145
1 Academic Senate Undergraduate Program Review: A Selfstudy Report on the Division of Biological Sciences December 1, 2014 Introduction a. Educational Mission The Biological Sciences division’s educational mission is to educate highly competent and soughtafter BS, MS, and PhD graduates who are nimble and creative thinkers. Graduates from our program will: Have a deep conceptual understanding of modern biology, strong practical and analytical skills, and the intellectual agility essential for lifelong learning; Be equipped to apply the process of science, have skills to collaborate and communicate with other disciplines, and understand the relationship between science and society as they become members of the 21 st century global workforce; and Be exceptionally well prepared for a broad spectrum of career paths, ranging from graduate and professional school to teaching and private sector employment. b. Administrative StructureAn Overview As noted in the last review, the division’s administrative structure is unique. Biological Sciences has four departmentlike sections, each with a chairperson who reports to the dean. Each section represents one of the following distinct academic areas: Cell and Developmental Biology Molecular Biology Neurobiology Ecology, Evolution, and Behavior The four sections share a centralized administrative support structure. One tenet of this streamlined organization is that both undergraduate and graduate programs are administered at the divisional level. The Divisional Education Committee and Graduate Committee provide academic and intellectual guidance, while the student and instructional services units provide advisory services to students and instructionbased support to faculty. The support units also provide academic enrichment and career planning services, administer international education, and support divisional student recruitment and retention efforts and programs (see also page 11, II a). c. Education Committee The central point of contact for educational matters in the division is the Education Committee (EC). Chaired by the Associate Dean for Education and with faculty representatives from each section, the EC reviews, deliberates, and proposes strategies and approaches related to the educational mission. These activities include the review, interpretation, and implementation of university requirements and division policy and implements. The EC works collaboratively with the section chairs and all faculty

biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  1  

Academic  Senate  Undergraduate  Program  Review:  A  Self-­‐study  Report  on  the  Division  of  Biological  Sciences  

December  1,  2014  

Introduction  

a.  Educational  Mission  The  Biological  Sciences  division’s  educational  mission  is  to  educate  highly  competent  and  sought-­‐after  BS,  MS,  and  PhD  graduates  who  are  nimble  and  creative  thinkers.  Graduates  from  our  program  will:  

• Have  a  deep  conceptual  understanding  of  modern  biology,  strong  practical  and  analytical  skills,  and  the  intellectual  agility  essential  for  lifelong  learning;  

• Be  equipped  to  apply  the  process  of  science,  have  skills  to  collaborate  and  communicate  with  other  disciplines,  and  understand  the  relationship  between  science  and  society  as  they  become  members  of  the  21st-­‐century  global  workforce;  and  

• Be  exceptionally  well  prepared  for  a  broad  spectrum  of  career  paths,  ranging  from  graduate  and  professional  school  to  teaching  and  private  sector  employment.  

b.  Administrative  Structure–An  Overview  As  noted  in  the  last  review,  the  division’s  administrative  structure  is  unique.  Biological  Sciences  has  four  department-­‐like  sections,  each  with  a  chairperson  who  reports  to  the  dean.  Each  section  represents  one  of  the  following  distinct  academic  areas:  

• Cell  and  Developmental  Biology  • Molecular  Biology  • Neurobiology  • Ecology,  Evolution,  and  Behavior  

The  four  sections  share  a  centralized  administrative  support  structure.  One  tenet  of  this  streamlined  organization  is  that  both  undergraduate  and  graduate  programs  are  administered  at  the  divisional  level.  The  Divisional  Education  Committee  and  Graduate  Committee  provide  academic  and  intellectual  guidance,  while  the  student  and  instructional  services  units  provide  advisory  services  to  students  and  instruction-­‐based  support  to  faculty.  The  support  units  also  provide  academic  enrichment  and  career-­‐planning  services,  administer  international  education,  and  support  divisional  student  recruitment  and  retention  efforts  and  programs  (see  also  page  11,  II  a).  

c.  Education  Committee  The  central  point  of  contact  for  educational  matters  in  the  division  is  the  Education  Committee  (EC).  Chaired  by  the  Associate  Dean  for  Education  and  with  faculty  representatives  from  each  section,  the  EC  reviews,  deliberates,  and  proposes  strategies  and  approaches  related  to  the  educational  mission.  These  activities  include  the  review,  interpretation,  and  implementation  of  university  requirements  and  division  policy  and  implements.  The  EC  works  collaboratively  with  the  section  chairs  and  all  faculty  

Page 2: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  2  

members  in  striving  to  offer  the  highest-­‐quality  education  for  all  students,  undergraduate  and  graduate.  

The  EC  is  responsible  for  the  following:  • Developing  policies  and  guidelines  for  curriculum  change  proposals,  new  course  

proposals,  and  standard  petition  guidelines  • Determining  the  schedule  of  classes  • Matching  faculty  teaching  loads  to  divisional  standards  • Ensuring  teaching  equity  • Participating  in  resource  management  • Contributing  to  the  course  articulation  process  

All  EC  members  are  expected  to  communicate  information  back  and  forth  between  the  committee  and  his/her  respective  sections.  

The  EC  vice-­‐chair,  currently  Dr.  Laurie  Smith  (Cell  and  Developmental  Biology  section),  ensures  teaching  equity  and  oversees  the  teaching  assignments.  These  processes  are  done  in  close  partnership  with  the  chair  and  the  four  section  representatives,  which  assures  that  teaching  assignments  and  course  offering  processes  are  transparent  and  based  on  broad  consultation  with  faculty  members  and  section  chairs  (see  pp.  28  -­‐  29).  

d.  Enrollment  Cycling  (see  also,  below,  “Size  of  Bio  Major–Quality  of  Students”  p.  8,  and  Appendix  10)  Beginning  in  the  early  1990s,  interest  in  the  biological  sciences  increased  rapidly  among  the  undergraduate  population  at  UC  San  Diego.  The  resulting  increase  in  enrollment  led  to  enrollment  control  measures,  which  triggered  a  dramatic  drop  in  the  number  of  majors.  When  the  control  measures  were  removed,  our  division  once  again  experienced  explosive  growth,  overwhelming  available  resources,  especially  in  laboratory  courses.  Here  are  some  specific  numbers:  

• In  1997/98,  implementation  of  a  pre-­‐major  screening  process  led  enrollment  numbers  to  drop  from  the  1996/97  peak  of  more  than  3,800  to  a  low  of  2,900  in  2001/02.  

• In  2002/03,  enactment  of  a  modified  screening  process  proves  ineffective,  with  the  number  of  majors  peaking  at  5,558  majors  in  09/10.  

• In  09/10  (with  respect  to  new  freshmen)  and  11/12  (new  transfers)  a  declaration  of  impacted  status  causes  the  number  of  majors  to  drop  to  3,790  in  12/13.  Elimination  of  impacted  status  in  April  2013  is  followed  by  rapid  growth.  The  division  currently  has  4,875  majors.  

 

I.  Comparison  with  Previous  Review  

a.  Administrative  Adjustments  To  ensure  consistent  vision,  guidance,  and  oversight  and  to  improve  the  quality  and  breadth  of  the  division’s  educational  environment,  the  Associate  Dean  for  Education  was  redefined  as  a  full-­‐time  administrative  position  in  2007.  A  change  was  also  made  in  

Page 3: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  3  

the  function  and  responsibilities  of  the  Student  Affairs  Unit,  and,  as  a  result,  that  unit  was  renamed  Biological  Sciences  Student  and  Instructional  Services.  Its  mandate  is  to:  

• Provide  services  to  faculty,  student,  and  staff  in  support  of  the  academic  mission;  • Assume  responsibility  for  academic  enrichment,  career-­‐planning  services,  

international  education,  and  research  opportunities  for  division  students,  facilitating  and  encouraging  their  academic,  personal,  and  professional  success;  and  

• Support  recruitment  and  retention  of  a  highly  qualified  and  diverse  student  body  

b.  Response  to  Comments,  Suggestions,  and  Critiques  in  2007  Review  The  2007  review  included  many  comments,  suggestions,  and  critiques,  to  which  we  respond  in  this  section.  

Adopt  Cutting-­‐edge  Instructional  Technologies:  The  2007  review  discussed  at  great  length  the  challenges  to  providing  excellent  undergraduate  education  in  a  large  enrollment  course  environment,  including  how  to  involve  students  in  active  learning,  personalize  the  environment,  work  with  diverse  student  needs  and  backgrounds,  and  manage  classroom  disruptions.  

However,  as  pointed  out  in  the  last  review,  reducing  the  class  size  does  not,  by  itself,  lead  to  improved  student  learning.  What  counts  is  the  quality  of  teaching.  Our  faculty  members  are  aware  of  this  and  have  actively  sought  ways  to  advance  teaching  excellence  in  large  enrollment  courses.  Seeking  ideas  and  guidance  in  this  regard,  several  faculty  members–driven  by  intrinsic  motivation–attended  summer  teaching  workshops  or  academies,  offered  by,  for  example,  the  Howard  Hughes  Medical  Institute  and  the  American  Society  for  Microbiology  (Wasserman,  Crawford,  Tour,  Hunter,  Mel,  Butler).  

Lessons  learned  from  these  types  of  workshops  were  shared  at  brown-­‐bag  lunches  with  faculty  colleagues.  This  effort,  in  combination  with  the  robust  instructional  technology  campus  resource  (http://acms.ucsd.edu/faculty/clickers/),  has  led  to  a  slow  but  steady  adoption  of  clickers  and  peer  instruction.  Several  faculty  members  are  also  experimenting  with  flipping  the  classroom  and  exploring  the  use  of  technology,  prerecording  the  lectures  using  Camtasia  (http://acms.ucsd.edu/faculty/online-­‐education.html).  Podcasting  of  lectures  has  also  been  adopted  widely  (http://podcast.ucsd.edu/),  with  some  lectures  also  being  videotaped,  an  accommodation  of  particular  relevance  to  ESL  students  (see  Appendix  1).  

Increase  Efforts  to  Prevent  Cheating:  Our  division  is  working  closely  with  UC  San  Diego’s  Academic  Integrity  Office  (AI)  to  promote  a  culture  of  academic  integrity.  Every  new  faculty  member  is  introduced  to  AI  office  services  and  support  programs,  and  all  Biology  course  syllabi  contain  the  clear  message  that  academic  integrity  is  a  core  value  of  the  university.  Faculty  discuss  in  their  courses  academic  honesty  expectations  and  the  consequences  of  their  violation.  Very  importantly,  faculty  are  also  creating  course  environments  that  demonstrate  this  commitment,  including  implementing  test  taking  processes  that  minimize  the  opportunity  for  academic  dishonesty.  These  efforts  are  

Page 4: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  4  

supported  by  divisional  instructional  assistants’  training  sessions  that  discuss  the  special  role  of  instructional  assistants  in  upholding  the  core  value  of  academic  integrity.  

Still,  we  strongly  believe  that  we  need  to  do  more.  Students  do  not  develop  ethical  decision-­‐making  –  the  skills  and  habits  for  evaluating  and  choosing  among  alternatives  in  a  manner  consistent  with  ethical  principles  –  simply  by  watching  role  models.  Therefore,  our  curriculum  must  include  activities  that  lead  students  to  explore  what  is  involved  in  being  a  good  scientist,  teacher,  or  other  professional.  An  example  of  these  activities  is  detailed  on  page  21    Foster  Increased  Student  Interaction  with  Faculty:  The  2007  report  urged  our  division  to  expand  opportunities  for  students  to  interact  more  closely  with  faculty.  We  embraced  this  advice  and  created  additional  academic  and  co-­‐curricular  opportunities  (see  also  pp.  23  -­‐  25)  for  students  to  interact  meaningfully  with  faculty,  including  the  following:  

• Academic,  course-­‐based  opportunities  As  pointed  out  in  the  2007  review,  the  upper-­‐division  seminar  courses  offered  under  the  BISP  194  heading  help  students  get  to  know  faculty  members  and  build  professional  relationships.  Students  learn  how  to  read  and  write  about  the  primary  literature,  and  present  and  lead  discussions.  For  faculty  members,  this  course  provides  the  opportunity  to  build  an  intellectual  community  within  which  to  explore  a  cutting-­‐edge  scholarly  topic.  As  a  result,  this  course  type  has  been  very  popular  with  both  faculty  and  students.  

To  expand  academic  breadth,  we  transformed  the  original  BISP  194  course  into  a  family  of  194  seminars  with  different  course  prerequisites.  Appendix  2  describes  the  courses  and  prerequisites  in  more  detail  and  provides  a  link  to  a  sample  course  syllabus.  

• Upper-­‐division  lab  courses  We  are  committed  to  offering  an  intimate,  intellectually  vigorous  learning  environment  in  our  laboratory  course  program.  All  laboratory  courses  are  small  (enrollment  22-­‐42  students)  and  are  taught  by  faculty.  Instructional  assistants  (IAs)  provide  additional  oversight  and  support  and  ensure  that  the  lab  course  environment  is  safe.  

Since  the  last  review,  we  have  advanced  the  quality  of  the  lab  course  curriculum.  Rather  than  following  a  prescribed  curriculum  delivered  with  cookbook-­‐type  instruction,  all  courses  engage  students  in  discovery-­‐based  activities.  For  example,  students  in  our  Recombinant  DNA  lab  (BIMM  101)  contribute  to  Drs.  Kohn  and  Henter’s  barcoding  research  project  as  they  develop  a  gene  model  hypothesis,  evaluate  evidence,  test  their  hypothesis  with  genomic  data,  draw  conclusions  based  on  evidence,  and  share  their  results  with  other  students  and  the  larger  scientific  community  (see  Appendix  3).  

Another  example  of  these  changes  is  provided  by  the  Microbiology  lab  (BIMM  121).  The  lead  instructor  has  partnered  with  a  microbiology  faculty  member  (Dr.  Eric  Allen,  MB  section)  to  connect  the  lab  course  curriculum  with  an  ongoing,  

Page 5: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  5  

large-­‐scale  metagenomics  project  of  microbial  populations  inhabiting  hypersaline  environments.  As  a  result,  students  in  the  course  witness  integration  of  their  data  into  the  study  of  processes  that  include  environmental  adaptation  lateral  gene  transfer  events,  microbial  interactions,  and  in  situ  metabolic  activity.  

All  lab  courses  meet  twice  a  week  for  at  least  four  hours  (in  addition  to  two  weekly  one-­‐hour  lectures),  creating  a  small  liberal  arts  college  environment.  Students  hone  their  critical  thinking  skills,  gain  first-­‐hand  experience  in  the  process  of  science,  and  learn  how  to  read  primary  literature  and  communicate  scientific  data.  Faculty  and  students  also  get  to  know  each  other,  allowing  students  to  establish  the  one-­‐on-­‐one  student-­‐faculty  relationships  that  lead  to  significant  mentoring  and  meaningful  letters  of  recommendation  for  entrance  to  professional  and  graduate  schools.  

• Phage  genomics  research  course  sequence  Drs.  Joe  and  Kit  Pogliano  successfully  applied  in  2007  to  the  first  round  of  HHMI’s  SEA  Phage  initiative  (https://www.hhmi.org/programs/science-­‐education-­‐alliance).  Although  HHMI  provided  support  only  for  three  years,  the  division  provided  the  resources  and  commitment  to  make  this  a  sustained  educational  program.  The  Phage  Genomics  Research  Course  Sequence  (http://biology.ucsd.edu/education/undergrad/student-­‐opp/phage-­‐gen.html)  offers  an  exciting  and  innovative  opportunity  for  academically  high-­‐achieving  freshmen  and  declared  Biology  majors  to  acquire  hands-­‐on  research  experience.  

The  30  students  accepted  annually  into  the  course  learn  how  to  approach  research  problems  creatively.  Experiments  focus  on  bacteriophage,  rapidly  evolving  viruses  that  infect  bacteria.  Students  isolate  new  bacteriophage  from  the  environment,  and  sequence  and  characterize  their  genomes.  An  important  goal  is  for  the  results  to  be  published  in  peer-­‐reviewed  scientific  journals  with  the  students  listed  as  co-­‐authors.  Students  who  participate  in  the  program  earn  course  credit  for  one  upper  division  laboratory  course.  

The  following  quote  from  a  former  student  captures  the  essence  of  the  experience:  “The  Phage  Genomics  course  exposes  us  to  real  research,  beyond  the  scope  of  a  normal  lab  class  where  one  would  just  learn  lab  techniques,  and  thus  is  a  more  rewarding  experience  than  repeating  a  set  of  experiments  that  thousands  of  students  before  you  have  done  already.  Our  instructors  acted  as  mentors,  sharing  our  joy  when  we  discovered  something  totally  unexpected  and  guiding  us  when  we  ran  into  difficulties.”  

• BioClock  Studio  BioClock  Studio,  developed  by  the  division’s  HHMI  professor  Susan  Golden  (http://biology.ucsd.edu/news/article_063014.html),  is  an  innovative  course  in  which  a  team  of  undergraduate  students,  drawn  from  diverse  disciplines,  work  collaboratively  to  develop  their  scientific  and  communication  skills  and  produce  innovative  educational  materials.  The  products  of  the  studio  are  used  to  enhance  

Page 6: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  6  

scientific  understanding  within  and  among  different  audiences,  including  the  general  public,  researchers,  and  the  students’  academic  peers.  

The  project  centers  on  the  field  of  Circadian  Biology,  the  study  of  internal  daily  biological  clocks,  and  leverages  a  strong  Circadian  research  center  and  an  existing  300-­‐student  course,  “Circadian  Rhythms–Biological  Clocks.”  The  20-­‐student  studio  engages  select  students  from  this  large  class  with  other  students  who  study  art,  communication,  computer  science,  journalism,  and  education  to  develop  a  suite  of  educational  materials  that  communicate  scientific  knowledge  to  diverse  audiences.  

BioClock  Studio  students  train  intensively  in  writing  and  using  a  variety  of  media;  develop  critical  thinking,  rhetorical,  and  technical  skills;  and  experience  the  synergy  that  emerges  when  students  from  a  variety  of  disciplines  work  together  collaboratively.  

As  its  first  goal,  the  Studio  will  create  instructional  materials  for  the  “Circadian  Rhythms–Biological  Clocks”  course.  Products  will  include  demonstration  videos,  original  visuals,  text  informed  by  primary  sources  but  focused  appropriately  for  a  non-­‐specialist  audience,  and  interactive  exercises  that  make  abstract  concepts  more  understandable.  The  studio  will  make  the  activities  of  more  than  two  dozen  research  labs  more  accessible  to  the  larger  class  of  students  through  production  of  videos  that  demonstrate  how  Circadian  data  are  collected  for  different  kinds  of  organisms,  including  humans,  mice,  plants,  fungi,  tissue  culture  cells,  and  cyanobacteria,  and  different  kinds  of  biological  rhythms,  including  rhythms  in  behavior,  body  temperature,  protein  levels,  and  gene  expression.  

Faculty  from  Circadian  rhythms  laboratories  serve  as  mentors,  guiding  studio  students  to  develop  educational  content  (see  Appendix  4).  

• Student-­‐initiated  course:  BISP  170  (BioScholars  Seminar:  From  Bench  to  Bedside  and  Beyond)  The  BioScholars  seminar  was  piloted  spring  2013  and  implemented  the  following  year  as  an  Academic  Senate-­‐approved  BISP  170  course  (BioScholars  Seminar:  From  Bench  to  Bedside  and  Beyond).  It  is  open  to  all  students.  Students  in  the  BioScholars  student  organization,  with  guidance  and  mentorship  from  Biology  faculty  members,  develop  a  spring  quarter  seminar  focused  on  a  bleeding-­‐edge  research  area.  The  focus  of  the  course  changes  every  year.  Students  identify  future  course  topics  by  examining  the  broad  scientific  framework  of  the  chosen  theme  (bench)  and  proceed  to  address  the  relevant  applications  of  the  subject  in  the  medical  field  (bedside)  and  current  key  societal  challenges  of  global  dimensions  (beyond).  For  example,  the  2014  theme  was  BRAIN:  Matters  of  Mind,  Brain,  and  Society.  The  course  explored  the  Brain  Initiative  from  multiple  perspectives:  current  research  challenges  within  the  neuroscience  field,  existing  and  future  clinical  applications  resulting  from  basic  science  research,  and  the  sociopolitical,  philosophical,  legal,  and  ethical  ramifications  of  this  scientific  endeavor.  

Page 7: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  7  

During  the  course  development  process,  students  work  closely  with  faculty  mentors  and  establish  relationships  with  individual  course  speakers.  Thus,  BISP  170  facilitates  close  student-­‐faculty  interactions  at  many  different  levels  (see  Appendix  5).  

Undergraduate  research  outside  the  classroom  

Undergraduate  involvement  in  research  fosters  close  faculty-­‐student  collaboration.  Students  have  the  opportunity  to  share  in  a  professional  researcher's  work,  learn  how  he  or  she  formulates  a  significant  question,  develops  a  procedure  to  investigate  it,  gathers  and  examines  evidence,  and  evaluates  and  shares  results  with  the  scientific  community.  Our  division  strongly  encourages  students  to  get  involved  in  research  via  volunteering,  paid  research  opportunities,  academic  credit  (BISP  199,  BISP  196),  academic  internships  (BISP  197),  and  on-­‐  and  off-­‐campus  summer  research  programs  (e.g.,  Amgen,  Research  Experiences  for  Undergraduates).  

Because  of  the  size  of  our  student  population,  it  takes  effort  to  acquaint  students  about  research  opportunities.  Our  division’s  Center  for  Discovering  Opportunities  in  Biological  Sciences  (do/bio)  is  responsible  for  that,  conducting  information  sessions  and  workshops  (including  an  introduction  to  the  campus-­‐wide  undergraduate  research  portal)  that  involve  faculty  and  undergraduate  students,  posting  PowerPoint  slides  on  the  web,  and  informing  students  via  a  blog  (Bio  Bulletin).  In  addition,  undergraduate  research  is  highlighted  in  the  annual  Student  Research  Showcase  and  the  Saltman  Quarterly  Program.  

Competitive  research  scholarships  allow  students  to  participate  as  Eureka!  Scholars  during  the  summer  months  in  leading  life  sciences  laboratories.  To  inform  students  about  this  scholarship  program,  our  division,  in  partnership  with  the  Academic  Enrichment  Program,  offers  informational  sessions,  and  created  (in  partnership  with  the  Writing  Center)  workshops  on  how  to  write  a  personal  statement  and  a  research  proposal.  

