59
下下 下下 11 11 下 下下下下下下下下下下下 下 下下下下下下下下下下下 11.1 下下下下下下下下下下下下 11.2 下下下下下下下下下 11.3 下下下下下下下 11.4 下下下下下下 下下下下下下 11.5 下下下下下下 11.6 下下下下下下下下下下下下下 11.7 下下下下下下 11.8 下下下下下下下 Multisim 下下

第 11 章 集成运算放大器及其应用

Embed Size (px)

DESCRIPTION

第 11 章 集成运算放大器及其应用. 11.1 集成运算放大器的基本概念. 11.2 运算放大器中的反馈. 11.3 信号的运算电路. 11.4 信号处理电路. 11.5 信号产生电路. 11.6 集成运放应用中注意几个问题. 11.7 工程应用举例. 11.8 集成运放电路的 Multisim 仿真. 11.1.1 集成电路的概念. - PowerPoint PPT Presentation

Citation preview

Page 1: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

第第 1111 章 集成运算放大器及其应用章 集成运算放大器及其应用

11.1 集成运算放大器的基本概念 11.2 运算放大器中的反馈

11.3 信号的运算电路11.4 信号处理电路信号处理电路

11.5 信号产生电路 11.6 集成运放应用中注意几个问题

11.7 工程应用举例 11.8 集成运放电路的 Multisim 仿真

Page 2: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.1.111.1.1 集成电路的概念

集成电路:( integrated circuit )是采用半导体制作工艺 ( 氧化、光刻、扩散、外延、蒸铝等 ) ,把整个电路中的晶体管、电阻、电容、导线等集中制作在一小块半导体(硅)基片上,组成一个完整的不可分割的电子电路整体。它具有元件密度高、体积小、重量轻、成本低等诸多优点,而且实现了元件电路和系统的结合,使外部引线数目大大减少,极大地提高了电路的可靠性和稳定性。常用字母“ IC” 表示。

集成电路的种类很多,通常按照功能、集成度、导电类型进行分类。

Page 3: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.1.111.1.1 集成电路介绍

1. 按功能分类:集成电路可分为模拟集成电路和数字集成电路两大类。

2. 按集成度大小分类:集成电路可分为小规模集成电路( SSI )、中规模集成电路( MSI )、大规模集成电路

( LSI )和超大规模集成电( VLSI )。

3. 按导电类型分类:集成电路可分为双极型和单极型及兼容型三种。双极型的制作工艺复杂,功耗较大,例 TTL 、 ECL 、 HTL 、 LST-TL 、 STTL 等类型。单极型的制作工艺简单,功耗也较低,易于制成大规模集成电路,例 CMOS 、 NMOS 、 PMOS 等类型。

Page 4: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.1.2 11.1.2 集成运算放大器概述

集成运算放大器:(简称:集成运放)是 20 世纪 60年代初研发的模拟集成电路众多品种中应用最为广泛的代表之一,运算放大器本质上是一种具有高电压增益、高输入电阻、低输出电阻(带负载能力强)和深度负反馈的多级直接耦合放大电路。按其特性常分为通用型和专用型。各种运放的外形示意图 如下所示。

Page 5: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.1.2 11.1.2 集成运算放大器

集成运放的主要应用:

⑴ 信号运算电路:主要有比例、加、减、积分、微 分、对数、指数等功能。

⑵ 信号处理电路:有源滤波器、电压比较器、采样— 保持电路、精密整流电路等。

⑶ 波形产生电路:产生正弦波、方波、锯齿波等波形

的电路。

Page 6: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

1. 集成运放的组成

11.1.3 11.1.3 集成运放的基本组成及指标集成运放的基本组成及指标

输入级

中间级

输出级

电流源电路

idu0u

i1u

i2u

2. 集成运放的电路符号

-

+

2iu

i1u

0uud0A

-

+0u

i1u

i2u

ud0A

Page 7: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.1.3 11.1.3 集成运放的基本组成及指标集成运放的基本组成及指标

