,126–139.

[61]X.JiaandY.Gao,Estimationofthermoelectricandmechanicalperformancesofsegmentedthermoelectricgeneratorsunderoptimaloperatingconditions,ApplThermEng73,2014,333–340.

[62]T.Ming,W.Yang,Y.Wu,Y.Xiang,X.Huang,J.Cheng,etal.,Numericalanalysisonthethermalbehaviorofasegmentedthermoelectricgenerator,IntJHydrogenEnergy42,2017,3521–3535.

[63]T.Ming,Y.Wu,C.PengandY.Tao,Thermalanalysisonasegmentedthermoelectricgenerator,Energy80,2015,388–399.

[64]Y.Zhang,M.Cleary,X.Wang,N.Kempf,L.Schoensee,J.Yang,etal.,High-temperatureandhigh-power-densitynanostructuredthermoelectricgeneratorforautomotivewasteheatrecovery,EnergyConversManage105,2015,946–950.

[65]AntonovaEE,LoomanDC.FiniteelementsforthermoelectricdeviceanalysisinANSYS.ICT2005.24thIinternationalConf.Thermoelectr.,2005,p.200–3.

[66]N.Z.I.M.Sallehin,N.M.YatimandS.Suhaimi,Areviewonfabricationmethodsforsegmentedthermoelectricstructure,AIPConfProc1972,2018,30003.

[67]G.Li,Q.An,W.Li,W.A.Goddard,P.Zhai,Q.Zhang,etal.,BrittlefailuremechanisminthermoelectricskutteruditeCoSb3,ChemMater27,2015,6329–6336.

[68]X.Yang,P.Zhai,L.LiuandQ.Zhang,ThermodynamicandmechanicalpropertiesofcrystallineCoSb(3):amoleculardynamicssimulationstudy,JApplPhys109,2011,123517/1-123517/6.

[69]T.Caillat,A.BorshchevskyandJ.P.Fleurial,PropertiesofsinglecrystallinesemiconductingCoSb3,JApplPhys80,1996,4442–4449.

Highlights

• Asegmentedannularthermoelectricgenerator(SATEG)isstudiednumerically.

• ThethermoelectricandmechanicalperformanceofSATEGisinvestigated.

QueriesandAnswersQuery:Yourarticleisregisteredasaregularitemandisbeingprocessedforinclusioninaregularissueofthejournal.IfthisisNOTcorrectandyourarticlebelongstoaSpecialIssue/Collectionpleasecontact

J.Shanmugam@elsevier.comimmediatelypriortoreturningyourcorrections.

Answer:Yes

Query:Theauthornameshavebeentaggedasgivennamesandsurnames(surnamesarehighlightedintealcolor).Pleaseconfirmiftheyhavebeenidentifiedcorrectly.

Answer:Yes

Query:Pleasenotethatequationswerenotsequentiallycitedinthetext.Pleasecheck,andcorrectifnecessary.

Answer:Thisiscorrectasitis.

Query:Havewecorrectlyinterpretedthefollowingfundingsource(s)andcountrynamesyoucitedinyourarticle:EPSRC,UnitedKingdom?InnovateUK,UnitedKingdom?/

Answer:Yes

• ComparisonbetweenSATEGandannularthermoelectricgenerator(ATEG)ispresented.

• TheeffectofthermoelectricgeometryonSATEGandATEGperformanceisstudied.