Because  many  of  our  students  volunteer  or  work  as  lab  assistants  in  research  labs  at  off-­‐campus  institutes,  it  is  difficult  to  establish  accurate  undergraduate  research  participation  numbers.  Based  on  BISP  199  applications  we  calculate  that  600  -­‐  800  students  participate  annually  in  undergraduate  research  for  credit  under  the  mentorship  of  Biology,  Physical  Sciences  or  Engineering  faculty  or  of  a  faculty  associated  with  the  School  of  Medicine,  Salk  Institute,  or  Scripps  Institution  of  Oceanography.    

• Faculty  advisors  for  Biology  student  organizations  Our  division  supports  three  undergraduate  student  organizations:  the  BioScholars  Program,  the  Biological  Sciences  Student  Organization  (BSSA),  and  the  Saltman  Quarterly  Program  (SQ).  Each  organization  has  faculty  mentors.  For  example,  the  Saltman  Quarterly  Program  alone  involves  10  faculty  mentors,  drawn  from  all  four  divisional  sections.  All  three  organizations  have  activities  and  programs  geared  toward  increasing  faculty-­‐student  interactions.  For  example,  

Page 8: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  8  

“tea  with  the  faculty”  and  “dine  with  the  prof”  are  popular  with  both  students  and  faculty  and  help  break  down  barriers  between  students  and  faculty.  

Size  of  Biology–Quality  of  Students:  The  2007  review  highlighted  the  problem  of  too  few  lab  courses  relative  to  the  number  of  students.  At  the  time  of  that  review,  an  enrollment  management  system  was  in  place  that  limited  enrollment  by  specifying  that  at  “the  end  of  five  quarters,  students  must  have  a  GPA  of  at  least  2.5  in  screening  courses.”  The  Committee  on  Educational  Policy  withdrew  permission  for  this  mode  of  enrollment  management  in  2007  (see  Appendix  6).  Our  division,  therefore,  was  forced  to  develop  a  new  plan  aimed  at  aligning  student  enrollment  with  available  resources.  

In  May  2008,  our  division  received  approval  to  become  “impacted”  (see  appendices  7  &  8).  This  change  in  status  had  a  dramatic  effect  on  enrollment,  decreased  the  number  of  majors  from  a  peak  of  5,800  to  fewer  than  3,600  in  winter  quarter  2013  (its  last  quarter  of  implementation).  In  April  2013,  we  secured  substantial  additional  lab  resources,  enabling  the  impacted  status  to  be  eliminated  (see  “Curriculum  and  Instruction,  Lab  Course  Program,”  p.  17).  

Strengthening  Academic  Standards:  The  “W”  and  Minimum  Progress  Problems:  As  part  of  our  “‘Impacted  Major  Proposal”  to  the  Academic  Senate,  our  division  urged  the  Academic  Senate  to  enforce  Academic  Senate  Regulations,  specifically  Academic  Senate  Regulation  516  (minimum  progress),  to  reduce  the  number  of  “W”  (withdrawal  from  course)  students  are  able  to  take,  and  505  D  (repetition  of  course)  to  limit  the  approval  for  repeating  a  course  for  which  a  student’s  transcript  bears  two  entries  with  grades  D,  F,  NP  or  U.  Our  division  further  strengthened  academic  standards  by  requiring  that  students  must  pass  prerequisite  courses  for  Biology  courses  with  a  grade  of  C-­‐  or  better.  All  three  changes  have  been  implemented.  

Lab  Course  Access:  Bottleneck  to  Student  Academic  Progress:  As  described  in  “Curriculum  and  Instruction,  Lab  Course  Program,”  p.  17,  and  above  under  “Size  of  Biology  Major,”  new  resources  (renovation  funds,  additional  physical  space,  additional  staff  position)  received  during  academic  year  13/14  significantly  increased  the  capacity  of  our  lab  course  program  and  allowed  us  to  develop  and  offer  a  lower-­‐division  lab  course  (BILD4).  

Lecturers  with  Potential  of  Employment/Lecturers  with  Security  of  Employment  (LPSOE/LSOE):  The  2007  review  identified  the  LPSOE/LSOE  series  as  a  success  but  expressed  concerns  about  the  potential  for  separate  research  and  teaching  cultures  within  the  division.  These  concerns  might  reflect  a  lack  of  familiarity  among  review  committee  members  with  the  expectations  of  the  Lecturer  with  Potential  of  Security  of  Employment/  Lecturer  with  Security  of  Employment  (LPSOE/LSOE)  series,  which  are:  

• Teaching:  Excellence  in  teaching,  demonstrated  knowledge  base  in  science  education  research  and  application  to  teaching  (scholarly  teaching)  

• Research:  Excellence  in  teaching-­‐as-­‐research,  scholarly  contributions  to  the  field  of  science  education  research  (scholarship  of  teaching),  professional  achievement  and  activity,  leadership  beyond  the  campus,  and  contributions  to  instruction-­‐related  activities  (intellectual  leadership)  

Page 9: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  9  

• Service:  Contributions  to  university  and  public  service.  

In  addition,  the  campus  has  changed  the  working  title  from  LPSOE/LSOE  to  Assistant  Teaching  Professor,  Associate  Teaching  Professor,  and  Teaching  Professor,  highlighting  that  faculty  in  this  series  are  members  of  the  Academic  Senate  with  the  full  rights  and  responsibilities  of  that  status.  Faculty  in  the  Teaching  Professor  series  participate  actively  in  the  business  and  activities  of  both  section  and  division.  

Teaching  Assistant  (TA)  Issues–Training:  As  a  result  of  the  2007  review,  our  division  revamped  its  TA  training  program.  A  detailed  description  of  the  changes  can  be  found  under  the  section  “Curriculum  and  Instruction”  pp.  26  -­‐  28.    

Outreach  to  and  Involvement  of  the  Scripps  Institution  of  Oceanography  (SIO):  Since  the  2007  review,  SIO  has  developed  a  minor  in  Marine  Science,  a  major  in  Marine  Biology,  and  a  contiguous  BS/MS  program  in  Marine  Biology.  Our  division  has  fully  supported  these  changes.  Several  Biology  faculty  members  oversee  research  of  students  in  the  Environmental  Systems  and  Marine  Biology  major.  At  the  same  time,  SIO  researchers  and  faculty  have  continued  to  welcome  Biology  majors  into  their  labs.  

The  changes  at  SIO  had  an  additional  important  benefit:  Our  division  identified  SIO  courses  that  students  could  use  to  meet  core  course  or  upper-­‐division  elective  requirements  for  divisional  majors  (mostly  for  the  EBE  curriculum).  This  had  the  dual  benefit  of  expanding  the  intellectual  breadths  of  our  majors  while  decreasing  the  potential  for  bottleneck  issues.  

Gender  Equality–Faculty  Gender  Diversity:  Our  division  has  a  higher  percentage  of  women  faculty  than  any  other  science  unit  at  UC  San  Diego:  Women  make  up  39%  of  our  assistant  professors  and  28%  of  total  ladder  rank  faculty,  as  shown  in  the  following  table.  

Table  1.  Gender  Diversity  among    Ladder  Rank  Faculty  in  Biological  Sciences  by  Rank  

Rank   Women   Men   Total   Percentage  Assistant   7   11   18   39%  Assistant  TP*   1   2   3   33%  Associate   7   6   13   54%  Associate  TP*   2   1   3   67%  Professor   12   49   61   20%  TP*   2   1   3   67%  Total  Prof  Series   26   66   92   28%  Total  Teaching  Prof  Series   5   4   9   56%  

*TP:  Teaching  Professor  

Page 10: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  10  

The  campus  benefits  from  the  ability  of  our  division  to  hire  a  diverse  faculty  workforce,  and  our  various  approaches  to  recruitment  have  been  key  to  achieving  this  level  of  diversity.  Of  our  recent  recruits,  dating  back  to  7/1/2013  hires,  more  than  60%  are  women.  Additionally,  9  out  of  19  of  the  tenured  women  faculty  have  been  promoted  or  hired  since  2007.  

Lack  of  Lower-­‐division  Lab  Space:  As  part  of  the  implementation  of  UC  San  Diego’s  Strategic  Pan,  Chancellor  Khosla  made  a  substantial  amount  of  resources  available  to  renovate  existing  laboratory  space,  which  significantly  increased  our  teaching  laboratory  space  capacity.  In  addition,  the  Chemistry  &  Biochemistry  Department  generously  transferred  some  of  their  lab  space  to  our  division.  These  two  developments  made  it  possible  for  us  to  offer  a  lower-­‐division  laboratory  course,  BILD  4  (Introductory  Biology  Lab),  serving  up  to  1,200  freshmen  or  sophomore  Biology  majors  annually.  A  detailed  description  of  the  changes  in  the  laboratory  course  program  can  be  found  in  the  section  “Curriculum  and  Instruction”  p.  17.    

Access  to  Mentored  Research  Opportunities:  As  described  above  (p.4),  ensuring  access  to  mentored  research  for  academic  credit  (through  courses  BISP  196  and  BISP  199)  is  a  key  educational  goal  of  our  division.  We  have  initiated  90-­‐minute,  three-­‐part  information  sessions  to  help  students  understand  what  research  is  about,  think  about  what  type  of  research  they  would  find  most  appealing,  and  learn  how  to  initiate  research  with  a  faculty  mentor.  A  general  overview  of  divisional  and  campus  resources  is  followed  by  a  faculty  panel  that  helps  students  understand  faculty  expectations  and  a  student  panel  that  provides  peer  advice,  insight,  and  encouragement.  

For  many  years,  our  division  was  the  only  UC  San  Diego  academic  unit  to  require  a  GPA  of  3.0,  rather  than  2.5,  for  199-­‐level  research.  Based  on  the  recommendation  of  the  EC,  our  division  sought  and  received  Academic  Senate  approval  to  implement  a  new  minimum  GPA  for  BISP  199  of  2.5.  

Ecology,  Evolution,  and  Behavior  Section–Teaching  Capacity:  The  financial  crisis  and  its  associate  budget  cuts  hit  the  EBE  section  disproportionately  hard.  Over  the  last  few  years,  our  division  has  worked  diligently  to  rebuild  this  group,  making  significant  changes  in  the  EBE  graduate  student  support  model  and  targeting  faculty  hires.  Recently,  the  section  received  an  FTE  for  an  Assistant  Teaching  Professor.  The  search  has  been  initiated  and  should  be  concluded  before  the  end  of  academic  year  14/15.  The  incumbent  will  teach  up  to  six  courses  per  academic  year  in  ecology,  evolution,  and  behavior,  significantly  improving  that  section’s  ability  to  balance  the  teaching  load  for  its  faculty.  

Quality  of  Advising:  The  2007  review  urged  our  division  to  pay  “…  more  attention  and  resources  …  to  making  sure  that  all  students  get  proper  advising.”  As  described  in  the  “Advising”  section,  we  improved  the  effectiveness  and  productivity  of  our  advising  unit.  We  increased  the  number  of  staff  advisors,  increased  administrative  efficiency  by  developing  on-­‐line  processes  (e.g.,  BISP  199  applications),  enhanced  existing  programs  (e.g.,  faculty  advising),  and  developed  new  programs  (e.g.,  the  Transfer  Opportunities  for  Success  Program).  

Page 11: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  11  

Research  has  demonstrated  that  high  student  engagement  correlates  positively  to  college  success  (e.g.,  decreased  drop-­‐out  rates,  improved  GPA,  improved  college  satisfaction).  Student  engagement  significantly  increases  if  a  student  is  involved  in  high-­‐impact  learning  opportunities,  such  as  undergraduate  research,  studying  abroad,  and  internships.  

To  improve  students’  access  to  those  types  of  opportunities,  we  created  a  new  unit,  the  Center  for  Discovering  Opportunities  in  Biological  Sciences  (do/bio).  This  center  was  created  in  academic  year  2013/14  to  complement  and  enrich  undergraduate  scholarship  with  experiential  learning  opportunities.  It  helps  prepare  students  for  today’s  global,  cross-­‐disciplinary  workplace.  See  also  “Fostering  Engagement  with  Majors,  from  Orientation  to  Graduation”  below.  

II.  Curriculum  and  Instruction  

a. Pattern  of  Requirement  for  Each  Major  and  Promotion  of  Students’  Acquisition  of  “Core  Learning  Abilities  and  Competencies”  

Research  in  our  division  represents  a  wide  spectrum  of  approaches  to  biological  inquiry—biochemical,  molecular,  cellular,  physiological,  and  ecological.  The  teaching  program  reflects  this  diversity  by  offering  eight  different  majors  in  the  biological  sciences:  

• Biochemistry  and  Cell  Biology  • Biology  with  a  Specialization  in  Bioinformatics  • Ecology,  Behavior,  and  Evolution  • General  Biology  • Human  Biology  • Microbiology  • Molecular  Biology  • Physiology  and  Neuroscience  

Through  a  combination  of  common  and  specific  coursework,  each  major  provides  an  excellent  foundation  and  preparation  for  success  in  graduate  or  professional  study  or  other  science-­‐related  postgraduate  endeavors.  

Each  major  establishes  a  foundation  in  mathematical,  physical,  chemical,  and  basic  biological  concepts.  Subsequently,  upper-­‐division  courses  build  and  expand  on  this  foundation  in  an  area  of  biology  sub-­‐specialization.  All  Biology  majors  are  required  to  take  a  core  group  of  upper-­‐division  courses,  then  delve  deeper  into  specific  scientific  areas  to  support  both  fundamental  understanding  and  mastery  of  biological  material  unique  to  each  student’s  interests  and  educational  goals  (pp.  13  -­‐  15;  20  -­‐  22;  25  -­‐  26).  

Our  most  popular  majors  are,  in  order,  Human  Biology,  Biochemistry  and  Cell  Biology,  and  General  Biology.  Numbers  of  students  are  listed  per  major  and  class  in  the  following  table.  

Table  2.  Number  of  Students  by  Major  and  Class  for  Fall  Quarter  2014  

FA14  Majors   Freshmen   Sophomores   Juniors   Seniors   Total  

Page 12: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  12  

FA14  Majors   Freshmen   Sophomores   Juniors   Seniors   Total  Biochemistry  and  Cell  Biology  

298   193   337   502   1,344  

Biology  with  a  Specialization  in  Bioinformatics  

25   4   16   3   48  

Ecology,  Behavior,  Evolution  

14   22   24   58   118  

General  Biology   198   133   237   398   976  Human  Biology   415   357   461   516   1,766  Microbiology   36   19   41   56   153  Molecular  Biology   61   24   61   54   200  Physiology  and  Neuroscience  

205   193   206   263   873  

Total   1,252   945   1,383   1,850   5,478  

Honors  Students:  The  Senior  Honors  Thesis  Program  is  open  to  declared  Biology  majors  who  meet  all  eligibility  requirements  (e.g.,  GPA,  accumulated  units).  Students  who  successfully  complete  all  three  quarters  of  research,  along  with  a  written  thesis  and  presentation  at  the  annual  Division  of  Biological  Sciences:  Research  Showcase  have  “Distinction”  recorded  on  their  transcripts.  Completion  of  this  program  is  the  only  way  to  earn  distinction  through  our  division.  

Table  3.  Number  of  Students    in  Senior  Honors  Thesis  Program–Academic  Years  12/15  

Academic  Year   Number  of  Participants  

2012-­‐2013   23  2013-­‐2014   25  2014-­‐2015   28  

Students  Minoring  in  Biology:  The  General  Biology  minor  requires  successful  completion  of  two  lower-­‐  and  five  upper-­‐division  Biology  courses  taken  at  UC  San  Diego.  Of  the  latter,  students  can  select  which  biology  curriculum  they  want  to  pursue  (pending  completion  of  relevant  prerequisites).  

Table  4.  Students  Minoring  in  Biology–Academic  Year  13/14  

Freshmen   Sophomores   Juniors   Seniors   Total  

1   6   19   96   122  

 

Page 13: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  13  

Joint  Undergraduate  Program  in  Bioinformatics:  This  Bachelor’s  Degree  Program  is  offered  by  Biological  Sciences,  Chemistry,  Bioengineering,  Computer  Science  and  Engineering.  Each  department  offers  its  own  major  with  specialization,  and  each  department  contributes  courses  toward  the  Bioinformatics  curriculum.  This  major  was  established  more  than  15  years  ago.  It  is  in  Biology  the  least  popular  major.  Currently,  only  48  students  are  declared  Bioinformatics  majors.  The  Division’s  Education  Committee  identified  a  review  of  this  major  -­‐  involving  all  participating  academic  units  -­‐  as  a  top  priority.  

Departments  and  Programs  that  Use  Biology  Courses  as  Part  of  Major  Curriculum:  As  described  in  detail  in  “The  Impact  of  the  Division’s  Instructional  Programs  on  the  General  Educational  Mission  and  Needs  of  Other  Departments”  (pp.  18  -­‐  20)  our  division  provides  classes  that  are  popular  among  students  seeking  to  fulfill  their  science  General  Education  requirements.  In  addition  several  non-­‐Biology  academic  major  curricula  allow  Biology  courses  as  options.  

Major  Design  Pattern:  The  curricular  design  of  our  majors  was  guided  by  two  principles:  (1)  mathematics,  physics,  and  chemistry  are  integral  to  the  study  of  biology,  and  (2)  the  intellectual  and  academic  framework  is  established  by  a  core  set  of  biological  principles–evolution,  information  flow,  structure  and  function,  transformation  of  energy  and  matter,  and  systems.  

Since  its  inception,  the  Biology  undergraduate  curriculum  was  based  on  the  premise  that  all  students  majoring  in  the  field  must  have  a  solid  background  in  foundational  mathematical  and  physical  sciences  concepts.  The  Ecology,  Behavior  and  Evolution  (EBE)  major  deviated  somewhat  from  this  fundamental  structure.  It  is  the  only  major  that  at  the  lover-­‐division  level  does  not  require  a  General  Chemistry  lab,  and  that  at  the  upper-­‐division  level  does  not  require  students  to  take  Organic  Chemistry  or  any  other  Biology  courses  for  which  Organic  Chemistry  is  a  prerequisite.  Specifically,  EBE  majors  are  not  required  to  take  Metabolic  Biochemistry  (BIBC  102)  and  Molecular  Biochemistry  (BIMM  100).  The  only  upper-­‐  division  required  Biology  course  for  EBE  majors  is  Genetics  (BICD  100).  

Both  the  General  Biology  major  and  the  Bioinformatics  major  allow  students  to  take  fewer  Organic  Chemistry  courses.  Not  required  are  the  last  course  in  the  yearlong  Organic  Chemistry  series  (Chem  140C)  and  the  Organic  Chemistry  lab  (Chem  134A).  General  Biology  majors  are  also  not  required  to  take  the  Molecular  Biology  course  (BIMM  100).  

Students  in  all  other  majors  (Biochemistry  and  Cell  Biology,  Human  Biology,  Microbiology,  Molecular  Biology,  and  Physiology  and  Neurosciences)  have  to  complete  a  yearlong  sequence  in  Organic  Chemistry  plus  lab,  Metabolic  Biochemistry  (BIBC  102),  Genetics  (BICD100),  and  Molecular  Biology  (BIMM100).  A  set  of  specific  courses  allows  students  to  then  acquire  specialized  knowledge  aligned  with  the  focus  of  their  major.  

To  provide  educational  options,  all  major  curricula  require  students  to  take  electives,  i.e.,  courses  selected  for  their  relevance  and  ability  to  provide  academic  breadth.  

Page 14: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  14  

Promoting  Students’  Acquisition  of  “Core  Learning  Abilities  and  Competencies”:  As  further  elucidated  on  pages  20  -­‐  22  and  25  -­‐  26  we  captured  the  programmatic  learning  outcomes  for  each  of  our  eight  majors  by  applying  three  general  dimensions  of  learning:  knowledge  outcomes,  skills  outcomes,  and  attitudes  and  values  outcomes.  The  Programmatic  Learning  Goals  table  (http://biology.ucsd.edu/_files/education/undergrad/bio-­‐wasc.pdf)  shows  how  these  core  knowledge  and  skills  categories  are  developed  throughout  a  major’s  curriculum.  The  curriculum  map  visualizes  how,  progressively,  individual  courses  contribute  to  the  acquisition  of  increasingly  more  sophisticated  learning  and  thinking  within  the  discipline.  

At  UC  San  Diego,  General  Education  (GE)  requirements  are  established  and  overseen  by  the  six  colleges  (http://www.ucsd.edu/_files/6collegescompared.pdf).  Although  each  individual  college’s  GE  requirement  curriculum  ranges  from  a  very  structured  liberal  arts  program  to  a  program  with  a  broad  range  of  electives,  the  design  of  each  program  must  fulfill  UC’s  requirement,  which  is  to  “…  give  UC  undergraduates  a  broad  background  in  all  major  academic  disciplines–natural  sciences,  physical  sciences,  social  sciences,  humanities,  and  fine  arts.”  

Academic  departments,  including  our  division,  do  not  shape  any  aspects  of  the  intellectual  and  academic  content  of  the  college-­‐specific  GE.  In  the  past,  we  have  made  no  systematic  attempts  to  align  the  colleges’  breadth  requirements  with  acquisition  of  core  learning  abilities  of  Biology  majors.  Most  faculty  are  not  familiar  with  the  specifics  of  the  various  colleges  GEs.  Since  they  vary  quite  a  bit  across  the  colleges,  it  seems  difficult  if  not  impossible  to  create  intentional  intellectual  connections  between  academic  breadth  and  major  specialization.  

Recently,  small  steps  have  been  taken  to  change  this  situation.  Our  division’s  Center  for  Discovering  Opportunities  in  Biological  Sciences  (do/bio  center,  see  p.  40)  is  introducing  all  students  (especially  freshmen  and  new  transfer  students)  to  the  10  “real  world  skills’”  identified  by  UC  San  Diego’s  Education  Initiative  as  essential  skills  all  graduating  seniors  must  have.  These  soft  skills  include  “communication  skills”  and  “demonstrated  understanding  of  global  context  and  issues  and  their  implications  for  the  future,”  skills  that  are  taught,  practiced,  and  developed  in  many  GE  courses.  

b. Assessment  of  the  Breadth  and  Depth  of  the  Curriculum  and  Access  to  Courses  As  described  above,  the  curricula  of  the  eight  academic  majors  were  designed  to  provide  the  strongest  preparation  for  pre-­‐med,  professional  schools,  graduate  education  in  a  plethora  of  disciplines,  and  employment  opportunities  in  biotechnology,  pharmaceutical  research,  and  other  disciplines  requiring  a  strong  background  in  molecular  and  cellular  biology  and  a  foundation  in  physics,  chemistry,  and  mathematics.  As  the  discipline  of  biology  evolves,  however,  so  too  must  curricula.  Research  efforts  like  the  Human  Genome  Project,  and  the  BRAIN  Initiative  have  highlighted  the  need  for  quantitative  approaches  and  technologies  to  analyze,  model,  and  integrate  large  data  sets.  At  the  same  time,  employers  in  industry  have  expressed  the  need  for  a  biology  curriculum  that  teaches  core  mathematical  and  computational  concepts,  including  

Page 15: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  15  

probability  and  statistics,  modeling,  algorithms,  data  structures,  and  programming.  Thus,  it  is  clear  that  we  need  to  address  the  demand  for  quantitative  literacy.  