1. )开环差模电压增益 Audo

运放不接反馈电路时的差模电压放大倍数。该 参数愈高,其运算电路越稳定,精度也越高。

2. )最大输出电压 Uomax

使输出和输入保持不失真关系的最大输出电压。

3. )最大输出电流 Iomax

在额定电源电压下,达到最大输出电压时所输出的最大电流。

3. 集成运放的参数

Page 8: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

5. ) 共模抑制比 KCMRR

主要由运放输入级差分电路决定,其值越大越好。

4. )输入失调电压 UIO

和输入失调电流 IIO

以及 输入偏置电流 IIB

愈小愈好愈小愈好

3. 集成运放的参数

6. ) 差模输入电阻 Rid

它反映运放对信号源的利用率,其值越大越好。 7. ) 输出电阻 Ro

它反映运放带负载的能力,其值越小越好。

Page 9: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.1.4 11.1.4 集成运放的传输特性集成运放的传输特性

线性区

V0u

mVidu

OHU

4.0 2.0

3.0 1.0 1.0 2.0 3.0 4.0

OLU

0

集成运放的正向电压传输特性 uo= f (ui)

1. 线性区:uo = Audo(u+– u–)

2.非线性区 (饱和区 ) :u+> u– 时, uo = +UOH

u+< u– 时, uo = – UOL 图 11-5 a)

Page 10: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.1.5 11.1.5 理想运放和虚断、虚短的概念理想运放和虚断、虚短的概念

1. 在分析运算放大器的电路时,一般将运放看成是理想的器件。运放理想化的要条件:

1. )开环电压放大倍数 oudA

idR

0o R

2. )开环输入电阻

3. )开环输出电阻

CMRRK4. )共模抑制比

Page 11: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

2. 理想运放的电压传输特性及分析的重要依据:虚断、虚短。

因为:

(1) 差模输入电压约等于 0

即 u+= u– , 称“虚短” (2) 输入电流约等于 0

即 i+= i– 0 , 称“虚断”

注意: Audo越大,运放的线性范围越小,必需加 负反馈才能使其工作在线性区。

11.1.5 11.1.5 理想运放和虚断、虚短的概念理想运放和虚断、虚短的概念

idRoudA正向饱合区

负向饱合区O

idu

ou

OHU

OLU

图 11-6 a)

所以:

Page 12: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

I

11.2 11.2 运算放大器中的反馈运算放大器中的反馈

11.2.1 11.2.1 反馈的基本概念反馈的基本概念

1.1. 反馈:反馈:将放大电路输出端的信号将放大电路输出端的信号 (( 电压或电流电压或电流 ))的的 一部分或全部通过某种电路引回到输入端。一部分或全部通过某种电路引回到输入端。2.2. 反馈的正、负:反馈的正、负:若若反馈信号削弱了净输入信号 ,电路为负反馈;反馈信号增强了净输入信号,则为正反馈。

3.3. 直流反馈和交流反馈:直流反馈和交流反馈:反馈环路内直流信号可以流通,则产生直流反馈;反馈环路内交流信号可以流通,则产生交流反馈;若反馈环路内直流信号和交流信号均可以流通,则既有直流反馈又有交流。

Page 13: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.2.2 11.2.2 交流负反馈的类型交流负反馈的类型

负反馈放大器的原理框图如下:1. 深度负反馈的概念

净输入

反馈量

输出量输入量 基本放大电路

反馈网络

A

F

IX fXidX 0X

id

0

X

XA

称开环电压放大倍数

0

f

X

XF

称反馈系数

i

0f X

XA

称闭环电压放大倍数

图 11-7

Page 14: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

ididfidi XAFXXXX ∵ 是负反馈,即

∴AF

A

X

XA

1i

0f

11.2.2 11.2.2 交流负反馈的类型交流负反馈的类型

1. 深度负反馈的概念

FA 1在该式中

是衡量反馈程度的一个重要指标,称为反馈深度。

11 FA ,称之为深度负反馈。 当

Page 15: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

2.电压反馈和电流反馈

11.2.2 11.2.2 交流负反馈的类型交流负反馈的类型

按电路结构判定:在交流通路中,若放大器的输出端和反馈网络的取样端处在放大器输出端的同一个电极上(指规定的正方向),则为电压反馈(即取样信号为电压 );否则是电流反馈。