Discussions  are  underway  about  how  the  curricula  should  change,  what  new  courses  should  be  developed,  and  how  existing  course  should  be  adapted.  There  is  agreement  that  our  curricula  should  provide  opportunities  to  apply  quantitative  knowledge  and  reasoning  and  informatics  tools  (e.g.,  integration  of  data,  modeling)  and  hone  quantitative  reasoning  skills  by  applying  appropriate  mathematics  to  describe  or  explain  phenomena  in  the  natural  world.  It  is  clear  that  this  type  of  change  requires  collaboration.  As  we  must  make  changes  in  our  division,  we  expect  to  partner  closely  with  faculty  from  mathematics,  physical,  and  computer  sciences  to  develop  and  or  modify  existing  courses  in  their  respective  fields.  

Recently,  the  Biological  and  Physical  Sciences  divisions  established  a  new  interdisciplinary  PhD  program  in  Quantitative  Biology  (http://qbio.ucsd.edu/program.php).  Faculty  in  this  program  (http://qbio.ucsd.edu/faculty.php)  will  be  key  in  identifying  the  specific  new  skills  Biology  majors  should  learn.  It  is  our  division’s  explicit  goal  to  tackle  this  challenge  during  academic  year  14/15.  Faculty  from  Biology,  Mathematics,  and  Computer  Science  and  Engineering  are  being  recruited  to  work  as  members  of  an  ad-­‐hoc  group  to  rethink  the  most  effective  ways  to  develop  appropriate  quantitative  and  computational  skills.  

c. Efforts  to  Improve  Student  Graduation  Rates  and  Time-­‐to-­‐degree  

Since  academic  year  07/08,  the  average  time-­‐to-­‐degree  for  freshmen  increased  from  12.46  to  12.62  academic  quarters,  which  is  still  slightly  below  the  campus  average  of  12.8.  Similarly,  the  time-­‐to-­‐degree  for  transfer  students  during  the  same  time  period  increased  from  11.35  to  11.46  academic  quarters.  Although  these  numbers  are  not  yet  alarming,  they  indicate  a  trend  that  must  be  stopped  from  becoming  worse.  

In  academic  year  13/14,  an  ad-­‐hoc  divisional  major  review  workgroup  was  formed  to  assess  the  situation.  This  group  appraised  the  potential  of  the  following  parameters  as  barriers  to  graduating  in  four  years:  

• Programmatic  goals  of  each  Biology  major:  Relevance  and  appropriateness  • Curricular  barriers:  Appropriateness  of  lower-­‐  and  upper-­‐division  requirements  

for  each  major,  course  prerequisites,  including  “hidden”  prerequisites  • Scheduling/logistical  barriers:  Frequency  of  course  offerings  (e.g.,  “bottleneck”  

courses)  • Advising  barriers:  Access  to  advising  and  advising  tools  • University  practices  and  policies:  Maximum  unit  enforcement,  add/drop  

deadlines,  transfer  student  admission’s  requirement  

The  group’s  findings  led  to  a  number  of  actions  described  next.  

Decrease  Number  of  Elective  Courses:  The  workgroup  confirmed  the  appropriateness  of  the  programmatic  goals  of  the  majors.  Although  the  workgroup  members  determined  that  the  number  of  required  courses  (total  units)  for  Biology  majors,  compared  to  other  UC  San  Diego  science  and  engineering  majors,  was  not  excessive  (with  the  exception  of  

Page 16: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  16  

the  Bioinformatics  major),  it  was  decided  that  reducing  the  number  of  required  electives  in  each  major  would  help  curb  increasing  time  to  degree.  

Changes  listed  in  Table  2,  below,  were  proposed  by  the  Division’s  Education  Committee,  and  were  subsequently  approved  by  the  Academic  Senate  Committee  on  Educational  Policies.  The  curricular  changes  have  been  implemented  effective  immediately,  and  students  have  been  informed  about  those  changes.  

           Table  5.  Approved  and  Implemented  Changes  to  UD  Requirements  

Major   Current  UD  Requirement   Proposed  UD  Requirement  

Biochemistry  and  Cell  Biology   15   14  (i.e.,  reduce  required  UD  electives  

from  4  to  3)  Biology  with  a  Specialization  in  Bioinformatics  

20   20  (no  change)  

Ecology,  Behavior,  and  Evolution  

15   14  (i.e.,  reduce  core  requirements  from  5  to  4)  

General  Biology   13   13  (no  change)  Human  Biology   15   14  (i.e.,  reduce  core  requirements  from  3  

to  2)  Microbiology   15   14  (i.e.,  reduce  required  UD  electives  

from  3  to  2)  Molecular  Biology   16   14  (i.e.,  reduce  required  UD  electives  

from  4  to  3)  Physiology  and  Neuroscience   15   14  (i.e.,  reduce  core  requirements  from  4  

to  2;  require  BIPN  100)  

Increase  Access  to  Laboratory  Courses–Increase  Flexibility  in  Lab  Course  Requirements:  Given  the  explosive  increase  in  Biology  majors  over  the  last  few  years,  lab  course  requirements,  which  are  specific  for  each  major,  have  the  potential  to  become  barriers  to  graduation  in  a  timely  manner.  Thus,  increasing  flexibility  in  fulfilling  the  laboratory  course  requirement  will  reduce  the  likelihood  of  a  bottleneck  situation.  The  Divisional  Education  Committee  received  Academic  Senate  approval  for  the  following  curricular  changes:  

• Biochemistry  and  Cell  Biology:  BIBC  103  and  ANY  UD  Biology  lab  • Biology  with  a  Specialization  in  Bioinformatics:  No  change  • Ecology,  Behavior,  and  Evolution:  One  UD  BIEB  lab  and  ANY  other  UD  Biology  lab  • General  Biology:  ANY  two  UD  Biology  labs  • Human  Biology:  ANY  two  UD  Biology  labs  • Microbiology:  BIMM  121  and  ANY  other  UD  Biology  lab  • Molecular  Biology:  BIMM  101  ANY  other  UD  Biology  lab  

Page 17: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  17  

• Physiology/Neurosciences:  BIPN  105  and  ANY  other  UD  Biology  lab  

The  changes  have  been  implemented.  

Increase  Access  to  Laboratory  Courses–Increase  Number  of  Lab  Course  Slots:  During  academic  year  12/13,  our  division  received  additional  resources  from  the  Chancellor  and  the  Senior  Vice  Chancellor  to  remodel  existing  undergraduate  lab  space,  thereby  increasing  lab  slot  capacity,  and  to  hire  additional  technical  lab  course  support  staff  (http://ucsdnews.ucsd.edu/feature/york_hall_science_labs_get_6.5_million_makeover_to_help_students_graduate).  The  lab  renovation  coupled  with  increasing  the  number  of  technical  support  and  teaching  staff  allowed  us  to  use  existing  space  more  efficiently.  Annually  we  now  provide  3,672  lab  course  seats,  a  number  that  can  accommodate  the  programmatic  needs  of  all  students  at  the  height  of  our  pre-­‐impacted  major  numbers.  

We  also  received  new,  i.e.,  additional,  lab  space.  This  made  it  possible  to  offer  a  lower-­‐division  lab  course  (BILD  4:  Introductory  Biology  Lab).  

BILD  4  is  designed  as  an  independent,  on-­‐going  research  project  on  soil  microbiomes  at  the  Natural  Reserve  System,  with  students  acting  as  the  primary  researchers.  The  course  aims  to  help  students  develop  an  understanding  of  research  in  biology  through  inquiry-­‐based  laboratory  experiments.  Students  work  in  teams  to  collect,  analyze,  and  present  original  research  data  while  learning  laboratory  methods  common  to  a  variety  of  biological  disciplines.  The  course  is  divided  into  three  portions:  lectures  on  the  concepts  and  theory  underlying  each  experiment,  laboratory  sessions  where  students  collect  and  analyze  data,  and  a  project  in  which  students  develop  hypothetical  research  proposals  using  the  experimental  methods  they  learned  in  BILD  4.  Learning  in  each  of  the  components  is  assessed  by  quizzes,  laboratory  reports  written  in  the  format  of  journal  papers,  and  a  poster  presentation,  respectively.  Appendices  9  a  &  b  describe  the  course  in  more  details.  

BILD  4  is  currently  piloted  and  in  academic  year  15/16  will  become  a  required  course  for  all  Biology  majors.  Even  students  with  AP  credit  of  4  or  5  will  be  required  to  take  it.  

Bottleneck  Courses:  Courses  required  for  an  academic  major  that  are  only  offered  once  per  academic  year  are  “bottleneck”  courses,  i.e.,  course  that  have  the  potential  to  impede  a  student’s  ability  to  graduate  in  four  years.  Our  division  has  identified  the  following  majors  and  their  bottleneck  courses:  

• Ecology,  Behavior,  and  Evolution:  BIEB  100  (Biostatistics)  is  a  prerequisite  to  all  BIEB  lab  courses  but  is  only  offered  once  per  academic  year  

• Molecular  Biology:  BIMM  112  (Regulation  of  Gene  Activity  in  Eukaryotic  Cells)  and  BIMM  122  (Microbial  Genetics)  

• Microbiology:  BIMM  114  (Virology)  and  BIMM  124  (Medical  Microbiology),  and  in  some  years  BIMM  120  (Bacteriology)  

As  a  short-­‐term  solution,  faculty  and  staff  advisors  are  working  to  identify  appropriate  course  substitutions  for  students  affected  by  this  situation.  For  example,  we  are  allowing  EBE  students  to  take  the  Marine  Biology  course  SIO  187  (Statistical  Methods  in  

Page 18: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  18  

Marine  Biology)  in  lieu  of  BIEB  100.  This  situation  should  be  alleviated  in  the  near  future  due  to  our  division’s  recent  and  planned  hires.  

Advising  Tools:  To  equip  students  with  easy-­‐to-­‐use  tools  that  help  them  plan  how  to  achieve  their  academic  goals,  we  developed  advising  tools  that  visualize  and  map  out  academic  major  requirements  for  each  of  our  majors:  

• Major  Check  (http://biology.ucsd.edu/_files/education/undergrad/majors/ebeMajorCheck_1415.pdf)  lists  on  one  page  all  required  lower  -­‐division  and  upper-­‐division  courses  plus  any  additional  major  requirements,  thus  allowing  advisor  and  student  to  create  an  academic  record  of  academic  requirements  met  and  identify  those  still  to  be  fulfilled.  

• Sample  Plan  (http://biology.ucsd.edu/_files/education/undergrad/majors/biochemSamplePlan_1415.pdf)  is  a  “Four-­‐year  Plan”  designed  to  assist  students  in  their  academic  journey  and  provide  recommended  course  schedules  to  facilitate  graduation  in  four  years.  

Transfer  Students:  To  facilitate  a  smooth  transition  to  UC  San  Diego,  our  division  created  a  special  resource  website  for  transfer  students:  http://biology.ucsd.edu/education/undergrad/transfer/index.html.  Although  we  strongly  encourage  the  completion  of  all  major  lower-­‐division  courses,  the  vast  majority  of  transfer  students  admitted  to  UC  San  Diego  as  Biology  majors  arrive  without  having  taken  them.  This  is  the  key  reason  for  the  time-­‐to-­‐degree  increase.  

To  address  this,  our  division  will  partner  with  UC  Diego’s  Admission  Committee  to  establish  Biology-­‐specific  eligibility  requirements  for  transfer  admissions  that  most  likely  will  include  completion  of  courses  comparable  to  the  following  UC  San  Diego  courses:  

• Mathematics  10  A,  B,  C  or  Math  20  A,  B,  C  • Chemistry  6  A,  B,  C  and  Chem  7L  • BILD  1,  2,  3  

We  will  also  recommend  completion  of  courses  comparable  to  the  following  UC  San  Diego  courses:  

• Organic  Chem  140  A,  B  and  C  • Physics  1  A,  B,  C  with  lab  or  2  A,  B,  C  with  lab  

d. Impact  of  Our  Division’s  Instructional  Programs  on  the  General  Educational  Mission  and  Needs  of  Other  Departments  

Contributions  to  Science  General  Education  Requirements:  As  described  above,  physical  sciences  courses  comprise  a  significant  and  required  core  group  within  the  lower-­‐division  course  foundation  of  all  Biological  Sciences  majors.  Although  the  reverse  is  not  true  for  Biological  Sciences  courses,  our  division’s  lower-­‐division  courses  are  very  popular  choices  among  students  seeking  to  fulfill  the  Science  General  Education  (GE)  requirements.  All  six  colleges  include  lower-­‐division  Biology  courses  among  their  science  choices,  as  described  in  the  following  documents:  

Page 19: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  19  

• Thurgood  Marshall:  http://physicalsciences.ucsd.edu/_files/esysebe%20FA14.pdf  • Muir:  http://muir.ucsd.edu/academics/degree_reqs.html  • Revelle:  https://revelle.ucsd.edu/academics/general-­‐education/nat-­‐science.html  • Roosevelt:  http://roosevelt.ucsd.edu/academics/gen-­‐ed/  • Sixth:  http://sixth.ucsd.edu/_files/_home/advising/FA14GElist.pdf  • Warren:  https://warren.ucsd.edu/_files/block-­‐content/advising_guide.pdf  

Most  non-­‐science  majors  prefer  Biology  courses  to  other  sciences  options.  Especially  popular  are  BILD  3  (Organismic  and  Evolutionary  Biology),  the  only  course  in  the  Biology  major  sequence  without  prerequisites,  and  BILD  10  (Fundamental  Concepts  in  Modern  Biology).  Other  courses  with  high  enrollments  (i.e.,  above  200)  are  BILD  18  (Human  Impact  on  the  Environment),  BILD  26  (Human  Physiology),  and  BILD  22  (Nutrition).  

We  are  especially  pleased  about  the  popularity  of  BILD  3  because  it  provides  us  with  an  opportunity  to  teach  the  theory  of  evolution,  the  very  foundation  of  biological  sciences.  Understanding  evolution  is  critical  to  research  and  advances  in  medicine,  agriculture,  public  health,  ecology,  genetics,  etc.  Even  scientific  endeavors  far  removed  from  biology  depend  on  an  understanding  of  evolutionary  processes.  For  example,  evolutionary  processes  appear  to  guide  the  formation  of  complex  adaptive  systems  in  fields  as  distant  as  economics.  

However,  meeting  the  demand  for  BILD  3  created  significant  pressure  on  teaching  resources,  forcing  us  to  increase  both  the  frequency  of  course  offerings  as  well  as  enrollment  capacity.  BILD  3  has  been  consistently  taught  in  classrooms  with  a  capacity  of  >500.  Recently,  we  started  to  teach  the  course  simultaneously  in  multiple  classrooms.  These  rooms  are  equipped  with  videoconferencing  systems  supporting  room-­‐to-­‐room  high-­‐resolution  video  and  two-­‐way  audio.  Instruction  is  synchronous,  with  the  instructor  being  present  in  one  of  the  classrooms,  simultaneously  projected  into  the  other  classrooms.  The  two-­‐way  audio  allows  students  in  all  rooms  to  interact  with  the  instructor.  Using  this  set-­‐up,  the  enrollment  can  be  as  high  as  700+  students.  

The  EBE  section  is  the  almost  exclusive  source  for  BILD  3  instructors.  Recently,  the  section  received  an  Assistant  Teaching  Professor  FTE  (LPSOE)  FTE.  A  successful  search  will  contribute  to  our  ability  to  increase  BILD  3  offerings.  

Contributions  to  Academic  Major  Requirements:  Currently,  four  non-­‐Biology  academic  majors  either  require  or  allow  the  use  of  Biology  courses  to  fulfill  major  requirements.  They  include  the  majors  of  Environmental  Systems  (179  majors)  and  the  three  new  majors,  Marine  Biology  (177  majors),  Public  Health  (367  majors),  and  Global  Health  (28  majors).  Students  majoring  in  Environmental  Systems  (http://physicalsciences.ucsd.edu/programs/esys/esys-­‐major.html)  are  required  to  take  BILD  3  (Organismic  and  Evolutionary  Biology),  BICD  100  (Genetics),  and,  because  it  is  a  prerequisite  for  BICD  100  (Genetics),  also  BILD  1  (The  Cell).  

The  most  popular  of  the  three  Environmental  Systems  majors  is  Ecology,  Behavior,  and  Evolution  (85  of  a  total  of  179  majors).  Students  in  this  major  must  take  seven  courses  

Page 20: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  20  

from  a  list  of  course  electives  that  contains  many  of  our  Biology  courses  (http://physicalsciences.ucsd.edu/_files/esysebe%20FA14.pdf).  

Students  enrolled  in  the  Marine  Biology  major  (https://scripps.ucsd.edu/undergrad/marine-­‐biology-­‐bs)  must  take  the  BILD  1,  2,  and  3  series.  Genetics  (BICD  100)  is  the  only  required  Biology  upper-­‐division  course.  Students  are  allowed  to  use  other  upper-­‐division  Biology  courses  from  a  group  of  course  electives.  

Public  Health  majors  (http://bsph.ucsd.edu/current_students_major.html)  are  required  to  take  12  units  of  lower-­‐division  Biology  classes.  They  can  choose  between  Option  1,  which  requires  the  BILD  1,  2,  and  3  series,  and  Option  2,  which  requires  BILD  3  plus  two  non-­‐major  Biology  courses  from  a  list  that  includes  BILD  10,  BILD  12,  BILD  20,  BILD  22,  and  BILD  26.  

At  the  upper-­‐division  level,  Public  Health  majors  must  specialize  in  Epidemiology  &  Biostatistics  or  Social  &  Behavioral  Sciences.  Each  focus  area  has  a  list  of  elective,  upper-­‐division  Biology  courses.  For  the  former,  they  are  BICD  136,  BIMM  114,  BIEB  100.  And  for  the  latter,  they  are  BIBC  120  and  BIPN  108.  

The  Global  Health  major  (http://globalhealthprogram.ucsd.edu/undergraduate-­‐program/major.html)  is  a  new  interdisciplinary  undergraduate  degree  program.  Students  were  able  to  enroll  for  the  first  time  fall  quarter  2014.  There  are  no  required  Biology  courses  for  this  major.  However,  Biology  lower-­‐  and  upper-­‐division  courses  are  part  of  approved  elective  courses  (BILD  18:  Human  Impact  on  the  Environment;  BILD  22:  Human  Nutrition;  BILD  26:  Human  Physiology;  BILD  36:  Aids,  Science,  and  Society;  BILD  38:  Dementia,  Science,  and  Society;  BIBC  120:  Nutrition;  BICD  136:  AIDS,  Science,  and  Society;  BIEB  176:  Conservation  and  the  Human  Predicament;  and  BIMM  110:  Molecular  Basis  of  Human  Disease).  

We  expect  that  many  of  the  students  majoring  in  Global  Health  will  be  pre-­‐med  and,  hence,  take  the  one-­‐year  BILD  1,  2,  3  series.  At  this  point  it  is  impossible  to  predict  the  impact  of  this  major  on  our  course  offerings.  

In  summary,  we  currently  are  able  to  meet  the  course  demands  of  students  seeking  to  fulfill  their  GE  or  major  requirements.  BILD  3  is  close  to  reaching  its  maximum  capacity,  but  we  hope  that  the  anticipated  hire  of  an  Assistant  Teaching  Professor  will  provide  relief.  Overall,  we  are  monitoring  the  course  demand  by  non-­‐Biology  majors  closely  to  avoid  bottleneck  situations.  

e. Alignment  of  Our  Division’s  Curricular  Offerings  with  National  Standards  Although  there  are  no  formal  national  standards  guiding  the  education  of  Biology  undergraduates,  three  highly  influential  publications1  outlined  the  following  fundamental  norms  and  principles:  

                                                                                                               1Transforming  Undergraduate  Education  for  Future  Research  Biologists  by  the  National  Research  Council’s  (2003),  the  Scientific  Foundation  for  Future  Physicists  by  Howard  Hughes  Medical  Institute  (2009),  and  the  Vision  and  Change  in  Undergraduate  Biology  Education:  A  Call  to  Action  by  the  American  Association  for  the  Advancement  of  Science  (2011).    

Page 21: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  21  

• Understanding  the  unity  and  diversity  of  life  requires  mastery  of  a  set  of  core  fundamental  concepts  (evolution;  structure  and  function;  information  flow,  exchange,  and  storage;  pathways  and  transformations  of  energy  and  matter;  and  systems).  

• Conceptual  understanding  of  biology  is  built  on  foundational  mathematics,  physics,  and  chemistry  concepts  (e.g.,  biological  systems  obey  the  laws  of  chemistry  and  physics).  

• Meaningful  comprehension  of  biological  phenomena  requires  modeling  and  quantitative  analysis,  i.e.,  a  foundation  in  computational  and  analytical  thinking.  

Alignments:  • Core  concepts:  As  part  of  UC  San  Diego’s  last  WASC  accreditation,  our  division  

developed  programmatic  educational  goals  for  all  eight  majors.  Although  we  developed  our  own  wording,  the  goals  are  well  aligned  with  modern  biological  concepts  undergraduate  biology  majors  should  master,  as  cited  above.  Our  programmatic  goals  are  publicized  on  our  website:  http://biology.ucsd.edu/_files/education/undergrad/bio-­‐wasc.pdf.  The  curricular  maps  visualize  how  the  course  work  characteristic  for  each  major  supports  learning  those  concepts,  skills,  and  ways  of  thinking  (values).  

As  alluded  to  on  page  4,  we  believe  that  teaching  ethical  implications  of  biological  discoveries,  responsible  conduct  of  research  (mandated  by  all  granting  programs)  requires  a  structured  and  intentional  approach,  currently  missing  in  our  program.  Therefore,  we  initiated  collaborations  with  UC  San  Diego’s  Academic  Integrity  office  to  identify  curricular  opportunities  ideally  suited  for  embedding  both  the  teaching  and  the  learning  of  ethical  decision-­‐making.  For  example,  students  enrolled  in  undergraduate  research  for  credit  (BISP  196,  199)  come  to  grips  first-­‐hand  with  research  values  such  as  knowledge,  truth,  and  avoidance  of  error.  These  students  are  poised  to  engage  in  serious  discussions  about  professional  ethics,  and  they  are  intellectually  and  emotionally  ready  to  struggle  with  the  relationship  of  research  to  a  variety  of  moral  and  social  values,  such  as  social  responsibility,  human  rights,  animal  welfare,  compliance  with  the  law,  and  health  and  safety.    A  pilot  teaching  module  has  been  drafted  for  review  by  the  Division’s  Education  Committee.  

• Foundational  sciences:  Since  its  inception,  Biology  education  at  UC  San  Diego  was  built  on  a  strong  foundation  in  physical  sciences.  All  students  must  take  a  yearlong  sequence  in  mathematics,  general  chemistry  and  organic  chemistry  (with  labs),  and  physics  (with  lab).  In  this  respect,  Biology  implemented  what  was  then,  in  the  1960s,  a  visionary  curriculum  (see  also  pp.  11,  13  -­‐  15).  

However,  over  the  years,  the  foundational  physical  and  biological  sciences  courses  were  taught  in  disciplinary  separation  with  unintended,  but  troublesome,  consequences.  Many  of  our  Biology  majors  view  the  required  mathematics,  chemistry,  and  physics  courses  as  necessary  evils.  Instead  of  helping  students  recognize  the  importance  of  learning  concepts  outside  their  major,  those  courses  

Page 22: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  22  

often  lead  to  intellectual  disengagement  and  an  inability  to  apply  concepts  and  knowledge  learned  there  to  the  Biology  curriculum.  

Faculty  in  Physical  Sciences  and  Biological  Sciences  recognized  this  as  a  serious  educational  challenge  and  created,  in  2013,  the  Math  and  Science  Alliance  (MaSA)  as  a  means  to  improve  science  and  mathematics  education.  MaSA  challenged  the  limitations  of  disciplinary  separation,  professional  isolation,  lack  of  awareness  of  educational  expertise  and  resources,  and  the  viewpoint  that  faculty  development  is  “remedial.”  MaSA  recently  became  an  official  center,  the  Center  for  Advancing  Math,  Science,  and  Engineering  Education  (CAMSEE).  An  explicit  goal  of  CAMSEE  is  to  create  an  environment  for  cross-­‐disciplinary  collaborations.  

Although  it  is  too  early  to  point  to  concrete  results,  a  few  initial  successes  justify  optimism:  

• The  new  lower-­‐division  Biological  Sciences  laboratory  course,  BILD  4,  is  inquiry-­‐based  and  will  engage  students  in  learning  core  scientific  processes,  applying  mathematical  concepts,  and  honing  critical  reasoning  skills  through  writing.  The  lab  is  being  developed  through  an  iterative  cycle  of  piloting,  assessing,  fine-­‐tuning,  then  scaling  to  larger  numbers.  Importantly,  an  advisory  team  (faculty  members  from  Physics,  Chemistry  and  Mathematics)  will  ensure  that  discipline-­‐specific  concepts  and  tools  are  introduced  within  the  context  of  a  Biology  lab.  

• Biology,  Chemistry,  and  Mathematics  faculty  jointly  submitted  a  proposal  to  the  National  Science  Foundation  to  develop  videos  to  address  two  broad  topics:  (1)  rates  of  change  and  (2)  probability.  These  topics  were  selected  because  they  are  important  across  the  foundational  science  and  math  courses,  and  research  shows  that,  even  after  instruction,  students  typically  have  a  limited  conceptual  understanding  of  them.  For  each  of  these  topics,  short  videos  will  focus  on  select  sub-­‐topics  that  are  especially  troublesome  for  students.  For  example,  “instantaneous  versus  average  rates  of  change”  and  “meaning  of  the  terms  in  a  differential  equation”  will  be  featured  among  the  rates-­‐of-­‐change  videos.  For  each  sub-­‐topic,  two-­‐  and  three-­‐minute  videos  will  show  how  it  is  used  in  Mathematics,  Physics,  Chemistry,  and  Biology  foundational  courses  and  in  research.  

• An  Advances  in  Math  and  Science  Education  Research  seminar  series  has  been  established  to  deepen  awareness  of  discipline-­‐based  educational  research.  

• Comprehension  of  biological  phenomena  through  modeling  and  quantitative  analysis:  As  already  stated  on  pages  13  &  14,  we  have  identified  the  urgent  need  to  address  the  demand  for  quantitative  literacy  in  our  curriculum.  We  are  committed  to  address  this  issue.  Faculty  colleagues  from  Computer  Science  and  Mathematics  will  participate  in  a  Biology  faculty  workgroup  that  will  start  its  work  in  Winter  Qtr.  15.  

Page 23: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  23  

f. Efforts  to  Increase  Students’  Participation  in  Experiential  Learning  Our  division  is  strongly  committed  to  raising  students’  awareness  of  the  educational  benefit  of  learning-­‐by-­‐doing  and  vigorously  promotes  the  available  options  through  the  do/bio  center,  advising,  informational  sessions,  the  Bio  Bulletin,  and  e-­‐mail  announcements.  The  vast  majority  of  Biological  Sciences  faculty  members  provide  experiential  learning  via  volunteer  research  and  undergraduate  research  opportunities  for  credit  (BISP  99,  196,  199)  and  mentoring  students  doing  credit-­‐bearing  internships  via  the  Academic  Internship  Program  (AIP  197).  To  further  increase  undergraduate  research  opportunities,  the  division  permits  that  students  engage  in  research  for  credit  (BISP  99,  196,  199)  with  non-­‐biology  faculty.  

Increasing  Awareness–Creating  the  Center  for  Discovering  Opportunities  in  Biological  Sciences:  Our  division  communicates  the  importance  of  experiential  learning  and  highlights  it  as  an  essential  educational  goal  even  during  recruitment  and  yield  activities  (e.g.,  Admit  Day).  One  of  the  reasons  for  creating  the  Center  for  Discovering  Opportunities  in  Biological  Sciences  Center,  the  do/bio  center,  was  to  increase  students’  access  to  learning-­‐by-­‐doing  opportunities  through  improved  communication.  The  do/bio  center  introduces  students  to  21st-­‐century  skills,  specifically  highlights  the  importance  of  experiential  learning,  and  provides  links  to  relevant  resources.  

The  do/bio  center  regularly  offers  informational  sessions  (e.g.,  Summer  Research  Info  Session),  then  publishes  the  PowerPoint  slides  on  the  web  for  students  who  could  not  attend.  In  addition,  the  center  develops,  either  alone  or  with  other  UC  San  Diego  units  and  industry  partners,  skill-­‐building  workshops  to  enhance  students’  success  rate  when  applying  for  experiential  learning  opportunities.  For  example,  we  have  partnered  with  Genomatica’s  VP  for  Human  Resources,  Tina  Jones,  to  create  an  “Interview  Skills”  workshop.  The  Director  of  UC  San  Diego’s  Writing  Center,  Dr.  Picciotto,  has  developed  a  “Cover  Letter”  and  “Research  Proposal”  workshop.  In  partnership  with  a  Biology  Alumnus  Carl  Burke  and  colleagues  from  UC  San  Diego’s  Career  Center  and  Center  for  Student  Engagement,  we  developed  a  one-­‐unit  seminar  (to  be  piloted  winter  quarter  15)  called  “Navigating  Careers  in  Biological  Sciences”  that  will  teach  skills  assessment  and  resume  writing.  

Increasing  Access  to  Undergraduate  Research  and  Internships  for  Credit:  

• Mentored  research–change  in  GPA  requirement  for  BISP  199/197  For  the  last  decades,  our  division’s  BISP  199  GPA  requirement  was  3.0.  It  was  established  based  on  the  belief  that  only  academically  strong  students  would  have  the  bandwidth  to  engage  in  serious,  time-­‐consuming  research.  It  became  clear,  however,  that  this  policy  was  overly  protective  and  prevented  students  from  improving  academically.  For  many  students,  conducting  research  supports  classroom  learning,  inspires,  and  increases  overall  educational  engagement.  

Therefore,  in  academic  year  13/14,  our  division’s  Education  Committee  decided  to  align  Biology’s  BISP  199  and  197  GPA  requirement  of  3.0  with  the  minimum  GPA  of  2.5  (identified  by  UC  San  Diego’s  Academic  Senate  as  the  minimum  GPA  for  doing  undergraduate  research  and  internship  for  credit).  We  received  

Page 24: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  24  

permission  to  make  this  change  from  the  Academic  Senate  Committee  on  Education  Policy  in  spring  quarter  14  and  implemented  it  effective  immediately.  

• Providing  scholarships  for  undergraduate  research  Often,  financial  reasons  prevent  students  from  engaging  in  undergraduate  research.  With  this  in  mind,  our  division  identified  solicitation  of  support  for  funding  undergraduate  research  scholarships  as  one  of  our  key  divisional  development  goals.  In  2007,  the  Eureka!  Scholarship  program  was  created  to  support  engagement  in  basic  and  translational  biology  by  facilitating  students’  participation  in  research  opportunities  at  UC  San  Diego  and  research  facilities  on  the  La  Jolla  mesa.  

The  Eureka!  Scholarship  Program  is  highly  competitive.  A  selection  committee  of  Biology  faculty  members  reviews  students’  applications.  Awardees  receive  a  scholarship  of  $4,000  and  participate  in  summer  enrichment  activities  (e.g.,  GRE  training,  public  speaking  and  poster  presentation  workshop).  On  average,  our  division  awards  12-­‐15  Eureka!  Scholarships.  

Our  division  actively  promotes  Eureka!  Scholarships  and  other  UC  San  Diego  summer  research  scholarships  during  informational  sessions  conducted  in  November  and  January.  The  application  deadline  for  summer  research  scholarships  in  the  second  Monday  in  February,  and  recipients  are  informed  by  the  end  of  March.  

Increasing  Industry  Internship  Opportunities:  UC  San  Diego  Alumni  Affairs  has  ramped  up  its  efforts  to  increase  and  broaden  internships  opportunities  provided  by  local  companies.  Opportunities  are  advertised  at  UC  San  Diego’s  Undergraduate  Research  Portal.  In  addition,  UC  San  Diego’s  Career  Center  maintains  a  comprehensive  and  up-­‐to-­‐date  Internship  Supersite,  describing  a  plethora  of  local,  national,  and  international  opportunities.  

Our  division  actively  promotes  these  resources  and  complements  them  with  additional  opportunities  created  specifically  for  Biology  majors.  For  example,  in  13/14  BD  Biosciences  reached  out  to  us  to  recruit  among  Biology  majors  for  summer  internships.  

Undergraduate  Instructional  Apprentice  Program:  Serving  as  an  undergraduate  instructional  apprentice  is  an  invaluable  experience.  It  develops  communication  and  leadership  skills,  and  provides  an  opportunity  to  better  understand  how  people  learn.  Furthermore,  it  allows  undergraduates  to  get  to  know  and  work  with  faculty  outside  the  classroom.  Our  division  engages  undergraduates  as  teaching  assistants  and  allows  undergraduates  to  receive  credit  for  BISP  195  (Introduction  to  Teaching  in  Biology,  http://www.ucsd.edu/catalog/curric/BIOL-­‐ug.html),  which  students  can  apply  to  fulfill  a  Biology  elective  course  requirement (see:  http://biology.ucsd.edu/undergrad/ta-­‐positions/BISP195.html).  

International  Education–Promoting  Study  Abroad:  To  succeed  in  today’s  global  research  enterprise  and  economy,  students  must  have,  in  addition  to  excellent  technical  skills,  strong  intercultural  knowledge  and  competence  (see  also  21st  Century  Soft  Skills).  In  

Page 25: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  25  

response  to  this  need,  international  education  has  been  identified  as  one  of  several  “high  impact”  educational  experiences,  i.e.,  experiences  that  increase  students’  engagement  and  academic  performance.  

Our  International  Education  Program  for  Biologists  allows  our  majors  to  participate  in  significant  international  activities.  Our  division  has  partnered  with  UC  San  Diego’s  International  Center  to  promote  its  Program  Abroad.  We  expanded  on  this  by  developing  a  specific  resource  for  Biology  majors:  Study  Abroad  in  Biology.  We  also  created  a  document  that  lists  the  study  abroad  Biology  courses  and  their  UCSD  equivalency:  http://biology.ucsd.edu/education/undergrad/course/prev-­‐petitioned-­‐courses.html.  Furthermore,  with  funding  from  the  National  Science  Foundation,  we  also  created  our  own  international  education  program,  PRIME,  a  cross-­‐disciplinary  Pacific  Rim  summer  research  program.  This  program  has  been  presented  at  the  UC  San  Diego  Experiential  Learning  Conference  2013.  

Global  Concentration  in  a  Biology  Major.  To  promote  international  education  more  aggressively,  UC  San  Diego’s  Committee  on  International  Education  proposed  the  creation  of  a  Global  Concentration  in  a  Major  option.  Recently,  a  small  workgroup  was  formed  to  develop  plans  to  establish  a  global  concentration  in  at  least  one  of  our  Biology  majors,  most  likely  Ecology,  Behavior,  and  Evolution.  A  global  concentration  within  a  major  will  require  the  following:  

• Earning  a  minimum  of  eight  credits  in  study  abroad  • Proficiency  in  a  second  language  • Completing  two  or  more  classes  with  global  content  

We  have  been  accepting  and  applying  those  study-­‐abroad  courses  toward  degree  requirements  for  majors,  fulfilling  one  of  the  three  key  components  of  the  Global  Concentration.  Developing  courses  and  or  identifying  existing  courses  that  provide  “global  content”  is  one  of  the  key  tasks  of  the  workgroup.  We  anticipate  that  the  group  will  have  a  viable  proposal  by  the  end  of  academic  year  14/15.  

Providing  Leadership  Training–Student  Organizations:  To  develop  leadership  and  other  non-­‐technical  skills  necessary  for  professional  success,  our  division  supports  four  distinctive  student  leadership  programs:  

• Biological  Sciences  Student  Association:  bssa.ucsd.edu    • Biological  Sciences  Scholars  Program:  http://bssp.ucsd.edu/BSSP/Home.html  • Saltman  Quarterly  Science  Communication  Program:  sq.ucsd.edu  • Biological  Sciences  Undergraduate  Student  Advisory  Council  (USAC):  

http://biology.ucsd.edu/undergrad/pages/usac.html  

Partnering  with  and  Contributing  to  Campus-­‐wide  Efforts:  Biology  faculty  members  have  actively  contributed  to  UC  San  Diego’s  Education  Initiative.  One  of  its  key  goals  is  to  develop  a  campus  clearinghouse  for  experiential  learning  opportunities  to  make  it  easier  to  match  students  with  experience  providers.  The  creation  of  this  resource  is  underway.  

g. Academic  Quality  of  the  Faculty  and  Undergraduate  Curriculum  

Page 26: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  26  

Rankings:  UC  San  Diego  was  founded  on  the  La  Jolla  Mesa  in  1960  and  has  since  become  a  world-­‐renowned  center  for  biological  and  biochemical  research  and  undergraduate  and  graduate  training.  We  take  all  national  rating  studies  of  PhD  programs  with  a  very  large  grain  of  salt.  Nonetheless,  in  2011,  the  National  Research  Council  ranked  the  UC  San  Diego  PhD  program  in  Biological  Sciences  in  the  top  10  in  the  U.S.  (http://chronicle.com/article/NRC-­‐  Rankings-­‐Overview-­‐/124709/).  This  study  assessed  such  programs  using  21  criteria,  including  faculty  citation  rates  and  student  time-­‐to-­‐degree.  

More  recently,  the  2013  Academic  Ranking  of  World  Universities  listed  the  life  sciences  at  UC  San  Diego  as  the  seventh  best  among  top  research  universities  around  the  world.  These  latest  rankings  of  research  universities  and  their  academic  fields  were  recently  released  by  the  Center  for  World-­‐Class  Universities  at  Shanghai  Jiao  Tong  University,  a  public  research  university  located  in  Shanghai,  China.  

In  2014,  College  Factual  ranked  UC  San  Diego’s  undergraduate  Biology  program  as  #2  in  the  nation  and  called  it  “…  a  top  choice  for  students  who  desire  a  high  quality  education  in  the  sciences.”  (http://college.usatoday.com/2014/09/13/top-­‐%C2%AD%C2%AD%C2%AD10-­‐colleges-­‐for-­‐a-­‐major-­‐in-­‐biology/)  

Two  Important  Trends:  Two  trends  we  wish  to  highlight  are  the  increase  of  PIs  employing  quantitative  approaches  and  PIs  who  study  both  model  and  non-­‐model  organisms  at  the  mechanistic  level.  Both  trends  are  important  for  developing  a  deep  understanding  of  biological  mechanisms  and  translating  basic  findings  to  clinical  health  care.  

Specifically,  during  the  last  few  years,  we  recruited  faculty  directly  involved  in  the  “revolution”  of  quantitative  and  systems  approaches  that  is  defining  the  future  of  biology.  These  recent  hires  include  Gurol  Suel,  Scott  Rifkin,  Nan  Hao,  and  Eva-­‐Maria  Schoetz  Collins.  Dr.  Collins  has  a  PhD  in  Physics,  and  she  has  a  joint  appointment  in  Physics  and  Biological  Sciences  due  to  her  training  and  deep  use  of  mathematical  approaches  and  physics  methods  to  attack  biological  problems.  Dr.  Ralph  Greenspan  (at  the  Kavli  Institute;  UCSD  Prof-­‐in-­‐residence)  is  part  of  the  Obama  administration  initiative  to  develop  dynamic  visual  maps  of  functioning  brains.  

These  new  colleagues  will  lead  our  efforts  to  reform  our  curricula  to  provide  opportunities  to  learn  and  apply  quantitative  knowledge  and  reasoning  and  informatics  tools.  (See  “Assessment  of  the  Breadth  and  Depth”,  pp.  13  -­‐  15;  and  Alignment  with  National  Standards  pp.  20  -­‐  22).    

h. Instructional  Assistant  (formerly:  Teaching  Assistant  [TA])  Training  

Current  Structure:  Training  for  instructional  assistants  enrolled  in  BGGN  500  and  BISP  195  includes  an  instructional  assistant  manual,  an  initial  half-­‐day  training,  mid-­‐quarter  workshops,  observation  by  graduate  teaching  mentors  to  provide  feedback  on  their  teaching,  and  hands-­‐on  apprenticeships  with  course  faculty.  This  format  has  continued  from  previous  years  with  one  minor  change  providing  alternatives  for  instructional  

Page 27: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  27  

assistants  who  cannot  attend  a  workshop.  These  aspects  of  training  are  described  in  more  detail  next.  

• Instructional  assistant  manual  To  assist  instructional  assistants  in  preparing  for  their  roles,  we  created  a  manual  (http://biology.ucsd.edu/_files/education/undergrad/student-­‐opp/teaching-­‐asst/Biology%20TA%20Training%20Manual%202014-­‐09-­‐11%20Final.pdf).  This  guide  is  updated  each  year  to  reflect  changes  and  innovations  in  teaching  and  learning.  

• Initial  half-­‐day  training  This  training  is  4.5  hours  and  consists  of  a  series  of  short  workshops  and  panel  discussions  by  the  faculty  advisor  for  instructional  assistants,  graduate  teaching  mentors,  and  invited  speakers.  These  sessions  focus  on  the  logistics  of  being  instructional  assistants,  academic  integrity,  a  panel  discussion  by  faculty,  an  introduction  on  how  people  learn,  and  case  studies  on  diversity.  Mandatory  training  in  sexual  harassment  prevention  is  done  online,  and  instructional  assistants  turn  in  their  completion  certificates  when  they  sign  in  at  this  training.  

• Mid-­‐quarter  workshops  These  workshop  are  scheduled  in  weeks  4-­‐5  of  the  quarter,  allowing  instructional  assistants  to  gain  experience  with  their  particularly  teaching  contexts  but  giving  them  enough  time  to  implement  changes  learned  from  the  workshops.  The  workshops  cover  various  topics  that  may  be  of  interest  to  beginning  instructional  assistants,  including  the  following:  

• How  People  Learn,  taught  by  Peter  Newbury,  Center  for  Teaching  Development  (CTD)  

• Students  in  Crisis,  taught  by  Gregory  Koch,  Counseling  and  Psychological  Services  (CAPS)  

• Diversity  in  Teaching,  taught  by  Steve  Miller  and  postdoctoral  fellows  • Biological  Sciences  Reflections  on  Teaching,  taught  by  Stanley  Lo  and  

graduate  teaching  mentors,  Biological  Sciences  

Instead  of  a  workshop,  PhD  students  in  Biological  Sciences  can  participate  in  a  peer-­‐to-­‐peer  observation  on  another  student’s  section  alongside  a  graduate  teaching  mentor.  The  observer  meets  with  the  graduate  teaching  mentor  after  the  observation  to  reflect  on  the  experience  and  submits  an  observation  form.  In  fall  2014,  6  out  of  110  instructional  assistants  participated  in  these  observations.  

Instructional  assistants  who  cannot  attend  any  of  the  workshops  because  of  scheduling  conflicts  can  attend  a  teaching  workshop  at  CTD  and  write  a  one-­‐page  reflection  on  what  they  have  learned  and  how  the  workshop  applies  to  their  teaching  context.  In  fall  2014,  3  out  of  110  instructional  assistants  attended  a  CTD  workshop  instead  of  the  mid-­‐quarter  workshops.  

In  the  past,  instructional  assistants  who  missed  workshops  received  an  incomplete  grade  until  they  made  up  the  workshop  in  the  subsequent  quarter.  On  occasions,  instructional  assistants  were  allowed  to  turn  in  a  reflection  paper  

Page 28: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  28  

based  on  a  CTD  workshop  or  additional  reading  from  the  book  How  People  Learn.  We  opted  for  the  CTD  workshop  alternative,  as  it  most  closely  resembles  the  mid-­‐quarter  workshops.  

• Observations  by  graduate  teaching  mentors  PhD  students  in  Biological  Sciences  are  observed  once  by  a  graduate  teaching  mentor.  This  is  an  opportunity  for  instructional  assistants  to  receive  formative  feedback  on  their  teaching  from  an  experienced  peer  without  the  pressure  of  a  formal  evaluation.  These  observations  are  scheduled  mid-­‐quarter  to  allow  time  for  implement  changes  based  on  the  feedback.  

Future  Plans:  To  date,  training  for  instructional  assistants  has  focused  largely  on  logistics  and  experience  while  touching  briefly  on  fundamental  issues  of  learning  and  teaching.  To  engage  instructional  assistants  in  thinking  more  deeply  about  their  roles  and  teaching  in  general,  we  plan  to  redesign  the  training  in  collaboration  with  the  CTD  and  faculty  across  disciplines  to  follow  the  core  ideas  from  the  Center  for  the  Integration  of  Research,  Teaching,  and  Learning  (CIRTL),  a  consortium  of  25  institutions  focused  on  professional  development  for  graduate  students  and  postdoctoral  fellows  in  science,  technology,  engineering,  and  mathematics  (STEM).  We  will  develop  a  core  curriculum  across  disciplines,  with  examples  tailored  to  individual  disciplines.  