3.串联反馈和并联反馈判定方法:对于交变分量而言,若输入信号和反馈网络的反馈信号接于放大器输入端的同一个电极上 , 则为并联反馈;否则为串联反馈。

Page 16: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.2.3 11.2.3 反馈极性的判定反馈极性的判定—瞬时极性法—瞬时极性法如图 11-8 电路所示:要判断反馈的正、负

-+

-+

0u

1R

4R

3R

2R

5R

6R

iu

fu

1A2A

1.先看本级反馈以运放 A1 为例:设输入端瞬时极性为 (+),

则其输出端瞬时极性为 (-),

该瞬时极性形成的电位差,将使 A1 的反相输入端有较大的分流经过 R3 流向 A1 的输出端,

因此此导致 A1 的净输入电流减小,这说明 R3

引入的是负反馈。

(+)(-)

图 11-8

Page 17: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

2.看极间反馈11.2.3 11.2.3 反馈极性的判定反馈极性的判定—瞬时极性法—瞬时极性法

该瞬时极性经电阻 R4 的在 R2 上产生上正下负的反馈电压 uf ,使 A1净输入电压减小,这说明R4 和 R2

引入的是级与级之间的负反馈;又因为电路中无电容,所以本级和级间同时有直流和交流 (交直流 ) 负反馈。

图 11-8中设

iu

uuii ( (uui1i1))

(( ++ ))uu0 0

(( ++

))

uu01 01 ((uui2i2))

(( -- )) → uuf f

(( ++ )) →

-+

-+

0u

1R

4R

3R

2R

5R

6R

iu

fu

1A2A

( +)

( +)

( +)

( -)

( -)

图 11-8

Page 18: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.2.4 11.2.4 负反馈组态的判定负反馈组态的判定

11 ))输出端输出端是电压反馈还是电流反馈的判定:是电压反馈还是电流反馈的判定: 如图 11-9a 、 b 所示:

-

+

fR至输入端

电压反馈

LR

A

-

+

至输入端电流反馈

R

A

fRLR

图 11-9 反馈组态判定

a )电压反馈 b )电流反馈

a)

b)

只看电路的输出端:由连接方式判定,具体看:若反馈信号直接取自输出端(指规定的正方向)(即取样信号为电压),则为电压反馈;若反馈信号取自非输出端(即取样信号为电

流),则为电流反馈。

( +) ( -

Page 19: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

22 ))输入端输入端是电压反馈还是电流反馈的判定:是电压反馈还是电流反馈的判定:

11.2.4 11.2.4 负反馈组态的判定负反馈组态的判定

如图 11-9c 、 d 所示:

来至输出端

串联反馈

-+

iu

fu

diu

R

A

fR

来至输出端

并联反馈-

+ii idi A

fR

图 11-9 反馈组态判定

c )串联反馈 d )并联反馈

c)

d)

只看电路的输入端:由连接方式判定,具体看:在输入端若反馈信号和输入信号不在运放的同一电极,则为串联反馈;若反馈信号和输入信号在运放的同一电极,则为并联反馈。

Page 20: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

即:反馈电压 uf , 的极性导致净输入电压ube 减小,所以,级与级之间是负反馈;又电路中无电容,级间既有直流也有交流反馈;反馈信号直接取自输出端在电阻 R2 上的分压 , 是电压反馈;反馈信和输入信号不再同一电极,是串联反馈。

11.2.4 11.2.4 负反馈组态的判定负反馈组态的判定

22 )负反馈类型判定举例)负反馈类型判定举例 例 11-1 如下图电路,试判断两级之间反馈的类型和性质。

A-+

CCU

R

EEU

A0u

iu

1R

2R4R

3R假设 uuii

(( ++ ))→ uu- -

(( -- )) uu0 0

(( ++

))

uuf f

(( ++ )) →

(( ++

)) (( --

)) (( ++

)) (( ++

))

例 11-1 图

Page 21: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.2.4 11.2.4 负反馈组态的判定负反馈组态的判定

22 )负反馈类型判定举例)负反馈类型判定举例 例 11-2 如下图电路,反馈类型并计算反馈系数及深度负反馈条件下闭环增益的表达式。

-+

-+

LR

iu1A

2A

0u

Rfu

设 设 uuii

(( ++ ))→ uu+ +

(( ++ )) →uu0 0

(( ++

)) → uuf f

(( ++ ))