The  CIRTL  core  ideas  include  teaching-­‐as-­‐research,  learning  communities,  and  learning-­‐through-­‐diversity  (http://www.cirtl.net/CoreIdeas)  as  follows:  

• Teaching-­‐as-­‐research  is  the  deliberate,  systematic,  and  reflective  use  of  research  methods  by  STEM  instructors  to  develop  and  implement  teaching  practices  that  advance  the  learning  experiences  and  outcomes  of  students  and  teachers.  

• Learning  communities  bring  together  groups  of  people  for  shared  learning,  discovery,  and  generation  of  knowledge.  To  achieve  common  learning  goals,  a  learning  community  nurtures  functional  relationships  among  its  members.  

• Learning-­‐through-­‐diversity  capitalizes  on  the  rich  array  of  experiences,  backgrounds,  and  skills  among  STEM  undergraduates  and  graduates-­‐through-­‐faculty  to  enhance  the  learning  of  all.  It  recognizes  that  excellence  and  diversity  are  necessarily  intertwined.  

i. Divisional  Teaching  Workload  and  Our  Division’s  Approach  to  Teaching  Assignments  

The  expected  teaching  load  for  divisional  faculty  in  the  traditional  research  series  is  3.0  and,  for  the  faculty  in  the  LPSOE/LSOE  Teaching  Professor  series,  6.0  or  5.0  if  the  faculty  member  fulfills  important  teaching-­‐related  activities  such  as  training  divisional  instructional  assistants.  The  combination  of  formal  and  non-­‐formal  courses  must  reflect  at  least  3.0  courses  per  year  for  research  faculty,  and  5.0  or  6.0  courses  per  year,  respectively,  for  Teaching  Professors  on  the  Course  Load  and  Student  Direction  form.  The  Education  Committee  oversees  all  so-­‐called  formal  courses.  For  faculty  in  the  traditional  research  series,  half  of  the  3.0  courses  must  be  courses  overseen  by  the  Education  Committee;  teaching  so-­‐called  non-­‐formal  courses  can  fulfill  the  other  half  of  the  teaching  load.  

Page 29: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  29  

Non-­‐formal  courses,  i.e.,  courses  not  overseen  by  the  EC,  are  the  following:  • Undergraduate  courses  

o BILD,  91,  92,  94,  95,  96,  99  o BISP  191,  195,  196,  197,  199  

• Graduate  courses  o BGGN  292,  297,  299,  500  o BGJC  series  courses  o BGRD  series  courses  o BGSE  series  courses  

Seminar  courses  taught  under  the  management  of  the  EVC  do  not  affect  regular  teaching  assignments  and  department  workload  requirements  and,  therefore,  cannot  be  used  to  substitute  for  regularly  assigned  teaching.  These  seminars  include  BILD  87  (Freshmen  Seminar)  and  BISP  192  (Senior  Seminar).  

These  teaching  expectations  are  in  addition  to  graduate  mentoring  and  other  instructional  duties  performed  by  all  faculty.  

All  Academic  Senate  faculty  members  choose  their  courses  in  consultation  with  the  needs  of  his  or  her  section  and  the  overall  curricular  needs  of  our  division’s  undergraduate  and  graduate  programs  administered  by  the  Education  Committee.  Teaching  assignment  and  course  offering  processes  are  overseen  by  the  EC  vice-­‐chair,  and  in  close  partnership  with  the  four  section  representatives  and  the  section  chairs.  Appendix  10  provides  a  detailed  description  of  the  process.    

It  is  expected  that  faculty  with  a  teaching  load  of  3.0  teach,  at  a  minimum,  one  large-­‐enrollment  lower-­‐division  or  upper-­‐division  undergraduate  lecture  course.  The  other  half  course  can  be  either  a  small-­‐enrollment  course  in  the  BISP  194  series  or  part  of  a  formal  graduate  course.  Lab  courses  compose  the  majority  of  the  Teaching  Professors’  6.0  course  load,  although  most  also  teach  at  least  one  large-­‐enrollment  lecture  course.  

j. Teaching  Evaluation  Used  in  Addition  to  CAPE  

Teaching  Assistants:  Graduate  Instructional  Assistants  (GIAs)  receive  both  formative  feedback  and  summative  evaluation  (see  also  “Instructional  Assistant  Training”).  Feedback  is  intended  to  help  improve  a  GIA’s  teaching  during  the  quarter,  and  evaluation  provides  information  to  determine  the  GIA’s  effectiveness  as  an  instructional  assistant.  It  also  provides  feedback  as  the  GIA  continues  to  improve  his  or  her  teaching  after  a  specific  academic  quarter.  

GIAs  receive  formative  feedback  from  a  graduate  teaching  mentor  (officially  “Senior  TA”).  This  feedback  is  required,  but  the  results  are  confidential  between  the  GIA  and  the  graduate  teaching  mentor,  so  they  are  not  reported  or  shared  with  anyone  else.  

Summative  evaluations  are  provided  to  all  GIAs,  tutors,  and  readers  by  students  and  course  faculty  at  the  end  of  each  quarter.  These  evaluations  are  similar  to  Course  and  Professor  Evaluations  (CAPE)  and  are  online  (see  Appendix  11).  Based  on  the  outcome  of  student  and  faculty  evaluation,  outstanding  GIAs  may  be  considered  for  an  Excellence  in  

Page 30: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  30  

Apprentice  College  Teaching  Award  presented  annually  during  the  Divisional  Science  Retreat.  

Faculty:  We  rely  solely  on  CAPE  data  to  assess  the  quality  of  faculty  teaching.  To  create  additional  assessment  tools  for  reviewers,  we  are  encouraging  inclusion  of  a  teaching  portfolio  in  a  faculty’s  advancement  and  promotion  file.  To  provide  guidance  for  this  effort,  we  created  a  teaching  portfolio  checklist  (see  Appendix  11).  However,  at  this  point,  only  faculty  in  the  Teaching  Professor  series  routinely  develop  a  detailed  portfolio.  

There  is  widespread  agreement  among  our  faculty  that  the  teaching  and  faculty/teacher  evaluation  process  needs  an  overhaul.  Our  division’s  Education  Committee  has  taken  the  first  steps  to  develop  a  clear  vision  for  creating  a  comprehensive  system  for  evaluating  and  supporting  effective  teaching.  Such  a  system  would  include  identification  of  parameters  used  to  assess  teaching  quality  and  the  assurance  that  appropriate  training  opportunities  to  acquire  the  skills  are  in  place.  For  example,  if  the  quality  of  a  syllabus  is  part  of  a  teaching  evaluation,  opportunities  for  learning  how  to  develop  an  effective  syllabus  should  be  offered;  or  if  a  faculty’s  ability  to  apply  appropriate  pedagogies  and  instructional  technologies  to  specific  learning  challenges  is  considered,  then  training  in  how  people  learn  must  be  provided.  

The  development  of  such  a  divisional  comprehensive  teaching  evaluation  system  will  be  done  in  collaboration  with  the  Center  for  Engaged  Teaching  (CET).  CET  will  be  established  in  the  very  near  future  as  part  of  UC  San  Diego’s  Education  Initiative  (http://educationinitiative.ucsd.edu/)  as  a  unit  dedicated  to  the  theory  and  practice  of  learning  and  teaching  and  training  in  scholarly  teaching.  

 

III.  Advising  

a. Comprehensive  Overview  of  Divisional  Advising  Services,  Practices,  and  Methods  

We  view  academic  advising  as  an  ongoing  process  that  engages  students  in  educational  planning  consistent  with  their  academic  interests  and  personal,  intellectual,  and  career  goals.  Our  student-­‐centered  advising  process  involves  an  active  partnership  among  students,  academic  advisors,  and  faculty  advisors.  

Our  division,  via  the  Undergraduate  Student  and  Instructional  Services  (USIS)  unit,  offers  extensive,  multi-­‐pronged  advising  services  for  close  to  5,500  students  enrolled  in  our  eight  academic  majors.  Sharing  this  vision  with  students  prior  to  their  commitment  to  join  UC  San  Diego  is  important,  which  is  why  USIS  actively  participates  in  outreach  and  recruitment  activities.  USIS  fulfills  this  function  with  five  full-­‐time  staff  members.  Appendix  12  shows  the  organizational  chart  for  USIS.  

USIS  academic  advising  services  focus  on  three  distinct,  chronological  stages  of  division/student  interactions:  (1)  recruiting  (reaching  out),  (2)  programming  for  admitted  students  (welcoming  and  orienting),  and  (3)  providing  services  for  continuing  students  (supporting  students’  longer-­‐range  academic  and  intellectual  journey).  

Page 31: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  31  

Providing  meaningful  and  adequate  advising  to  5,500  students  is  a  challenge.  This  challenge  is  compounded  by  the  fact  that  we  have  several  unique  student  populations  with  specific,  and  often  distinctly  personal,  advising  needs.  These  populations  include  transfer  students,  veterans,  undergraduates  from  other  countries,  and  students  registered  with  the  Office  for  Students  with  Disabilities.  

b.  Three  Stages  of  Advising  

1.  Reaching  Out  to  Potential  Students:  To  communicate  information  about  our  division’s  advising  services  programs  and  inform  interested  applicants  how  to  best  prepare  for  a  major  in  Biology,  USIS  actively  contributes  to  outreach  activities.  To  target  interested  freshmen,  USIS  staff  members  participate  in  UC  San  Diego’s  Triton  Day  each  April.  During  the  event,  USIS  advisors  staff  an  information  table  alongside  tables  representing  our  division’s  student  organizations.  

As  part  of  this  event,  our  division  offers  two  faculty-­‐led  sessions,  which  are  repeated  twice  to  accommodate  prospective  student  and  parental  demand.  The  first  provides  an  overview  of  divisional  offerings  and  a  review  of  why  a  prospective  student  should  select  UC  San  Diego  and  the  Division  of  Biological  Sciences  as  their  campus  and  division  of  choice.  The  second  reviews  research  and  student  opportunities  outside  the  classroom  and  includes  a  student  panel  to  provide  a  peer  perspective.  

A  similar  event  is  organized  annually  for  prospective  transfer  students,  called  Transfer  Triton  Day  at  which  USIS,  student  organizations,  and  Biology  faculty  deliver  a  program  modeled  after  Triton  Day  for  freshmen.  

USIS  also  actively  contributes  to  California  community  college  outreach  events.  Biology  advisors  travel  to  local  community  colleges  to  attend  college  fairs,  meet  with  students  and  community  college  faculty  and  advisors,  review  major  options  and  requirements,  and  explain  Assist  agreements.  USIS  staff  members  also  participate  in  events  held  on  campus  called  Transfer  Fridays.  These  events  target  prospective  transfer  students  attending  community  colleges  across  California.  

Prospective  students  and  non-­‐UCSD  counselors  are  encouraged  to  contact  USIS  for  assistance  through  our  roll  account,  [email protected]  or  by  calling  the  USIS  office.  We  provide  advice  by  e-­‐mail,  phone,  and  in  person.  

2.  Welcoming  and  Orienting  New  Students:  Our  division’s  academic  majors  are  popular  choices  among  freshmen  and  new  transfer  students.  Fall  quarter  14,  about  24%  of  all  freshmen  and  14%  of  new  transfer  students  were  declared  Biology  majors,  as  shown  in  the  following  table  (see  also  Appendix  13).  

Table  6.  Declared  Biology  Majors    among  Freshmen  and  New  Transfer  Students–Fall  2014  

FA14,  Biological  Sciences   Admits   Accepts  

Freshmen   5,674                        1,275  

New  transfer  students   810   374  

Page 32: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  32  

Total   6,484   1,649  

2.a.  Welcome  Week  Orientation:  Explorientation:  During  the  annual  Welcome  Week,  our  division  offers  a  special  orientation  called  Explorientation  for  incoming  freshmen  and  transfer  Biology  students.  The  format  of  this  event  is  unusual  because  it  tries  to  help  students  understand  that  success  in  college  is  founded  on  active  engagement.  Instead  of  being  “talked  to,”  the  format  that  characterizes  traditional  orientations,  students  learn  about  opportunities  and  resources  by  discovering  (exploring)  them  on  their  own.  Students  are  given  specific  tasks  and  challenged  to  find  answers  by  consulting  resources  we  acquaint  them  with.  We  ask  students  to  form  small  teams,  and  then,  in  their  groups,  find  specific  campus  structures  and  learn  about  the  services  and  programs  that  take  place  in  those  buildings  by  talking  to  the  professionals  who  work  there.  In  short,  we  teach,  through  hands-­‐on-­‐activities,  behaviors  of  engaged  students.  

Students  are  also  introduced  to  our  division’s  Academic  Advising  Syllabus  outlining  our  commitment  to  student-­‐centered  advising.  Our  advisors  are  concerned  not  only  with  specific  personal  decisions  but  also  with  facilitating  students’  thought  processes.  The  Academic  Advising  Syllabus  lays  the  foundation  for  future  interactions  and  expectations.  

2.b.  Biology  Freshmen–Strategies  for  Success  Course:  The  undergraduate  college  advisors  almost  exclusively  handle  freshmen  advising.  However,  we  believe  that  stronger  involvement  of  students’  major  advisors  would  benefit  undergraduates.  

We  have  piloted  a  freshman  transition  course  for  incoming  Biology  majors  to  increase  interactions  among  the  students  and  with  faculty  and  staff.  Modeled  after  the  successful  Transfer  Student  course  (see  next  item),  the  BILD  91  course  (Biology  Freshmen:  Strategies  for  Success)  is  purposely  offered  winter  quarter  to  give  the  students  fall  quarter  to  begin  adapting  and  determining  more  clearly  what  their  “issues”  are.  By  winter  quarter,  students  are  more  settled  in  and,  therefore,  more  ready  and  willing  to  engage  in  topics  such  as  study  skills,  academic  planning,  and  how  to  use  divisional  and  campus  resources  to  help  achieve  academic,  personal,  and  professional  goals.  

2.c.  Transfer  Opportunities  for  Success  Program:  Transfer  students  are  often  less  certain  than  freshmen  about  their  ability  to  succeed  at  UC  San  Diego.  The  Transfer  Opportunities  for  Success  (TOpS)  program  addresses  their  specific  needs.  The  program  has  three  phases:  

• Advising  during  the  summer  before  students  enroll:  In  June  each  year,  USIS  staff  members  participate  with  the  undergraduate  colleges  to  launch  the  New  Student  Site,  a  portal  for  incoming  transfer  students  that  contains  a  plethora  of  information  ranging  from  important  deadlines  to  major  and  college  requirements.  The  site  allows  transfer  students  to  submit  questions  to  any  academic  department  on  campus  and  for  academic  staff  to  submit  information  to  their  incoming  students  through  the  Enrollment  Virtual  Advising  Center.  (We  receive  approximately  500  messages).  In  mid-­‐  August,  transfer  students  are  invited  to  participate  in  New  Transfer  Student  Information  Sessions.  We  offer  

Page 33: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  33  

five  information  sessions  per  week.  Each  session  has  an  enrollment  of  approximately  40  students.  

• Fall  quarter:  Transfer  student  seminar  BISP  191  (Biology  Transfers:  Strategies  for  Success)  assists  students  in  their  transition  from  community  college  to  UC  San  Diego.  It  focuses  on  first-­‐quarter  transition  issues,  academic  planning,  making  effective  use  of  campus  resources,  and  connecting  to  the  Division  of  Biological  Sciences  community  (students,  faculty,  and  staff),  UC  San  Diego  more  generally,  and  the  La  Jolla  mesa  (see  Appendix  14).  

• Winter  and  spring  quarters:  Students  are  invited  to  participate  in  a  Transfer  Student  Buddy  Program,  a  peer-­‐mentoring  program  created  and  run  by  the  Biological  Sciences  Student  Association.  

3.  Supporting  Students’  Academic  and  Intellectual  Journey:  Our  division  created  a  two-­‐tiered  advising  structure,  including  both  staff  and  faculty  advisors.  

Faculty  advisors  offer  students  general  educational  and  career  advice  (related  to  their  academic  interests,  educational  goals,  and  professional  ambitions).  Faculty  advisors  also  act  as  mentors  for  students  pursuing  new  areas  of  inquiry  and  study.  They  can  offer  knowledge  of  courses  relevant  to  a  student’s  particular  interest  within  the  major  and  his  or  her  specific  educational  and  professional  goals,  assist  students  in  considering  courses  that  will  enrich  their  experience,  and  guide  students  to  take  advantage  of  special  opportunities.  Faculty  advisors  assist  undergraduate  staff  with  the  petition  review  process  and  present  and  participate  in  information  sessions.  Faculty  advisors  are  trained  and  receive  an  advisor  handbook  (See  Appendix  15  for  the  14/15  handbook).  

Staff  advisors  answer  students’  nuts-­‐and-­‐bolts  questions  about  course  selection  and  content,  graduate  schools,  processing  forms  and  petitions  for  study  abroad,  major  requirements,  degree  audits,  long-­‐term  plans,  course  prerequisites,  specialized  programs  offered  in  our  division,  the  applicability  of  coursework  taken  outside  of  UC  San  Diego  to  major  requirements,  petition  guidelines  and  processes,  and  general  post-­‐graduation  requirements.  Specifically,  staff  advisors  assist  students  by:  

• Reviewing  and  further  developing  education  plans  as  they  relate  to  the  Biology  major  

• Monitoring  and  discussing  progress  toward  degree  completion  • Advising  on  how  to  integrate  leadership  and  experiential  opportunities  • Interpreting  and  understanding  university  and  divisional  policies  and  procedures  • Pointing  to  resources  for  guidance  on  life  and  career  goals  

c. Advising  Unique  Student  Populations  

Transfer  Students:  To  improve  the  academic  and  social  experiences  of  our  transfer  students,  our  division  created  the  special  Transfer  Opportunities  for  Success  Program,  described  above,  which  includes  special  advising  opportunities.  However,  this  does  not  address  our  biggest  concern:  the  vast  majority  of  transfer  students  do  not  complete  the  major-­‐specific,  lower-­‐division  courses  prior  to  transferring  to  UC  San  Diego.  This  situation  inevitably  leads  to  increased  time-­‐to-­‐degree.  As  described  above,  our  division  is  developing  a  proposal  to  request  modification  of  eligibility  criteria  for  transfer  as  a  

Page 34: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  34  

Biology  major  when  students  successfully  complete  required  lower-­‐division  major  courses.  

Students  from  Other  Countries:  Our  division  has  seen  an  increase  in  students  from  other  countries.  These  students  experience  unique  challenges  such  as  fear  of  not  being  understood  because  of  language  problems,  listening  difficulties,  speaking  problems  (fluency,  intonation,  pronunciation,  etc.),  difficulties  in  reading  comprehension,  lack  of  relevant  academic/cultural  background  for  courses,  and  different  academic  values.  Our  division  has  not  yet  developed  any  specific  programs  or  advising  strategies  for  this  population,  but  we  are  poised,  to  work  with  other  campus  constituents  (e.g.,  undergraduate  colleges,  International  Center)  on  such  action.  

Students  with  Disabilities:  The  number  of  students  registered  with  the  Office  for  Students  with  Disabilities  (OSD)  has  increased  dramatically  over  the  last  decade.  The  range  of  accommodations  has  increased  too,  including  student  restrictions  such  as  morning-­‐only-­‐courses,  one-­‐final-­‐per-­‐day,  etc.  This  has  created  new  and  quite  labor-­‐intensive  advising  challenges.  

Biology  Majors  Who  Choose  to  Study  Abroad:  Our  division  highly  encourages  students  to  participate  in  study  abroad  opportunities  as  undergraduates  (see  also  “Efforts  to  Increase  Students’  Participation  in  Experiential  Learning”).  When  students  apply  to  study  abroad  through  the  Education  Abroad  Program  (EAP),  their  major  department  and  college  have  to  review  and  approve  their  Academic  Planning  Form  (APF)  as  part  of  their  application  package.  The  APF  lists  the  courses  the  student  anticipates  taking  at  the  university  abroad.  Advisors  are  responsible  for  cross-­‐referencing  previously  reviewed  coursework  with  proposed  coursework  and  advise  on  the  applicability  of  such  coursework  to  major  requirements.  Advisors  are  also  responsible  for  reviewing  petition  process  guidelines  for  major  credit  prior  to  a  student’s  departure  for  study  abroad.  

Table  7.  Number  of  Biology  Majors  Studying  Abroad–Academic  Year  13/14  

Fall  2013   Winter  2014   Spring  2014   Summer  2014   Total  24   126   47   11   208  

Table  8.  Biology  Majors  that  Studied  Abroad    Relative  to  the  Campus–Academic  Year  10-­‐112  

Biology  Majors  that  

Studied  Abroad  

UCSD  Students  that  

Studied  Abroad  

%  of  Total  Abroad  

Total  of  UD  Biology  Majors  

%  of  Biology  Majors  that  

Studied  Abroad  

176   1184   14.9%   4,033   4%  

                                                                                                               2Data  taken  from  Annual  Report  for  2011,  I-­‐Center  Reports  and  Statistics  (http://icenter.ucsd.edu/about/publications/index.html).  

Page 35: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  35  

Students  in  Special  Studies  (e.g.,  Undergraduate  Research  for  Credit;  BILD  99,  BISP  196/199):  USIS  manages  administration  of  the  undergraduate  research  for  academic  credit  program  each  academic  term  and  the  three  recognized  terms  in  the  summer  session.  This  work  includes  collection  of  applications,  initial  review,  approval  of  a  subset,  processing,  enrollment  and  communication  with  instructor  and  student  at  various  stages  in  the  process.  The  following  table  shows  the  number  of  students  at  each  stage  of  the  process  for  the  three  courses  for  academic  year  2013/14.  

Table  9.  Students  in  Undergraduate  Research  for  Credit  Courses–  Academic  Year  13/14  

  BILD  99  

BISP  196  

BISP  199   Total  

Application  submitted   17   80   518   615  Application  approved   14   80   507   601  Application  denied   3   0   10   13  Enrolled  by  USIS   13   80   507   600  Enrollment  at  end  of  quarter   13   80   490   583  Application  with  Biology  faculty  sponsor  (#)   10   40   174   224  Application  with  non-­‐Biology  faculty  sponsor  (#)  

7   40   344   391  

Application  with  Biology  faculty  sponsor  (%)   58.8%   50.0%   33.2%   36.4%  Application  with  non-­‐Biology  faculty  sponsor  (%)  

41.2%   50.0%   65.8%   63.6%  

USIS,  in  consultation  with  our  division’s  Computer  Services  group,  has  developed  an  online  application  and  workflow  process  for  submission  and  processing  of  Special  Studies  applications.  The  online  application  was  launched  for  fall  2014  participation.  

d.  Types  of  Advising  

USIS  offers  four  types  of  advising  services:  walk-­‐in  advising,  scheduled  appointments,  electronic  advising  via  the  Virtual  Advising  Center,  and  group  advising  via  information  sessions  and  workshops.  The  type  of  advising  service  a  student  should  use  depends  on  the  complexity  of  his  or  her  inquiry.  

Walk-­‐in  advising  is  designed  to  last  15  minutes  to  address  simple  questions  the  student  has  (e.g.,  clarify  remaining  major  requirements,  discuss  current  quarter  schedule,  sign  a  form,  etc.).  We  offer  walk-­‐in  advising  every  day  of  the  week,  so  if  a  student  needs  information  quickly,  walk-­‐in  advising  is  usually  provide  the  best  service.  For  more  complex  advising  issues  (e.g.,  developing  a  long-­‐term  plan),  we  recommend  scheduling  an  appointment  for  30  minutes.  

USIS  offers  30-­‐minute  scheduled  advising  appointments  during  fall,  winter,  and  spring  quarters  (walk-­‐in  advising  occurs  throughout  the  summer).  These  appointments  are  typically  used  to  draft  and  review  long-­‐term  plans,  review  study  abroad  coursework  in  

Page 36: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  36  

relation  to  a  student’s  major,  and  review  and  discuss  more  complex  academic  situations.  The  following  table  shows  data  for  student  appointments  with  USIS  for  academic  year  2013/14.  

Table  10.  Student  Appointments  with  USIS–Academic  Year  13/14  

Quarter  Appoint-­‐ments  

Available  

Appoint-­‐  ments  Made  

%  Appoint-­‐ments  Made  

No  Show  Appoint-­‐ments  Kept  

%  Appoint-­‐ments  Kept  

Fall  2013   215   195   90%   22   173   88%  

Winter  2014   247   216   88%   22   194   90%  

Spring  2014   290   246   85%   28   218   89%  

Total   752   657   87%   72   585   89%  

If  a  student  has  a  simple  question  that  does  not  require  same-­‐day  response,  sending  the  inquiry  through  the  Virtual  Advising  Center  (VAC)  is  an  efficient  way  to  get  the  answer.  The  VAC  is  the  campus  e-­‐system  used  to  interact  with  continuing  students.  It  is  used  in  several  ways:  

• Students  can  submit  questions  to  Biology  24  hours  a  day  and  expect  to  receive  a  reply  from  USIS  within  24-­‐72  business  hours  or  sooner.  

• USIS  enters  advising  notes  after  each  walk-­‐in  meeting  and  scheduled  appointment  to  document  information  discussed  during  the  advising  session.  

• As  part  of  the  petition  process,  USIS  sends  the  outcome  of  the  petition  to  the  student  and  uploads  all  relevant  documentation  to  the  student’s  VAC  as  part  of  the  student  record.  

• USIS  can  send  academically  relevant  batch  messages  to  a  given  student  population  (e.g.,  BISP  199  students).  

USIS  manages  all  incoming  student  inquiries  received  via  the  VAC,  including  inquiries  sent  by  students  directly  and  questions  referred  to  the  department  from  a  student’s  college.  USIS  is  also  responsible  for  forwarding  VAC  inquiries  to  the  college  when  appropriate  (e.g.,  when  the  student’s  question  pertains  to  general  education  requirements).  The  following  two  tables  shows  VAC  statistics  by  class  level  for  academic  year  13/14  and  by  contact  type.  

Table  11.  Virtual  Advising  Center  Statistics  by  Class  Level–Academic  Year  13/14  

Class   Fall  2013   Winter  2014   Spring  2014   Summer  2014   Total  Contacts  

Freshman   353   217   124   78   772  

Sophomore   446   386   426   103   1,361  Junior   1,045   798   768   880   3,491  

Page 37: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  37  

Table  12.  Virtual  Advising  Center  Statistics  by  Contact  Type–Academic  Year  13/14  

Contact  Type   Fall  2013  

Winter  2014  

Spring  2014  

Summer  2014  

Total  Contacts  

Administrative   559   439   404   290   1,692  By  appointment   168   188   232   2   590  By  e-­‐mail   278   305   190   134   907  Walk-­‐in   785   645   541   368   2,339  VAC   1,529   1,339   1,201   528                 4,597  Enrollment  Advisor  (EVAC)3   5   0   16   484   505  For  the  record   173   235   282   2   692  Total   3,497   3,151   2,866   1,808   11,322  

Information  sessions  and  workshops  allow  us  to  share  information  of  interest  to  many  students.  Topics  run  the  gamut  from  career  exploration  to  graduate  and  professional  school  and  resources  for  conducting  research.  

e. Advising  Volume  

The  some  5,500  declared  Biology  majors  are  advised  by  the  equivalent  of  five  FTE  staff  academic  advisors  resulting  in  a  1,100-­‐to-­‐one  ratio  of  Biology  majors  to  staff.  This  means  that,  annually,  approximately  2,400  student  contact  USIS  for  walk-­‐in  advising,  the  office  has  to  respond  to  approximately  5,000  VAC  messages,  and  600  +  individual  advising  appointments  have  to  be  scheduled.  

Though  our  advising  services  seem  to  be  successful,  we  lack  staff  resources  to  provide  in-­‐depth  advising  and  develop  creative  tools  and  programs  to  reach  out  to  all  our  students.  Seeking  advice  is  left  to  the  student’s  own  initiative.  We  know  many  undergraduates  never  take  advantage  of  expert  advising  but  rather  rely  on  peer  advice  and  urban  myth  and,  therefore,  often  make  educational  choices  that  limit  or  hinder  academic  success,  including  time-­‐to-­‐degree.  

f. Administrative  Structure  

As  described  under  “Comparison  with  Previous  Review,”  USIS  has  a  unique  charge,  which  is  reflected  in  its  structure.  USIS  has  three  functional  units:  (1)  advising  services,  (2)  instructional  support,  and  (3)  outreach,  career  advising  and  co-­‐curricular  activities,  the  do/bio  center.  USIS  manager  Dana  Brehm  is  responsible  for  day-­‐to-­‐day  management  of  the  unit,  strategic  planning,  policy  and  business  process  analysis,  administrative  support  for  the  Education  Committee,  and  representing  USIS  on  campus-­‐wide  committees  and  

                                                                                                               3EVAC  opened  on  June  12,  2013,  and  closed  on  September  3,  2013.  This  system  was  used  to  advise  our  incoming  FA13  transfer  students.  

Senior   1,653   1,750   1,548   747   5,698  Total   3,497   3,151   2,866   1,808   11,322  

Page 38: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  38  

programs  pertinent  to  divisional  and  campus-­‐wide  advising.  The  following  website  visualizes  the  organization  and  describes  the  functions  of  specific  staff  members:  http://biology.ucsd.edu/administration/sis/usis-­‐contact.html.  

g. How  Undergraduate  Majors  and  Non-­‐majors  Are  Accommodated  

 USIS  provides  services  for  continuing  and  prospective  students  (and  parents);  divisional  coordination  of  the  academic  advising  portions  of  orientation  programs  for  new  freshmen  and  transfer  students;  advising  and  counseling  of  prospective  and  freshmen  through  senior-­‐level  students;  designing,  enhancing,  and  collaborating  in  advising  workshops  and  outreach  activities;  approving  degree  checks  and  petitions;  coordinating  advising  procedures;  editing  advising  publications;  and  serving  as  advising  liaison  with  other  units  campus  wide.  Biological  Sciences  advisors  serve  the  biology  major  population  and  students  who  are  not  Biology  majors  enrolling  in  Biology  courses.  

h. Instructional  Support  

Instructional  Services  staff  members  provide  back-­‐up  advisors  when  needed.  However,  they  are  mainly  responsible  for  establishing  and  maintaining  enrollment  procedures  and  policies.  They  oversee  enrollment  projections  and  limits,  prerequisite  waiver  system  requests,  over-­‐enrollment,  and  manual  enrollment.  

USIS  processed  633  manual  enrollments  in  academic  year  13/14.  Manual  enrollments  are  defined  as  those  that  require  instructor  and  or  staff  intervention  to  process,  as  described  in  the  following  table.  

Table  13.  Manual  Enrollments–Academic  Year  13/14  

Category   Number   Description  Prerequisite/restriction  waivers  (see  next  table)  

318*   Total  requests  received  

Concurrent  enrollment   190   Per  course  roster  data;  182  actually  enrolled;  requires  instructor  and  divisional  approval  

Cross  enrollment   1   California  community  college  student  enrolling  in  UC  San  Diego  course  

Lab  courses   52   Add  after  first  lab  meeting;  requires  instructor  and  divisional  approval  

Late  adds   39   Add  after  the  university  add  deadline;  requires  instructor  and  divisional  approval  

Over  units   16   Student  enrolling  in  more  than  quarter  maximum;  requires  divisional  and  college  approval  

Second  194   17   Enrollment  in  a  second  variable  topic  course;  cannot  be  done  via  WebReg  

Since  winter  quarter  2014,  a  web-­‐based  prerequisite  waiver  system  has  greatly  increased  the  efficiency  and  consistency  of  these  processes  and  has  allowed  improved  

Page 39: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  39  

record  keeping  and  tracking  of  data.  Approval  of  these  waivers  for  academic  year  13/14  is  detailed  in  the  following  table.  

Table  14.  Approval  of  Prerequisite/restriction  Waivers–Academic  Year  13/14  

Request  approved  by  instructor  

181    

Request  approved  by  USIS   86   Courses  ineligible  for  waiver  except  for  visiting  students;  manual  entry  due  to  pending  course  work/transcripts,  etc.  

Request  denied  by  instructor   17    Request  denied  by  USIS   29   Course  ineligible  for  waiver  No  action  taken   5   No  response  from  instructor  

i. How  Course  Offerings  Are  Determined  

With  well  over  200  undergraduate  courses  (lecture,  lab,  seminar,  special  studies)  offered  each  year  and  undergraduate  course  enrollments  reaching  23,000+,  constructing  a  well  thought  out  and  accommodating  teaching  schedule  is  an  intricate  process  that  requires  an  iterative  scheduling  process  that  needs  to  balance  availability  of  classrooms  and  faculty  members’  preferred  teaching  schedules.  

With  the  exception  of  the  bottleneck  courses  listed  on  page  17  and  below,  all  other  required  courses  are  offered  multiple  times  per  academic  year,  often  per  academic  quarter,  and  also  during  summer  session.  We  closely  watch  growth  in  each  major  and  enrollment  patterns  to  identify  how  often  a  specific  course  needs  to  be  offered  and  determine  if  adjustments  have  to  be  made  to  the  enrollment  size.  As  described  in  under  “Contributions  to  the  Science  General  Education  Requirements,”  above,  a  few  faculty  members  (Drs.  Laurie  Smith,  BICD100,  and  Carolyn  Kurle,  BILD3)  agreed  to  teach  mega-­‐enrollment  courses  (700+  students)  by  using  multiple  classrooms  equipped  with  videoconferencing  systems  supporting  high-­‐resolution  video  and  two-­‐way  audio  between  classrooms.  

We  are  using  a  quarterly  course  grid  to  help  prevent  required  courses  being  scheduled  at  competing  times.  Still,  as  described  above  on  page  17  under  “Bottleneck  Courses,”  we  must  address  the  need  to  offer  BIEB  100  (Biostatistics),  BIMM  122  (Microbial  Genetics),  BIMM  114  (Virology),  BIMM  124  (Medical  Microbiology),  and  BIMM  120  (Bacteriology)  more  often.  

Our  website  provides  detailed,  up-­‐to-­‐date  course  information,  supporting  students’  and  advisors’  long-­‐term  planning:  http://biology.ucsd.edu/education/undergrad/course/index.html.  

The  Teaching  Assignments  Process  for  our  Division  of  Biological  Sciences  documents  this  process  and  is  described  below.  We  have  included  a  detailed  description  in  Appendix  10.  

Scheduling  Courses  and  Labs:  USIS  is  tasked  with  scheduling  all  undergraduate  course  offerings  each  term.  This  process  begins  six  to  eight  months  before  the  start  of  each  

Page 40: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  40  

term.  It  is  a  time-­‐consuming  and  iterative  process  involving  faculty  and  the  Campus  Scheduling  Office.  The  following  table  details  Biology  courses  scheduled,  offered,  and  cancelled  for  academic  year  13/14.  

Table  15.  Biology  Courses  Scheduled,  Offered,  and  Cancelled–Academic  Year  13/14  

 Item   Lecture   Lab   Seminars   Total  Courses  scheduled   98   36   31   165  

Courses  offered   98   36   31   165  

Courses  cancelled   0   0   0   0  Discussion/lab  sections  offered     740   111   0   851  

Supporting  Instructional  Logistics:  Textbook  Ordering  and  OSD  Administration:  USIS  orders  textbooks  and  stocks  appropriate  numbers  of  desk  copies  for  use  by  instructional  assistants.  

j. Administering  the  Instructional  Assistants’  Program  

USIS  administers  our  division’s  Instructional  Assistants’  Program.  It  is  responsible  for  recruitment  and  assignment  of  various  levels  of  instructional  assistants  (i.e.,  undergrad/graduate  instructional  assistants,  tutors,  readers,  and  TAs)  to  undergraduate  lecture  and  laboratory  courses.  USIS  also  advises  student  applicants  on  the  application  and  selection  process  and  how  enrolling  in  college-­‐level  science  teaching  courses  (BISP  195,  for  undergraduate  instructional  assistants,  and  BGGN  500  for  graduate  instructional  assistants)  impacts  degree  requirements  at  the  undergraduate  and  graduate  (MS  and  PhD)  levels,  respectively.  

USIS  supported  our  division  in  achieving  a  student-­‐to-­‐instructional-­‐assistant  ratio  of  33:1  for  academic  year  13/14,  as  detailed  in  the  following  table  

Table  16.  Instructional  Assistants–Academic  Year  13/14  

Category  For  

Academic  Credit  

Paid   Total  

Undergraduates   177   170   347  MS   43   174   217  PhD   97   13   110  Non-­‐students   0   10   10  Readers   0   49   49  Total   341   337   733  

k. Fostering  Engagement  with  Majors,  from  Orientation  to  Graduation  

Our  division’s  undergraduate  curriculum  emphasizes  a  broad  general  education  foundation,  development  of  deep  subject-­‐area  knowledge,  a  variety  of  rich  learning  

Page 41: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  41  

experiences  inside  and  outside  the  classroom,  and  cultivation  of  skills  to  help  students  become  lifelong  learners.  

This  type  of  robust  student  engagement  is  stimulated  by  an  active  learning  environment  in  the  classroom  but  equally  important  by  access  to  high-­‐impact  learning  opportunities  and  effective  advising  structures.  Achieving  the  latter  for  an  undergraduate  program  of  our  size  is  a  major  challenge  and  cannot  be  achieved  by  relying  merely  on  traditional  academic  advising  services.  This  conclusion  was  the  rationale  for  creating  a  new,  additional  divisional  advising  structure,  the  Center  for  Discovering  Opportunities  in  Biological  Sciences  (do/bio  center)  mentioned  in  previous  sections.  

This  center  implements  our  division’s  commitment  to  co-­‐curricular,  academic,  and  non-­‐academic  experiential  learning.  It  facilitates  development  of  interconnected,  meaningful,  and  purposeful  activities  and  programs  that  promote  student  engagement,  academic  enrichment,  personal  and  professional  development,  leadership,  and  community  involvement.  

The  goal  of  the  center  is  to  inspire  students  to  become  actively  engaged  through  strategic  biology-­‐specific  events,  workshops,  and  professional  development  courses  that  highlight  the  importance  of  developing  21st-­‐century  skills  in  addition  to  honing  academic  skills,  knowledge,  and  abilities.  .  The  center  is  building  capacity  for  this  by  creating  synergies  with  non-­‐Biology  units  (e.g.,  UCSD’s  Center  for  Student  Engagement,  Rady  School)  and  deliberate  cross-­‐campus  partnerships  (e.g.,  with  the  Career  Center),  purposefully  engaging  faculty,  alumni,  community  members  (e.g.,  representatives  of  local  biotech  companies),  and  Biology  student  organizations.  

The  center  has  developed  programs  that  target  specific  student  populations:  freshmen  (Explore  Your  Future  and  Interest),  sophomores  and  juniors  (Enhance  Your  Skill  Set  and  Options),  and  seniors  (Engage,  Prepare,  and  Plan  for  Post-­‐Graduation).  Previous  sections  describe  specific  examples  of  how  the  center  supports  faculty  and  students  in  promoting  and  facilitating  engagement  in  experiential  learning  opportunities  and  programs  that  complement  students’  in-­‐class  academic  experiences.  See  “Foster  Increased  Student  Interaction  with  Faculty”  and  “Efforts  to  increase  Student  Participation  in  Experiential  Learning.”  

 IV.  Learning  Outcomes  and  Evidence  Data  We  have  attached  the  WASC  form,  “Inventory  of  Educational  Effectiveness  Indicators,”  in  Appendix  16.  Our  division’s  learning  objectives  and  assessment  measurements  are  posted  on  our  website  at  this  location:  http://biology.ucsd.edu/_files/education/undergrad/bio-­‐wasc.pdf.  

 V.  Diversity,  Equity,  and  Inclusion  Our  division  is  strongly  committed  to  advance  an  equitable  and  inclusive  culture  that  values  and  promotes  diversity.  We  focus  on  outreach,  community  dialog,  and  introspection  to  create  a  culturally  welcoming  and  professionally  enriching  environment.  This  commitment  applies  to  all  faculty,  staff  and  students  in  our  division  

Page 42: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  42  

who  work  to  develop  and  implement  programs  and  embody  principles  that  create  and  sustain  a  culture  of  inclusion.  The  Divisional  Diversity  website  highlights  this  commitment:  http://biology.ucsd.edu/diversity/index.html.  

a. Administrative  Changes:  Establishment  of  the  Divisional  Diversity  Committee  Four  years  ago,  our  division  established  the  Divisional  Diversity  Committee  (http://biology.ucsd.edu/diversity/diversity-­‐committee.html).  This  committee  addresses  the  need  for  internal  coordination  and  strategic  planning  to  achieve  our  diversity  goals.  The  committee’s  composition  includes  faculty  representation  from  all  four  sections,  graduate  and  undergraduate  students,  postdoctoral  fellows,  and  staff  (e.g.,  the  MSO  and  the  Director  of  USIS  and  GSIS).  To  increase  the  effectiveness  of  divisional  activities  and  strengthen  our  efforts  through  synergy,  committee  members  also  serve  on  campus-­‐wide  committees  that  work  to  increase  campus  diversity  and  improve  the  campus’  inclusiveness  climate.  For  example,  one  committee  member  chairs  the  campus-­‐wide  committee  that  proposed  and  now  is  implementing  the  diversity  graduation  requirement  for  all  undergraduate  students.  

The  committee  has  developed  a  comprehensive  resource  for  faculty  listing  current  divisional  and  campus-­‐wide  opportunities  for  contributing  to  diversity  efforts.  Furthermore,  the  committee  has  developed  guidelines  for  how  to  organize  and  report  contributions  to  diversity  so  that  reviewers  of  faculty  files  can  evaluate  the  significance  of  their  contributions.  

b. Instructional  Contributions  to  Diversity  

Instructional  Assistant  Training:  The  loss  of  talented  students  from  Science,  Technology,  Engineering,  and  Math  (STEM)  majors  is  a  major  challenge  to  U.S.  technological  advancement  and  global  competitiveness  in  the  21st  century.  Although  inclusive  teaching  strategies  can  improve  student  retention,  formal  instruction  in  pedagogy  traditionally  has  not  been  a  part  of  STEM  graduate  education  and  is  often  completely  absent  from  postdoctoral  training.  Thus,  increased  access  to  training  in  pedagogy  for  graduate  instructional  assistants  (GIAs)  and  postdoctoral  scholars  has  the  potential  to  improve  the  quality  of  instruction  in  STEM  classrooms.  

To  provide  GIAs  with  the  advice  and  tools  they  need  to  create  a  welcoming  learning  environment  that  respects  student  diversity  and  encourages  learning,  a  group  of  postdoctoral  scholars  in  our  division  developed  a  TA  training  workshop  on  inclusive  teaching.  Creation  of  this  workshop  was  initiated  by  a  series  of  relevant  readings  and  discussions  on  the  roles  that  identity,  diversity,  and  unconscious  bias  play  in  the  classroom.  It  built  on  Diversity  in  the  Classroom  seminar  taught  by  the  CIRTL  network  (http://www.cirtl.net/course_overview),  and  it  was  adapted  to  the  specific  needs  of  our  division.  

This  workshop  uses  a  combination  of  self-­‐reflective  and  group  activities  to  personalize  diversity  issues  and  model  best  practices  for  inclusive  teaching.  Its  goal  is  to  help  GIAs  understand  that  diversity  affects  learning:  that  knowledge,  experience,  and  cultural  content  make  each  student  unique;  that  the  teaching  methods,  examples,  and  content  

Page 43: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  43  

we  choose  to  use  affect  who  is  included  or  excluded  from  the  classroom  experience;  and  that  we  all  bring  biases  and  assumptions  to  teaching  and  learning.  

Specifically,  the  three  major  goals  are:  • Raise  TA  awareness  of  the  impact  of  identity  and  classroom  climate  on  student  

learning.  • Help  TAs  recognize  the  importance  of  inclusivity  in  effective  teaching  and  

student  learning.  • Empower  TAs  with  pedagogical  approaches  to  create  an  inclusive  classroom.  

Since  its  inception  four  years  ago,  the  workshop  has  been  taught  every  quarter  as  one  of  four  workshop  choices  for  GIAs.  The  workshop  evaluations  have  been  very  positive.  All  GIAs  were  either  “satisfied”  or  “extremely  satisfied.”  Words  such  as  “well  thought  out,”  “helpful,”  “fun,”  and  “interesting”  were  used  to  describe  the  workshop.  Significantly,  most  GIAs  said  they  would  approach  their  classes  differently  after  taking  the  workshop.  We  recently  implemented  a  pre-­‐workshop  and  post-­‐workshop  survey.  The  analysis  of  the  data  has  not  yet  been  completed.  