(( ++

)) (( ++

)) (( ++

)) (( ++

)) 即:反馈电压 uf , 的极性导致净输入电压 uid 减小,所以,

级与级之间是负反馈;又电路中无电容,级间既有直流也有交流反馈;反馈信号非直接取自输出端,是由输出电流在电阻 R2 上形成电压 , 是电流反馈;反馈信和输入信号

不再同一电极,是串联反馈。

例 11-2图

Page 22: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3 11.3 信号的运算电路信号的运算电路11.3.1 比例运算电路

11..反相输入比例运算电路反相输入比例运算电路 电路组成如图 11-12 -

+

2R

A1R

fi

1i

fR

0uiu

因为虚断, i+= i– = 0 ,

所以 i1 if

1

i1 R

uui

F

of R

uui

因为虚短 , 所以 u–=u+= 0 ,称反相输入端“虚地”— 反相输入的重要特点

所以

图 11-12

Page 23: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

u0 = -ui

反相输入的比例运算电路反相输入的比例运算电路

当 Rf = R1 时,

此时,电路称为倒相器或反相器。

注意:因要求静态时 u+ 、 u– 对地电阻相同, 所以 :R2 = R1 // Rf 称为平衡电阻 结论:结论:

(1) (1) AAuuff 为负值,即 为负值,即 uuoo 与 与 uuii 极性相反。极性相反。因为 因为 uui i

加在反相输入端。加在反相输入端。 (2) (2) AAuuff 的精度只与外部电阻 的精度只与外部电阻 RR11 、、 RRFF 有关,与运有关,与运放本身参数无关。放本身参数无关。

Page 24: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3 11.3 信号的运算电路信号的运算电路

(3) | (3) | AAuuff | | 可大于 可大于 11 ,也可等于 ,也可等于 1 1 或小于 或小于 1 1 。。

(4) (4) 因因 uu––= u= u++= 0 = 0 , , 所以所以反相输入端“虚地”。反相输入端“虚地”。

(5) (5) 该运算电路引入该运算电路引入电压并联负反馈电压并联负反馈,输入、输出,输入、输出电阻低,共模输入电压低。电阻低,共模输入电压低。

22..同相输入比例运算电同相输入比例运算电路路

电路组成如图 11-13 -+

1R

0u

2Riu

A

fR

图 11-13

平衡电阻: R2= R1 // Rf

Page 25: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

所以

11.3 11.3 信号的运算电路信号的运算电路

-+

1R

0u

2Riu

A

fR

iof1

1 uuuRR

Ru

1

f

i

of 1

R

R

u

uAu

因为虚断, i+= i– = 0

因为虚短 , u–=u+= ui

i1

fo )1( u

R

Ru

22..同相输入比例运算电同相输入比例运算电路路

当 Rf=0或 R1=∞时

u0=ui 称为跟随器

Page 26: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

结结论:论: (1) (1) AAuuf f 为正值,即为正值,即 uuoo 与 与 uuii 极性相同。极性相同。因为 因为 uui i

加加在同相输入端。在同相输入端。 (2) (2) AAuuff 的精度的精度只与外部电阻 只与外部电阻 RR11 、、 RRF F 有关,与有关,与运放本身参数无关。运放本身参数无关。

(3) A(3) Auuf f ≥ 1 ≥ 1 ,不能小于 ,不能小于 1 1 。。

(4) (4) uu–– = u = u++ ≠ 0, ≠ 0, 反相输入端不存在“虚地”现象。反相输入端不存在“虚地”现象。

(5) (5) 该电路引入该电路引入电压串联负反馈电压串联负反馈,输入电阻高、,输入电阻高、输出电阻低,共模输入电压可能较高。输出电阻低,共模输入电压可能较高。

同相输入比例运算电路同相输入比例运算电路

Page 27: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

运算电路应用举例运算电路应用举例

-+ -

+

f1R f2R

i1u

1R

2R

3R

4R

1A

2A0u

01u

例例 11-311-3 所示的运算电路中,已知所示的运算电路中,已知 : : RR11=R=Rf1f1=10=10k , RR33=20=20k , RRf2f2=100=100k , uui1i1=0.5 V=0.5 V ,,求输出 uu00 及静态平衡电阻及静态平衡电阻 RR22 、、RR4 。。