This  innovative  workshop  was  presented  during  a  poster  session  at  a  2012  AAAS  meeting.  

c. Development  of  a  Biology  Course  to  Fulfill  the  Diversity,  Equity,  and  Inclusion  Graduation  Requirement  

As  expressed  in  UC  San  Diego’s  Undergraduate  Education  website,  the  campus  established  a  new  graduation  requirement  described  as  follows:  “A  knowledge  of  diversity,  equity,  and  inclusion  is  required  of  all  candidates  for  a  Bachelor’s  degree  who  begin  their  studies  at  UC  San  Diego  in  lower-­‐division  standing  in  Fall  2011  or  thereafter,  or  in  upper-­‐division  standing  in  Fall  2013  or  thereafter.”  (http://academicaffairs.ucsd.edu/ug-­‐ed/diversity/)  

Our  division,  under  the  leadership  of  Drs.  Macagno,  Mel,  and  Johnson,  piloted  a  Biology-­‐specific  Diversity,  Equity,  and  Inclusion  (DEI)  seminar  course.  It  has  been  developed  into  a  4-­‐unit  course,  titled  Race,  Ethnicity,  and  Gender  in  Biology  and  Medicine  (BILD  60).  This  course  is  founded  in  science:  Students  analyze  scientific  data,  learn  about  diseases,  examine  the  practice  of  science  and  the  use  and  misuse  of  science,  and  consider  the  brain  and  stereotyping.  But  the  course  is  also  designed  to  help  students  consider  science  in  a  new  and  broader  societal  context.  The  goal  of  the  course  is  to  challenge  certain  assumptions  about  science  and  open  students’  eyes  to  the  influence  of  cultural  and  historical  factors  on  the  process  of  science,  health,  and  disease.  The  course  syllabus  has  been  included  in  Appendix  17.  

The  course  will  be  offered  for  the  first  time  in  academic  year  Spring  15.  It  is  open  to  all  majors.  

d. Outreach  In  2007  UC  San  Diego’s  Undergraduate  Admissions  Office  and  the  Division  of  Biological  Sciences  teamed  together  in  a  concerted  and  focused  outreach  plan  to  increase  applications  from  three  academically  high-­‐achieving  high  schools  that  predominately  

Page 44: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  44  

enroll  underrepresented  socio-­‐economically  disadvantaged  student  population  but  at  the  time  were  not  encouraging  students  to  apply  to  UC  San  Diego.  These  schools  were  Francisco  Bravo  Medical  Magnet  (Bravo),  King  Drew  Medical  Magnet  (King  Drew),  and  the  California  Academy  of  Mathematics  and  Science  (CAMS).  

After  new  and  bettered  relationships  were  formed  with  the  school’s  teachers,  counselors,  and  principals,  we  established  a  second  level  of  outreach  and  recruitment  to  bring  students  to  UC  San  Diego  for  a  residential  experience  and  peak  academically  high-­‐achieving  student’s  interest  in  attending  UC  San  Diego.  This  new  level  of  recruitment  and  outreach  involved  a  broader  group  of  campus  partners  including  the  Scripps  Institution  of  Oceanography  and  the  Division  of  Physical  Sciences.  The  goal  of  this  academy  was  to  provide  both  academic  and  social  experiences  for  the  students.  

We  developed  a  hands-­‐on  curriculum,  called  the  Triton  Summer  STEM  Academy,  aimed  at  helping  students  to  (1)  appreciate  that  UC  San  Diego  is  an  intellectual  and  academic  powerhouse,  recognized  globally  as  a  scientific  leader,  and  (2)  experience  how  we  teach  and  educate  students  majoring  in  STEM  fields.  Our  first  cohort  involved  30  students.  Initial  surveys  indicate  that  this  pilot  was  highly  successful.  The  program  will  be  scaled  up  in  2015  to  90  students.  

e. Academic  Program  beyond  Triton  Summer  STEM  Academy  A  key  feature  of  this  program  is  to  cement  ongoing  relationships  developed  with  the  students  who  attended  the  academy  described  in  the  previous  section.  Throughout  the  current  year,  we  will  maintain  ongoing  communication  with  academy  participants  by  Undergraduate  Admissions  to  ensure  the  students  submit  UC  admission  applications  they  started  during  the  academy,  apply  for  financial  aid,  take  appropriate  tests,  and  maintain  rigorous  senior  course  loads  with  good  academic  performance.  

To  move  from  recruitment  and  yield  to  retention,  faculty  in  the  Biological,  Physical,  and  Marine  Sciences  and  the  School  of  Engineering  are  developing  a  pre-­‐matriculation  summer  transition  program  for  admitted  students  who  participated  in  this  program  and  others  students  from  similar  backgrounds  to  help  them  with  academic  preparation  prior  to  freshman  year  in  the  sciences.  

Page 45: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Division of Biological Sciences: ACMS Instructional Technology Use

1. Learning Management System (TED)

Number of Bio courses using TED: AY 09-10 = 114 AY 10-11 = 106 AY 11-12 = 112 AY 12-13 = 119 AY 13-14 = 131 Total = 582 courses

2. Personal response system (clickers)

Number of Bio courses using clickers: AY 09-10 = 9 AY 10-11 = 14 AY 11-12 = 19 AY 12-13 = 15 AY 13-14 = 36 Total = 93 courses* *Note: data taken from the Bookstore records of Bio faculty requesting clickers for their course.

3. Podcasted courses (http://podcasts.ucsd.edu/) Number of Bio courses podcasted: Average of 15 courses per quarter* *Note: most faculty elect to remove past course podcasts at the end of the quarter (we don’t retain them), so the average of 15 represents our best estimate based solely on AT 13-14 data.

4. Hybrid course support a. Prof. Ella Tour’s supplemental online lecture series for BIMM 110:

Molecular Basis of Human Disease. b. Prof. Lakshmi Chilukuri’s Molecular Biology lab safety online modules

Page 46: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Division'of'Biological'Sciences'194'Course'Coordination'

!

The!Division!of!Biological!Sciences!offers!a!number!of!seminar!courses!(numbered!194)!designed!to!

provide!students!with!an!opportunity!to!extend!what!they!have!learned!in!upperAdivision!

courses!by!analyzing!existing!knowledge!and!contemporary!thinking!in!a!particular!biological!sciences!

field.!

!

Beginning!Fall!2012,!194!courses!will!be!classified!under!the!various!Biology!subject!codes!A!BIBC,!BICD,!

BIEB,!BIMM,!BIPN!and!BISP.!!The!classification!of!the!194!course!will!determine!the!prerequisites!for!that!

particular!offering.!!!

!

Course!Title!

• BISP!194A!Advanced!Topics!in!Modern!Biology!

• BIBC!194A!Advanced!Topics!in!Modern!Biology:!Biochemistry!

• BICD!194A!Advanced!Topics!in!Modern!Biology:!Cellular!Development!

• BIEB!194AAdvanced!Topics!in!Modern!Biology:!Ecology,!Behavior,!Evolution!

• BIMM!194AAdvanced!Topics!in!Modern!Biology:!Molecular!Biology!

• BIPN!194AAdvanced!Topics!in!Modern!Biology:!Physiology!and!Neuroscience!

!

General!Course!Description!(updated!2012)!

Course!will!vary!in!title!and!content.!!Students!are!expected!to!actively!participate!in!reading,!analyzing!

and!demonstrate!an!understanding!of!primary!literature.!!Current!descriptions!and!subtitles!may!be!

found!on!the!Schedule!of!Classes!and!the!Biological!Sciences!website.!!Students!may!take!a!total!of!four!

194!courses!as!topics!vary.!!Students!may!not!receive!credit!for!the!same!topic.!

!

*Faculty!will!be!asked!to!provide!a!description/subtitle!for!the!topic!they!will!teach.!

!

Scheduling!

This!is!a!2Aunit!course!that!meets!for!1.5!hours!per!week!for!ten!weeks.!

All!194!courses!will!be!scheduled!in!York!3010!(divisional!space).!

!

Textbook/Readings!

• As!determined!by!instructor!

• No!common!text;!dependent!upon!topic!

!

Prerequisites!

Instructors!select!one!of!the!following!based!upon!the!required!prerequisites:!

• BISP!194Aupper!division!standing!and!Genetics!(BICD!100)!

• BIBC!194AStructural!Biochemistry!(BIBC!100)!OR!Metabolic!Biochemistry!(BIBC!102)!

• BICD!194ACell!Biology!(BICD!110)!

• BIEB!194AIntroduction!to!Ecology!(BIEB!102)!

• BIMM!194AMolecular!Biology!(BIMM!100)!

• BIPN!194AMammalian!Physiology!I!(BIPN!100)!OR!Cellular!Neurobiology!(BIPN!140)!

!

Content/Syllabi!

• All!194!courses!are!based!on!topics!as!selected!by!the!faculty.!

Page 47: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

• The!emphasis!of!194!is!that!students!actively!participate!in!reading,!analyzing!and!

demonstrate!an!understanding!or!primary!literature.!!!

• Students!enrolling!in!194!will!gain!an!experience!that!is!likely!not!to!be!available!in!other!

courses.!

• Example!194!syllabi!may!be!found!http://courses.ucsd.edu/syllabiList.aspx?name=BISP!

!

!

Grading!

Grading!shall!be!determined!by!instructor!but!may!include!the!following:!

• Exams/quizzes!

• Summary!of!literature!

• Participation!in!discussion!

• Presentation/peer!feedback/evaluation!

• Preparedness!

• Attendance!

• Final!project!

!

Enrollment!

Projected!Enrollment:!194!courses!will!have!projected!enrollments!of!40A50!students.!!The!EC!has!

found!that!this!is!a!reasonable!enrollment.!!If!an!instructor!proposes!a!lower!enrollment,!an!exception!

must!be!requested!and!granted.!!Instructors!will!need!to!indicate!why!a!lower!enrollment!is!justified.!

!

Minimum!Enrollment!!

Should!the!enrollment!be!lower!than!eight!students!during!week!three!of!the!quarter,!the!class!

could!still!be!taught.!!The!following!offering!of!the!course!would!need!to!potentially!be!

modified,!quarter!changed,!etc.!to!bring!the!enrollment!up!to!a!reasonable!number.!!If!that!

were!not!accomplished!the!second!offering,!teaching!credit!(divisional)!would!not!be!granted!

and!the!same!course!could!not!be!offered!in!future!quarters.!

!

General!Course!Information!

• 194!courses!are!comprised!of!lecture/seminar!only;!discussion!sections!are!not!included!

with!any!194!course.!

• TA/tutor!support!is!not!provided!to!any!194!course!

!

Grading!Information!

• Students!may!enroll!in!a!194!course!for!either!a!letter!grade!or!for!a!P/NP!option.!!For!

grading!information!and!breakdown,!please!see!UCSD!grading!system.!

• UCSD!utilizes!an!electronic!(web!based)!grading!system!called!eGrades.!!For!information!

about!eGrades,!specifically!how!to!submit!grades!at!the!end!of!the!quarter,!please!

see!Electronic!Grades!(eGrades).!

o eGrades!uses!UCSD!Single!SignAOn!for!authentication!meaning!you!will!need!to!

be!able!to!sign!on!to!the!system!to!assign!grades.!!Please&see&appendix&for&instructions&for&resetting&the&password&if&it&is&not&known.!

!

Page 48: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Timeline!

If!faculty!proposes!to!teach!a!194!course,!all!information!must!be!submitted!during!the!following!

timeline.!!Biology!Student!&!Instructional!Services!will!send!out!scheduling!requests!during!each!period,!

collects!all!requests!and!forwards!them!to!the!Registrar's!for!placement.!

!

Request!for!Fall!teaching!times!sent!out!January)Request!for!Winter)teaching!times!sent!out!June!Request!for!Spring)teaching!times!sent!out!August!!

Confirmation!of!schedule!will!be!emailed!once!all!courses!have!been!placed!and!are!complete.!!!

!

Page 49: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Tested Studies for Laboratory TeachingProceedings of the Association for Biology Laboratory Education Vol. 35, 41-55, 2014

41

From Bugs to Barcodes: Using Molecular Tools to Study BiodiversityMadeline Butler, Heather Henter and Stephanie Mel

University of California San Diego, Division of Biological Sciences, 9500 Gilman Dr., La Jolla CA 92093 USA ([email protected]; [email protected]; [email protected])

%LRGLYHUVLW\�UHIHUV�WR�WKH�YDULHW\�RI�VSHFLHV�ZLWKLQ�DQ�HFRV\VWHP��0RVW�VSHFLHV�RQ�HDUWK�KDYH�\HW�WR�EH�LGHQWL¿HG��and there is an ongoing international effort to build a complete species inventory. Many students are aware of the importance of biodiversity but few realize that they can play an important role in addressing this biodiversity NQRZOHGJH�JDS��'1$�EDUFRGLQJ�LV�D�WHFKQLTXH�WKDW�XVHV�D�VSHFL¿F�UHJLRQ�RI�'1$�DV�D�JHQHWLF�PDUNHU�WR�LGHQWLI\�species. In this module, students learn how to document biodiversity using ecological, molecular, and bioinformat-ics tools while generating novel data.

FirstpageKeywords: Biodiversity, barcoding, PCR, DNA sequencing, bioinformatics

© 2014 by Madeline Butler, Heather Henter and Stephanie Mel; University of California San Diego

� %LRGLYHUVLW\��XVXDOO\�GH¿QHG�DV�WKH�QXPEHU�RI�VSHFLHV�LQ�D�VSHFL¿F�HFRV\VWHP�RU�DUHD��LV�LPSRUWDQW�IRU�QXPHURXV�UHD-sons. A diversity of organisms support ecosystem services VXFK� DV� SXUL¿FDWLRQ�RI� DLU�� FOLPDWH� FRQWURO��ZDWHU� SXUL¿FD-tion, food production, pollination, and erosion prevention. Many people feel that biodiversity is important for aesthetic, ethical, and cultural reasons as well. But biodiversity is at risk. Habitat destruction is probably the most serious threat, although over-exploitation of natural resources and invasive species play a role, and climate change will become increas-ingly important in the future. However, we cannot assess the impact of any of these threats if we do not know what is being threatened. Current estimates of the total number of eukaryote species on Earth UDQJH�IURP�¿YH�WR�WHQ�PLOOLRQ��0D\���������2I�WKLV��OHVV�WKDQ�two million species have been named or described, and this lack of information is not distributed evenly among taxa de-spite 250 years of modern taxonomy. Although groups such as mammals and birds are fairly well known, it is estimated that 70% of arthropod species have yet to be discovered (Hamilton et al., 2010). This is particularly troubling at a time when human activities are impacting virtually every or-ganism on the planet. This knowledge gap is a huge obstacle for conservation efforts. It is critical that we develop a better understanding of what organisms exist if we want to con-serve species, or even know the effect of our conservation strategies. With DNA barcoding, students can help in this effort.

Introduction

� 6SHFLHV�DUH�XVXDOO\� LGHQWL¿HG�E\� WKHLU�PRUSKRORJ\�� ,W� LV�possible for students or other non-experts to identify large organisms such as birds or mammals this way, but identify-ing smaller organisms such as invertebrates can be very dif-¿FXOW��0RUSKRORJLFDO�GLIIHUHQFHV�DUH�DOPRVW�DOZD\V�VR�VXEWOH�it takes an expert to distinguish species. Also, as is the case with cryptic species, there may not be any morphological differences even when the genetic evidence suggests that the RUJDQLVPV�GR�QRW�LQWHUEUHHG��DQG�WKXV�E\�GH¿QLWLRQ�DUH�GLI-ferent species.� 0ROHFXODU�WD[RQRPLVWV�SURSRVHG�XVLQJ�D�VSHFL¿F�'1$�VH-TXHQFH�FDOOHG�WKH�EDUFRGH�DV�DQ�LGHQWL¿HU�IRU�VSHFLHV��+HUEHUW�et al., 2003). There has been debate about reliability of the barcode sequence to detect taxonomic subtleties, but many taxonomists have embraced the use of barcode sequences as an additional tool. The Consortium for the Barcode of Life �&%2/�� LV� DQ� LQWHUQDWLRQDO� FROODERUDWLRQ� RI� H[SHUWV� LQ� JH-nomics, taxonomy, and computer science whose mission is to create a reference library of DNA barcodes in the form of WKH�%DUFRGH�RI�/LIH�'DWDEDVH��%2/'��http://www.barcode-RÀLIH�RUJ�). Students at any academic institution can become involved in barcoding projects and even contribute novel sequences WR� WKH�%2/'� GDWDEDVH��%DUFRGLQJ� LV� SUHVHQWO\� EHLQJ� XVHG�in a variety of educational settings as a means of involving students in discovery-based science (Santschiet al., 2013; and http://www.urbanbarcodeproject.org/). Barcoding can also be used to integrate concepts and provide hands-

Page 50: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

42 Tested Studies for Laboratory Teaching

Butler, Henter and Mel

one exposure to techniques in a variety of different disciplines such as ecology, taxonomy, genetics, molecular biology, and bioinformatics. As part of our effort to bring authentic research into large undergraduate biology labs, we have initiated a DNA barcod-ing project in which students are documenting biodiversity at the UC San Diego Scripps Coastal Reserve. We have used barcoding both to discover the diversity of species in a par-WLFXODU�KDELWDW�DV�ZHOO�DV�WR�WHVW�VSHFL¿F�K\SRWKHVHV��)RU�H[-ample, one quarter we documented the vegetation-inhabiting spiders at our reserve and another quarter we looked at the in-traspecies diversity in the honeybee Apis mellifera, which has D�QXPEHU�RI�VXEVSHFLHV��2XU�K\SRWKHVLV�WHVWLQJ�SURMHFWV�KDYH�explored whether polychaete worms from different intertidal zones of the sandy beach are different species and whether ÀRZHU�LQKDELWLQJ�WKULS�VSHFLHV�VSHFLDOL]H�RQ�GLIIHUHQW�VSHFLHV�RI�SODQW�KRVWV��2WKHU�JURXSV�KDYH�XVHG�EDUFRGLQJ�IRU�VLPLODU�VWXGLHV��ERWK�EDVLF�DQG�DSSOLHG��)RU�H[DPSOH��VWXGHQWV�KDYH�GRQH�EDUFRGLQJ�WR�GHWHFW�ZKHWKHU�¿VK�EHLQJ�VROG�LQ�VWRUHV�DUH�the actual advertised species (Stockle et al., 2010). In order to do barcoding, students collect specimens, ex-tract DNA, then amplify the DNA barcoding region using Polymerase Chain Reaction (PCR). After running a gel to ver-ify that they have a PCR product of the correct size, students then purify the PCR product and send it for Sanger sequenc-ing. The DNA sequences are then analyzed using several free bioinformatics programs. The methods are all straightforward and require only basic specimen collection and molecular bi-ology lab equipment. We typically spread the experiments out over four lab periods of about 3 hours each, and the schedule FDQ�EH�DGMXVWHG�WR�¿W�ODE�SHULRGV�RI�VKRUWHU�RU�ORQJHU�WLPHV��The experimental protocols in this paper have been designed for use with insects but they can be used with other inver-tebrates as well. However, the DNA extraction methods and primers should be tested with the type of animals to be studied in your class before actual implementation of the module.

6XPPDU\�RI�6WHSV�LQ�%DUFRGLQJ�([SHULPHQW

1. Collect specimens (1 hour or less)

2. Extract DNA from insect legs (2.5 hours to overnight)

3. Set up PCR reactions (30 minutes)

4. Run gel to verify that PCR worked and purify PCR product (1.5 to 2 hours)

��� 6HQG� SXUL¿HG�3&5�SURGXFW� IRU� VHTXHQFLQJ� �GRQH� E\�outside company)

6. Analyze sequences (2 to 4 hours or more)

Page 51: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Proceedings of the Association for Biology Laboratory Education, Volume 35, 2014 43

Major Workshop: Barcoding using the CO1 gene

Student Outline� ,Q�RUGHU�WR�EDUFRGH�DQ�RUJDQLVP��'1$�LV�¿UVW�H[WUDFWHG�IURP�DQ�RUJDQLVP�DQG�WKHQ�WKH�EDUFRGH�VHTXHQFH�LV�DPSOL¿HG�XVLQJ�PCR. Because we want to simply amplify and sequence the DNA without having to clone it, it is important to use a haploid gene. Mitochondrial DNA is only inherited from the mother, and thus all the genes on the mitochondrial DNA are haploid. Mitochondrial genes also have a low level of intraspecies diversity and a high level of interspecies diversity, which makes it useful for differentiating species based on DNA sequence differences. Also, there are many copies of DNA per mitochondria, and there are many mitochondria per cell so the copy number of mitochondrial genes is higher than nuclear genes.� :H�ZLOO�EH�DPSOLI\LQJ�'1$�XVLQJ�SDUW�RI�WKH�F\WRFKURPH�F�R[LGDVH��&2���JHQH�ORFDWHG�RQ�PLWRFKRQGULDO�'1$��7KLV�JHQH�KDV�EHHQ�DFFHSWHG�E\�VFLHQWLVWV�DV�WKH�VWDQGDUG�JHQH�WR�EH�XVHG�IRU�DOO�DQLPDO�EDUFRGLQJ�VWXGLHV��+HUEHUW�HW�DO����������)RU�WKH�EDUFRGH�3&5��ZH�XVH�ZKDW�DUH�NQRZQ�DV�³XQLYHUVDO�SULPHUV´�ZKLFK�DUH�GHVLJQHG�WR�UHFRJQL]H�FRQVHUYHG�DUHDV�LQ�WKH�&2��JHQH�LQ�PDQ\�LQYHUWHEUDWH�VSHFLHV��%HFDXVH�WKH�SULPHU�VHTXHQFHV�ZLOO�QRW�EH�DQ�H[DFW�PDWFK�WR�WKH�&2��WDUJHW�VHTXHQFH�LQ�DOO�LQYHU-tebrate species, the PCR reaction is performed at a low annealing temperature. This should allow primers that are not an exact match to still anneal well enough to form a stable duplex for the PCR reaction. After running the PCR, some of the PCR product is run on a gel to make sure it is the expected size which is about 660-680 base pairs. The remainder of the PCR sample is then cleaned up to remove the free nucleotides, primers, and enzyme and it is then sent for Sanger sequencing. The sequencing results are analyzed using several free bioinformatics programs and databases.

1. Collecting Insects in the Field

DNA barcoding can be used to document species in a particular area. We will be working with insects because they are they are highly diverse and easy to collect, and it is estimated that 70% of arthropod species have yet to be discovered by scientists (Hamilton et al., 2010). Insects and other arthropods are virtually everywhere and can be collected a number of ways. Your instructor will demonstrate the equipment you can use, but here are a few ideas to get you started.