例 11-3 图

解:这是两级运算电路,第一级为同相比例运算电

路,其输出电压为

VuR

Ru 15.0)11()1( 1i

1

f11o

第二级为反相比例运算电路,其输出电压为

平衡电阻: R2= R1 // Rf = 5k ,

R4= R3 // Rf2 ≈16.7K

Page 28: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

例 11-4 图

运算电路应用举例运算电路应用举例例例 11-4 11-4 下图运算电路中,设下图运算电路中,设 RRff 对对 RR33 和 RR44 的分流作用忽略不计。求( 1 ) AAufuf 的表达式;(的表达式;( 22 )分析电路功能。)分析电路功能。

-+A

'0u

0u

1R

2R3R

4R

fR

iu

ii

fi

0 uu

0 ii

;1

ii R

ui

f

'0

f R

ui

if ii 所以

i1

f'0 u

R

Ru

解:根据

Page 29: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

又因为又因为 RRff 对对 RR33 和 RR44

的分流作用忽略不计。

043

4'0 u

RR

Ru

-+A

'0u

0u

1R

2R3R

4R

fR

iu

ii

fi

运算电路应用举例运算电路应用举例

i4

3

1

f0 )1( u

R

R

R

Ru )1(

4

3

1

f

i

0uf R

R

R

R

u

uA 故

由结论可知该电路也是一个反相比例运算电路

i1

f'0 u

R

Ru

因为

Page 30: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

即:

例 11-5 在上例中,若将输入信号改加到同相端如下图示,设 Rf >> R4 ,求 Auf并对例 11-4 和例 11-5 进行对比总结。

运算电路应用举例运算电路应用举例

-+A

3i

4i

1i

0uiu

1R

2R

fi fR

3R

4R

'0u

例 11-5 图

解:根据 ;iuuu

0 ii

if ii 有 i1

f0 )1( u

R

Ru

再根据KCL 有 43f iii

4f RR 4f ii

4

043 R

uii

因为 ,所以

Page 31: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

i4

3

1

f43444330 )1)(1()( u

R

R

R

RRRiRiRiu

故:

运算电路应用举例运算电路应用举例

)1)(1(4

3

1

f

i

0uf R

R

R

R

u

uA 即:

对比例 11-3和例 11-4可知两电路分别完成反相比例和同相比例运算功能,而且它们的 Auf 不仅取决于 Rf 、 R1 的比值,

还与电阻 R3 、 R4 有关。

总结:

例 11-6 下图是采用输入电阻自举扩展的反相比例运算电路。( 1 )推导输入电阻 Ri 的表达式;( 2 )若取 RR11=10=10k , R=10.01R=10.01k , 求Ri 大小。

Page 32: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

运算电路应用举例运算电路应用举例

1R

R

-+

-+

0u

iu

02u

1A

2A

2R

2R

12R

例例 11-611-6 图图

解 : ⑴求输入电阻的表达式:

根据反相比例运算电路的输出、输入关系由电路可得:

i1

20 u

R

Ru

ii1

2

2

10

2

102 2))(

2(

2uu

R

R

R

Ru

R

Ru

又由 KCL iii 1i

iiii→→

ii11→→

↓↓ii

1

i1;R

ui

R

u

R

uui ii02

Page 33: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

可推出

即:电路的输入电阻

i1

i

1

ii )

11( u

RRR

u

R

ui

1

1

i

ii RR

RR

i

uR

运算电路应用举例运算电路应用举例

101001.10

1001.10iR

( 2)若取 RR11=10=10k , R=10.01R=10.01k ,代值可得输入电阻:

Page 34: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3.2 11.3.2 加法运算电路加法运算电路

11.反相输入加法运算.反相输入加法运算

-+

fR

0u

1R

3R

i1u

i2u

i3u

fi1i

2i

3i

A

f3214 ////// RRRRR

2R

因虚断, i– =i+= 0

所以 i1+ i2 +i3=if

f

o

3

3

2

2i

1

1

R

uu

R

uu

R

uu

R

uu ii

电路组成如图 11-19

图 11-19

Page 35: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

i33

fi2

2

f1i

1

fffo u

R

Ru

R

Ru

R

RRiu

又∵虚短, u+=u-=0

若 R1=R2=R3 则

11.3.2 11.3.2 加法运算电路加法运算电路

)( i3i2i11

fo uuu

R

Ru

总结:反相加法运算电路的特点:由于 Σ 点为“虚地”点,所以各信号之间不存在相互影响。

Page 36: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3.2 11.3.2 加法运算电路加法运算电路

22.同相输入加法运算.同相输入加法运算-+ 0uA

4R

1R

2R

3R

i2u

i1u

fR

图 11-20

电路组成如图 11-20

uu根据

fof1

1

i2423

421

432

43

//

//

//

//

uuRR

Ru

uRRR

RRu

RRR

RRu i

由于 u+ 等于各输入电压在同相端的叠加值;u- 等于 u0 在反相端的反馈电压 uf 即:

方法 1 :u+

- uf +

Page 37: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

所以 :

)//

//

//

//)(1( i2

423

42i1

432

43

1

fo u

RRR

RRu

RRR

RR

R

Ru

同相输入加法运算同相输入加法运算

总结:同相加法运算电路的特点::由于同相加法电路的 u+ 等于各输入电压在同相端的叠加值,即各信号之间存在相互影响。所以,即使输出信号和输入信号相位相同,该加法运算电路一般也不采用。

Page 38: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

方法 2 :

同相输入加法运算同相输入加法运算

uR

Ru )1(

1

Fo

-+ 0uA

4R

1R

2R

3R

i2u

i1u

fR

思考 u+=?

u+

i2423

421

432

43

//

//

//

//u

RRR

RRu

RRR

RRu i

Page 39: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3.3 11.3.3 减法运算电路减法运算电路

(分解)

01u

4R

02u

3R

1R

2R

0u

1A

2A

A

1R

2R

3R

i1u

i1u

i2u

i2u

1R

2R

3R

4R

4R

11.差动输入减法运算.差动输入减法运算

首先令 ui2=0 ,则电路相当于同相比例放大器,得

利用叠加原理:利用叠加原理:减法运算电路可看作是反相比例运算减法运算电路可看作是反相比例运算电路与同相比例运算电路的叠加。电路与同相比例运算电路的叠加。

i142

4

1

3

1

301 ))(1()1( u

RR

R

R

Ru

R

Ru

图 11-21

Page 40: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

再令 ui1=0 ,则电路相当于反相比例放大器,得

i21

302 u

R

Ru

11.3.3 11.3.3 减法运算电路减法运算电路

根据叠加原理有

i21

3i1

42

4

1

302010 ))(1( u

R

Ru

RR

R

R

Ruuu

当 R1=R2 , R3=R4时,则 )( i2i11

30 uu

R

Ru

Page 41: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

2.另一种减法电路

11.3.3 11.3.3 减法运算电路减法运算电路

-+

-+

1R

5R

4R

3R

2R

0u

i1u01u

i2u

1A

2A

fR

fR

图 11-22

i11

f01 u

R

Ru

i24

fi1

3

f

1

fi2

401

3

f0 u

R

Ru

R

R

R

Ru

R

Ru

R

Ru f

由图 11-22 可得

若 R1=R2=R3=R4时,则 i2i1o uuu

Page 42: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

例 11-7 如图 11-23 所示。设运放为理想器件。直流输入 VS=2V,求下列情况下的输出电压值。①开关K1 、 K2均断开;②开关 K1 、 K2均闭合;③开关 K1闭合、 K2断开。

运算电路应用举例运算电路应用举例

A-+A

0u

2K

SV

1K k10

k5

k20

图 11-23→

解:①开关 K1 、 K2均断开时,

1R

该电路是同相跟随器。即 VVuu 2S0

u+

Page 43: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

运算电路应用举例运算电路应用举例

②开关 K1 、 K2均闭合时,电路实现反相比例运算功能。即

VVk

kV

R

Ru 4

10

20SS

1

f0

③开关 K1闭合、 K2断开时,电路实现差分式减法运算功能。即

VVVVVR

RV

R

Ru 223)1( SSSS

1

fS

1

f0

Page 44: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

运算电路应用举例运算电路应用举例

例 11-8 如图 11-24 所示。设运放为理想器件。求输出电压值 u0 和 ui1 、 ui2 的关系式。

-+

-+

-+

-+

i1u 01u

02u

3R

1A

2A

3A

4A

i2u

04u

0u

1R

1R

1R

1R

2R

图 11-24

解:由图 11-24可知,运放 A1、 A2 组成电压跟随器。

;i101 uu i202 uu

A3 是差分输入减法电路 ,A4 是反相比例电路

;2

02043

uuu

;0

3

204 u

R

Ru

u3+

Page 45: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

)( i1i232

30 uu

RR

Ru

3010 2 uuu

根据叠加原理有:

联立以上各式求得:

-+

-+

-+

-+

i1u 01u

02u

3R

1A

2A

3A

4A

i2u

04u

0u

1R

1R

1R

1R

2R

运算电路应用举例运算电路应用举例

u3+

Page 46: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3.4 11.3.4 积分、微分运算电路积分、微分运算电路

11.基本积分运算.基本积分运算

-+

1i

Ci

A0u

iu

R

C

图 11-25

如图 11-25由虚短及虚断性质可得: i1 = if=ic

设电容电压的初始值为零,即 0)0(c u

则输出电压 )()( C0 tutu

∵dt

duC

R

tuiti ci1C

)()(

∴ dttuRCC

dttitutu )(

1)()()( i

CCo

tuCR

u d1

io

+ uc -

Page 47: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3.4 11.3.4 积分、微分运算电路积分、微分运算电路 例 11-9 在上图 11-25 所示的基本积分电路的输入端加一个阶跃信号,如图 11-27 a) 所示,求输出信号 u0并画出其波形。设

0)0(c u

ot

SU

iu

ot

0u

1t

OmU

图 11-27a )阶跃信号

图 11-27b ) u0 输出波形

解:当 (t> 0 )时,将输入信号代入积分电路输出表达式式,则

;1

)( SS0 t

RC

UdtU

RCtu t≥0

结果表明:输出电压和时间成线性关系,它的输出波形如图 11-27b 所示。注意:电路的积分关系只在集成运放的线性工作区才有效 。

Page 48: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3.4 11.3.4 积分、微分运算电路积分、微分运算电路

22.比例积分电路.比例积分电路 如图 11-28 所示:由虚短及虚断性质可得: ic=i1

-+A

0uiu

C

2R

1R

fRic

i1

1

i1 R

ui

t

uCi C

c d

d

dtu

CRu

R

Ru

R

RuiRtutu i

1i

1

fi

1

fCCfCo

1)()(

上式表明:输出电压是对输入电压的比例 - 积分关系

∵图 11-28

Page 49: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

dtu

CRu

R

Rtu i

1i

1

fo

1)(

-+A

0uiu

C

2R

1R

fR

11.3.4 11.3.4 积分、微分运算电路积分、微分运算电路

22.比例积分电路.比例积分电路

图 11-28这种比例—积分电路又称 PI 调节器 , 常用于控制系统中 , 以保证自控系统的稳定性和控制精度。改变 Rf 和 C ,可调整比例系数和积分时间常数 , 以满足控制系统的要求。在自动控制系统应用广泛。

图 11-28

CfCo )()( iRtutu

Page 50: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3.4 11.3.4 积分、微分运算电路积分、微分运算电路

33.基本微分运算电路.基本微分运算电路

-+

RC

0uiu

ci

fi

A

如图 11-29 所示:将积分器的积分电容和电阻的位置互换,就变成了微分电路。

图 11-29 ∵ Ritu f0 )(

dt

tduC

dt

tduCii

)()( iCcf

∴dt

tduRCtu

)()( i

0

Page 51: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

ui

tO

UUii

––UUii

uo

tO

11.3.4 11.3.4 积分、微分运算电路积分、微分运算电路

33.基本微分运算电路.基本微分运算电路

在微分电路中,当输入信号为阶跃信号时,输出为尖脉冲。因此,该电路也常做为波形变换电路。如下图所示:

dt

tduRCtu

)()( i

0

Page 52: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

dt

tduRCtu

)()( i

0

11.3.4 11.3.4 积分、微分运算电路积分、微分运算电路

33.基本微分运算电路.基本微分运算电路

-+

RC

0uiu

ci

fi

A

图 11-29

注意:由图 11-29 电路的结论:

可知:如果输入信号含有高频噪声,则输出噪声也会很大。即应用中该电路常出现高频干扰、产生自激振荡等问题,所以很少直接应用。需要微分运算时,可以通过给输入电路中的电容并联一个较小的电阻,来限制干扰,加强反馈,使电路稳定。或者尽量设法用积分器代替。即利用以下数学关系。

Page 53: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

dttudt

tudtu

dt

tud

tutudt

tud

dt

tud

)](2)(

10)([)(

)()(2)(

10)(

00

i0

i000

2

11.3.4 11.3.4 积分、微分运算电路积分、微分运算电路

实际应用中利用实际应用中利用积分器积分器实现微分运算的数学关系:实现微分运算的数学关系:

dttudttudttutu )(10)(2)()( 00i0

Page 54: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3.4 11.3.4 积分、微分运算电路积分、微分运算电路

44.比例微分运算电路.比例微分运算电路

-+

C

fi R

Aiu

1i 1R

Ci

2R0u

图 11-30

如图 11-30 所示:由虚短及虚断性质可得:

f1C iii

Riu f0

)()()( ii

1

i

1

iC10 dt

duRCu

R

RR

dt

duC

R

uRiiu

Page 55: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3.4 11.3.4 积分、微分运算电路积分、微分运算电路

44.比例微分运算电路.比例微分运算电路

图 11-30这种比例—微分电路称为 PD 调节器 , 它也常用于自动控制系统中。

-+

C

fi R

Aiu

1i 1R

Ci

2R0u

Riiu )( C10

Rdt

duC

R

uu )( i

1

i0

图 11-30)( i

i1

0 dt

duRCu

R

Ru

Page 56: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3.5 11.3.5 对数、指数(反对数)运算对数、指数(反对数)运算

在实际应用中,常需要进行对数运算或反对数 ( 指数 )运算。例如,在某些系统中,输入信号范围很宽时,容易造成限幅状态,通过对数放大器,使输出信号与输入信号的对数成正比,从而将信号加以压缩。对数运算或反对数 ( 指数 ) 运算与加、减、比例等运算电路组合,便能实现乘法、除法和不同阶次的幂(非线性)等函数的运算,因此对数和反对数运算电路得到广泛的应用。

11.对数运算电路.对数运算电路-+

iu

0u

R

Ci

1i

A

V

图 11-31

Page 57: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

如图 11-31 电路所示:利用半导体器件 PN 结的如指数型 V-I 特性,可以实现对数运算。即

-+

iu

0u

R

Ci

1i

A

V

11.3.5 11.3.5 对数、指数(反对数)运算对数、指数(反对数)运算

图 11-31

S

CTBE0 ln

I

iUuu

R

uii i1C

RI

uUu

S

iT0 ln

可见:输出电压和输入电压成对数关系,而且输出电压的幅值不能超过 0.7V 。

Page 58: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3.5 11.3.5 对数、指数(反对数)运算对数、指数(反对数)运算

22.反对数(指数)运算电路.反对数(指数)运算电路

-+A

0u

pR

iuei

fiR

图 11-33

由于指数运算是对数的逆运算,因此在电路结构上只由于指数运算是对数的逆运算,因此在电路结构上只要将对数运算电路的电阻和晶体管位置调换一下即可。要将对数运算电路的电阻和晶体管位置调换一下即可。

如图如图 11-3311-33 所示。所示。根据电路可得:根据电路可得:

ef0 RiRiu

T

i

u

u

SeRIu o

T

BE

S0U

u

eRIu

Page 59: 第 11 章 集成运算放大器及其应用

下一页 返回上一页 退出

11.3.6 11.3.6 乘、除法运算电路乘、除法运算电路

xu

yu 0u

yxuku

yxuku或

用对数和反对数运算及加、减法运算很方便构成乘法器和除法器。目前已有由对数和反对数运算组成的集成乘(除)法器电路。集成模拟乘法器。其电路符号如图 11-34 所示。

输入和输出关系为: yx0 ukuu 图 11-34

说明:集成运算放大器的应用除了以上基本运算电路外,还有其他方面的应用。由于课时关系,这里不再一一列举。读者可自学和参阅有关参考书。