Places to Find Insects

)ORZHUV±�3ROOLQDWRUV��EHHV��HWF���DUH�YHU\�FRPPRQ�DW�ÀRZHUV��7DS�D�ÀRZHU�RYHU�D�ZKLWH�WUD\��ZKLWH�SDSHU�SODWH��RU�ZKLWH�SDG�RI�SDSHU�WR�¿QG�WKULSV��VSLGHUV��DQG�RWKHU�VSHFLHV�WKDW�OXUN�WKHUHLQ�

/HDYHV±�/RRN�RQ�WKH�XQGHUVLGH�RI�OHDYHV�IRU�SODQW�VXFNLQJ�LQVHFWV��/RRN�IRU�HYLGHQFH�RI�OHDI�FKHZLQJ��ZKLFK�VXJJHVWV�WKDW�herbivorous insects might be active. Galls are oddly shaped plant growths caused by the immature insect developing inside. Break open the gall to see if the insect is still there.

8QGHUQHDWK�ORJV�±�7XUQ�RYHU�DQ\�REMHFW�WKDW�FUHDWHV�GDPS��SURWHFWHG�FRQGLWLRQV���VWRQHV��ORJV��ROG�OXPEHU��RU�WUDVK��<RX�ZLOO�EH�VXUH�WR�¿QG�HDUZLJV�DQG�RWKHU�PRLVWXUH�ORYLQJ�LQVHFWV��$QWV��WHUPLWHV��URDFKHV��EHHWOHV��DQG�EULVWOHWDLOV�DUH�FRPPRQ�

/LJKWV±�/RWV�RI�LQVHFWV�DUH�DWWUDFWHG�WR�OLJKWV�DW�QLJKW��HVSHFLDOO\�PRWKV�DQG�ODFHZLQJV��/RRN�DURXQG�\RXU�SRUFK�OLJKW�DW�QLJKW�

:DWHU±�/RRN�XQGHU�VWRQHV�LQ�UXQQLQJ�VWUHDPV�IRU�LPPDWXUH�PD\ÀLHV��VWRQHÀLHV��DQG�WKH�FDVHV�RI�FDGGLVÀLHV��:DWHU�VWULGHUV�DUH�common walking on water, and look in the shallows along the edges of ponds for various aquatic beetles and immature drag-RQÀLHV��PLGJHV��DQG�PRVTXLWRHV�

%DVHPHQWV±�/RRN�LQ�ROG�ERRNV�DQG�QHZVSDSHUV�IRU�VLOYHU¿VK�DQG�ERRNOLFH�ZKLFK�DUH�SULPDULO\�IHHGLQJ�RQ�WKH�PROG�WKDW�JURZV�in humid conditions.

7UDSV±�3XW�RXW�IUXLW��URWWLQJ�RU�RWKHUZLVH��DV�EDLWV�WR�DWWUDFW�LQVHFWV��7U\�PHDW��FRRNLHV��RU�D�VRGD��&UHDWH�KDELWDW�E\�SXWWLQJ�RXW�pieces of wood.

3LWIDOO�WUDSV�±�7KHVH�DUH�WUDSV�XVHG�WR�FDWFK�JURXQG�GZHOOLQJ�LQVHFWV��6LQN�DQ\�VRUW�RI�SODVWLF�MDU�RU�YLDO��VXFK�DV�D����PO�)DOFRQ�WXEH��LQWR�WKH�GLUW�VR�WKDW�WKH�WRS�LV�OHYHO�ZLWK�WKH�JURXQG��)LOO�ZLWK�D�SUHVHUYDWLYH��VXFK�DV�����HWKDQRO�DQG�OHDYH�RYHUQLJKW��Ants, bristletails, beetles, and others will be trapped.

%HH�ERZOV�±�)LOO�DQ\�VRUW�RI�VPDOO�GLVSRVDEOH�FXS�RU�ERZO�ZLWK�VRDS\�ZDWHU��RQH�VTXLUW�SHU�JDOORQ�RI�ZDWHU��'DZQ�GLVK�VRDS�LV�usually used). The soap breaks the surface tension of the water so that the insects sink. Paint the cups bright yellow or blue, or try just white and place the cups in the open. The day must be sunny and warm for bees to be active, and when conditions are right you will get bees within seconds. However, some species of bees are attracted to bee bowls, others are not.

Page 52: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

44 Tested Studies for Laboratory Teaching

Butler, Henter and Mel

Labeling and Preserving Insects

� )RU�WKH�EHVW�'1$�SUHVHUYDWLRQ��VWRUH�LQYHUWHEUDWHV�LQ�����HWKDQRO�LQ�FRRO�FRQGLWLRQV��D�UHIULJHUDWRU�RU����oC freezer). The PRVW�LPSRUWDQW�DVSHFW�RI�FROOHFWLQJ�LQVHFWV�LV�ODEHOLQJ�±�D�VSHFLPHQ�LV�ZRUWKOHVV�LI�LW�LV�QRW�ODEHOHG�ZLWK�WKH�ORFDWLRQ��GDWH��DQG�collector. Each specimen or each vial needs an internal label. Use a small piece of paper (about 1 cm x 2 cm) inside the vial. 'R�QRW�XVH�WDSH��LW�IDOOV�RII���)RU�VWRUDJH�LQ�DOFRKRO��ZULWH�WKH�ODEHO�LQ�SHQFLO�UDWKHU�WKDQ�SHQ�DV�SHQFLO�ZLOO�EH�PRUH�SHUPDQHQW��,I�SRVVLEOH��DOVR�UHFRUG�WKH�ODWLWXGH�DQG�ORQJLWXGH��6HH�)LJ����IRU�DQ�H[DPSOH�

Figure 1. Example of a collection vial with internal label.

Photographs

� 7R�FUHDWH�D�UHFRUG�RI�WKH�VSHFLPHQ��WDNH�D�SKRWR��<RX�FDQ�XVH�DQ\�GLJLWDO�FDPHUD�±�HYHQ�WKH�FDPHUD�RQ�D�SKRQH��,W�LV�D�JRRG�idea to photograph the specimen before preserving it in ethanol.

2. DNA Isolation Using Qiagen DNeasy Blood and Tissue Kit

You now need to isolate DNA from your insect. If you collected a large enough insect, you will use one or two legs. If you collected a small insect, you will use the entire specimen.

Protocol

D�� )RU�ODUJH�LQVHFWV��FDUHIXOO\�FXW�RII�RQH�RI�WKH�EDFN�OHJV�ZLWK�VFLVVRUV�DQG�VDYH�WKH�UHVW�RI�WKH�VSHFLPHQ��<RX�VKRXOG�KDYH�about 3 to 4 mm of leg so if the specimen legs are very small, use more than one. Try to cut as close to the body as pos-sible. Do not simply pull off the leg.

b. Place the leg (or the entire specimen if your bug was very small) in a blue microfuge tube. Place the material on the side of the tube and grind it with the blue pestle. The idea is to break the leg or small insect into smaller pieces. If this too hard, pull the tissue out of the tube and use the scissors to cut it up into smaller pieces. Then try grinding those.

F��� $GG�����ȝO�RI�$7/�EXIIHU�WR�WKH�WXEH�DQG�XVH�WKH�SHVWOH�WR�IXUWKHU�JULQG�XS�WKH�LQVHFW�WLVVXH�LQ�WKH�$7/�EXIIHU���

G��� $GG����ȝO�RI�SURWHLQDVH�.�WR�WKH�PLFURIXJH�WXEH��/HW�LQFXEDWH�IRU�DW�OHDVW���KRXUV�DW���o&���2YHUQLJKW�LQFXEDWLRQ�LV�JRRG�if you want to skip this grinding step or if your lab is not long enough to do the 2 hour incubation and subsequent extrac-tion in the same period.)

H��� 9RUWH[�IRU����VHFRQGV��DQG�WKHQ�DGG�����ȝO�RI�$/�EXIIHU�WR�WKH�WXEH��9RUWH[�DJDLQ�

I��� $GG�����ȝO�RI�HWKDQRO�WR�WKH�WXEH�DQG�PL[�DJDLQ�E\�YRUWH[LQJ�

g. Place a column in a collection tube. Now pipette all the liquid from your ground up insect tissue onto this column. Cen-WULIXJH�DW�������USP�IRU���PLQXWH��$IWHU�WKH�VSLQ��GLVFDUG�ERWK�WKH�ÀRZ�WKURXJK��WKLV�LV�WKH�OLTXLG�WKDW�\RX�VSXQ�WKURXJK�the column) and the collection tube.

K��� 3ODFH�WKH�FROXPQ�LQ�D�QHZ�FROOHFWLRQ�WXEH��$GG�����ȝO�RI�$:��EXIIHU��DQG�WKHQ�FHQWULIXJH�DW�������USP�IRU���PLQXWH�

L��� $JDLQ��GLVFDUG�WKH�ÀRZ�WKURXJK�DQG�FROOHFWLRQ�WXEH�DQG�SODFH�WKH�FROXPQ�LQ�D�QHZ�FROOHFWLRQ�WXEH��$GG�����ȝO�$:��EXIIHU�DQG�FHQWULIXJH�IRU���PLQXWHV�DW�PD[LPXP�VSHHG��2QFH�DJDLQ��GLVFDUG�WKH�FROXPQ�DQG�WKH�ÀRZ�WKURXJK�

M��� 1RZ�SODFH�WKH�FROXPQ�LQ�D�PLFURIXJH�WXEH�DQG�DGG����ȝO�RI�$(�EXIIHU��/HW�VLW�IRU���PLQXWH��WKHQ�FHQWULIXJH�DW�������USP�IRU���PLQXWH��6$9(�7+(�)/2:�7+528*+�±�7+,6�+$6�7+(�'1$��<RX�ZLOO�XVH�WKLV�'1$�WR�VHW�XS�D�3&5�UHDFWLRQ��

Page 53: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Proceedings of the Association for Biology Laboratory Education, Volume 35, 2014 45

Major Workshop: Barcoding using the CO1 gene

� � 127(��,I�D�1DQRGURS�LV�DYDLODEOH��VWXGHQWV�FDQ�PHDVXUH�KRZ�PXFK�'1$�WKH\�JRW�IURP�WKHLU�VSHFLPHQ�E\�UHDGLQJ�WKH�A260 and A280.

3. Setting Up the PCR Reaction

� 7KH�SULPHUV�\RX�ZLOO�EH�XVLQJ�WRGD\�DUH�GHVLJQHG�IRU�XVH�ZLWK�LQYHUWHEUDWH�VDPSOHV�±�WKH�VHTXHQFHV�DUH�LQ�7DEOH���

Table 1. Cytochrome c oxidase invertebrate barcoding primers.

Primer Name Sequence)RUZDUG /&2���� 5'-GGTCAACAAATCATAAAGATATTGG-3'Reverse +&2���� 5'-TAAACTTCAGGGTGACCAAAAAATCA-3'

PCR Master mix

Make up the master mix for a single PCR reaction by adding the components in the respective volumes listed in Table 2 into a PCR tube. The total reaction volume will be 50 µl with the insect DNA added.

Table 2. Components of and respective volumes for a single PCR reaction.

Volume (µl) Component Stock Concentration (µM)25 GoTaq green na2.5 forward primer 102.5 reverse primer 1017.5 sterile water na

PCR Reaction

� $GG������O�RI�WKH�SXUL¿HG�LQVHFW�'1$�WR�WKH�3&5�PDVWHU�PL[��(QVXUH�DOO�'1$�LV�DGGHG�WR�WKH�PDVWHU�PL[��0L[�E\�LQYHUWLQJ�WKH�3&5�WXEH�D�IHZ�WLPHV��0DNH�VXUH�\RX�ODEHO�WKH�WRS�RI�WKH�3&5�WXEH�ZLWK�\RXU�JURXS�QXPEHU�DQG�WKHQ�FHQWULIXJH�EULHÀ\�WR�spin reagents down. The PCR conditions are as follows. An initial denaturation step at 94°C for 3 minutes. Then 35 cycles of 95°C for 45 sec-RQGV�����&�IRU����VHFRQGV��DQG����&�IRU����VHFRQGV��7KH�3&5�UHDFWLRQ�¿QLVKHV�ZLWK�D�¿QDO�H[WHQVLRQ�VWHS�DW����&�IRU���PLQ-utes.

���5XQ�*HO�WR�9HULI\�WKDW�3&5�:RUNHG�DQG�&OHDQ�8S�3&5�3URGXFW

You now need to run a gel to verify that your PCR reaction worked and that you have a product of approximately 660-680 base pairs. You will run some of your PCR product on the gel and then clean up the rest if your PCR worked.

Run agarose gel

a. Each group only needs to run 5 µl of their sample on a gel so to save agarose, four groups will share one gel. Also, please note that there is no need to add any sample dye into the PCR samples because the Go Taq Green solution contains a dye.

E��� 3XW������J�RI�DJDURVH�LQ�D�ÀDVN�DQG�DGG�����O�RI�7$(�EXIIHU��0LFURZDYH�IRU�DERXW���PLQXWH�WR�PHOW�WKH�DJDURVH��2QFH�the agarose has cooled a bit, add 5 µl SYBR Safe.

c. Set up your gel rig with a comb with ten teeth or more. Pour the agarose into the gel rig and let solidify.

G��� 2QFH�WKH�JHO�KDV�KDUGHQHG��UHPRYH�WKH�GDPV�DQG�FRPE�DQG�ÀRRG�WKH�JHO�ZLWK�7$(�EXIIHU��3OHDVH�SD\�FORVH�DWWHQWLRQ�WR�KRZ�WKH�JHO�VKRXOG�EH�ORDGHG�±�LW�LV�YHU\�LPSRUWDQW�WKDW�\RX�GR�QRW�PL[�XS�\RXU�VDPSOH�ZLWK�WKH�RWKHU�JURXSV�RQ�WKH�gel! Assuming your comb has ten teeth, load 10 µl of the ladder into one lane. Then have four groups load 5 µl of their PCR product into a lane, skipping lanes between samples. After loading the gel, run at 150 mV until the green dye front is about halfway down the gel. At that point, turn off power.

Page 54: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

46 Tested Studies for Laboratory Teaching

Butler, Henter and Mel

e. Take a picture of your gel and determine if you got a PCR product of the correct size. If you did, clean-up the remaining 45 µl of your PCR sample.

Clean-Up PCR Product

The PCR product you hopefully generated will still contain salts, primers, and enzyme that all need to be removed before \RX�FDQ�VHQG�LW�RXW�IRU�VHTXHQFLQJ��<RX�ZLOO�XVH�D�3&5�SXUL¿FDWLRQ�NLW�WR�SXULI\�\RXU�3&5�SURGXFW��

GeneJet kit protocola. Add 45 µl of binding buffer to the 45 µl of the PCR reaction you have left after running the gel.

b. Apply the sample to a column in a collection tube and spin for 1 minute at max speed.

F��� 'LVFDUG�WKH�ÀRZ�WKURXJK��DSSO\������O�ZDVK�EXIIHU�WR�WKH�FROXPQ�DQG�FHQWULIXJH�IRU���PLQXWH�DW��������USP�

G��� 'LVFDUG�ÀRZ�WKURXJK�±�FHQWULIXJH�HPSW\�FROXPQ�IRU���PLQXWH�XQWLO�LW�LV�GU\�

e. Place column in new, labeled 1.5 ml tube. To elute DNA, apply 20 µl elution buffer to center of column, let sit 1 minute, and spin for 1 minute.

� ,I�DYDLODEOH��XVH�D�1DQRGURS�WR�GHWHUPLQH�WKH�FRQFHQWUDWLRQ�RI�\RXU�SXUL¿HG�'1$��0RVW�FRPSDQLHV�UHTXLUH�EHWZHHQ���DQG����QJ�ȝO�RI�3&5�SURGXFW�IRU�VHTXHQFLQJ�

5. Sequencing the PCR Product

In order to sequence your PCR product, you need a primer from which the DNA polymerase can extend. Since you know your PCR product has incorporated the forward and reverse primers, we can use the same primers to start the sequencing reac-tion. Thus, along with your cleaned up PCR product, you will also send some of your forward and/or reverse primer in separate WXEHV�DW�D�FRQFHQWUDWLRQ�RI���ȝ0�WR�WKH�IDFLOLW\�WKDW�ZLOO�GR�WKH�VHTXHQFLQJ��0DNH�VXUH�\RX�ODEHO�WKH�WRS�RI�\RXU�WXEH�FOHDUO\�ZLWK�your specimen number.

���%LRLQIRUPDWLFV�$QDO\VLV

Part 1: Assessing the Quality of the Sequence and Doing a BLAST

(Note: this section would be adapted to use with the sequences generated by your class.)

D��� 7KH�¿UVW�WKLQJ�\RX�PXVW�GR�LV�ORRN�DW�\RXU�VHTXHQFH�FKURPDWRJUDP�DQG�GHWHUPLQH�LI�LW�LV�JRRG�HQRXJK�WR�XVH�LQ�WKH�subsequent analyses. Although most of the time we get PCR product, it may or may not have sequenced well. You will ¿UVW�ORRN�DW�VRPH�H[DPSOHV�RI�JRRG�DQG�EDG�VHTXHQFLQJ�UXQV��DQG�WKHQ�DQDO\]H�\RXU�RZQ�VHTXHQFHV�

E��� )LUVW�¿QG�WKH�³JRRGB�VHTXHQFHB$SLV�$%�´�¿OH�FRQWDLQLQJ�D�FKURPDWRJUDP�RI�D�6DQJHU�VHTXHQFLQJ�UHDFWLRQ���$OO�RI�WKH�¿OHV�QHFHVVDU\�IRU�GRLQJ�WKH�ELRLQIRUPDWLFV�H[HUFLVHV�FDQ�EH�IRXQG�LQ�'URSER[�XVLQJ�WKH�IROORZLQJ�OLQN�https://

Figure 2. Example of a chromatogram from a good sequencing reaction.

Page 55: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Proceedings of the Association for Biology Laboratory Education, Volume 35, 2014 47

Major Workshop: Barcoding using the CO1 gene

ZZZ�GURSER[�FRP�VK��XQI�R]IPEQX�\Y�7:0�$�\&IG���2SHQ�WKH�FKURPDWRJUDP�LQ�WKH�SURJUDP�)LQFK�79��ZKLFK�\RX�PXVW�¿UVW�GRZQORDG�RQWR�\RXU�FRPSXWHU��KWWS���ZZZ�JHRVSL]D�FRP�3URGXFWV�¿QFKWY�VKWPO). The chromatogram VKRXOG�ORRN�OLNH�WKH�RQH�EHORZ�LQ�)LQFK�79�

The peaks in the chromatogram represent the actual sequence of the PCR product (for a good animation of Sanger sequenc-ing, see http://www.dnalc.org/resources/animations/cycseq.html). Note that there are four colors, each representing a differ-HQW�EDVH��$OVR�QRWH�KRZ�WKH�¿UVW����SHDNV�RU�VR�GR�QRW�ORRN�YHU\�VKDUS��EXW�IURP�DERXW�SHDN����RQ��WKH�SHDNV�DUH�ZHOO�UHVROYHG�and there is no background. This is a good sequencing reaction. You can also use the gray bars above each base to tell how good the sequence is at that particular point. You can see there is a horizontal green dotted line and then perpendicular gray bars DERYH�HDFK�EDVH��7KH�KLJKHU�WKH�EDU��WKH�PRUH�FHUWDLQ�WKH�FRPSXWHU�SURJUDP�ZDV�DERXW�³FDOOLQJ´�RU�LGHQWLI\LQJ�WKDW�EDVH��)RU�D�JRRG�VHTXHQFH��WKH�KHLJKW�RI�DOO�WKH�JUH\�EDUV�DIWHU�WKH�¿UVW����RU�VR�VKRXOG�EH�DERYH�WKH�GRWWHG�OLQH���� 1RZ�RSHQ�WKH�³%DGBVHTXHQFH�$%�´¿OH�DQG�ORRN�DW�WKH�FKURPDWRJUDP��)LJ�������1RWH�KRZ�WKH�SHDNV�DOO�RYHUODS�DQG�YHU\�IHZ�of the gray bars are above the dotted green line.

F��� $V�PHQWLRQHG�DERYH��HYHQ�LQ�D�JRRG�VHTXHQFLQJ�UXQ��WKH�¿UVW����WR����EDVH�FDOOV�DUH�XQUHOLDEOH�DQG�\RX�QHHG�WR�GHOHWH�WKDW�VHTXHQFH�IURP�\RXU�DQDO\VLV��)LUVW��RSHQ�WKH�³*RRGBVHTXHQFHB$SLV´�¿OH�DJDLQ�LQ�)LQFK�79��,Q�RUGHU�WR�PDNH�VXUH�WKDW�HYHU\RQH¶V�VHTXHQFH�LV�WULPPHG�WKH�VDPH��SOHDVH�¿QG�WKH�VHTXHQFH�**$7&�DURXQG�SRVLWLRQ����DQG�KLJKOLJKW�DOO�WKH�VHTXHQFH�WR�WKH�OHIW�RI�WKH�&�±�GR�QRW�LQFOXGH�WKH�&��7KLV�LV�LOOXVWUDWHG�LQ�)LJ�����7KHQ�VHOHFW�'HOHWH�XQGHU�WKH�(GLW�PHQX��The actual peaks will not disappear but all the letters above the peaks will.

Figure 4. Trimming the beginning of the chromatogram.

Figure 3. Example of a chromatogram from a bad sequencing reaction. The above sequence would not be usable for the subsequent bioinformatics analyses.

Page 56: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

48 Tested Studies for Laboratory Teaching

Butler, Henter and Mel

G��� 2QFH�WKH�VHTXHQFH�KDV�EHHQ�FOHDQHG�XS�E\�WULPPLQJ�WKH�HQGV��\RX�DUH�JRLQJ�WR�H[SRUW�WKH�VHTXHQFH��*R�WR�)LOH�RQ�WKH�WRROEDU��DQG�WKHQ�VHOHFW�³([SRUW�±�'1$�VHTXHQFH�)$67$´�LQ�)LQFK�79���6DYH�WKDW�¿OH�WR�\RXU�GHVNWRS��EXW�DOVR�NHHS�WKH�FKURPDWRJUDP�RSHQ��7KHQ�RSHQ�WKH�¿OH��XVLQJ�1RWHSDG��7H[WHGLW��RU�:RUG��7KLV�LV�WKH�WH[W�YHUVLRQ�RI�WKH�FKURPDWRJUDP�¿OH�DQG�UHSUHVHQWV�WKH�VHTXHQFH�RI�WKH�3&5�SURGXFW��7KLV�LV�NQRZQ�DV�D�)$67$�¿OH�±�QRWH�KRZ�WKH�VHTXHQFH�LV�SUHFHGHG�E\�D�QDPH�DQG�D�³!´��0DQ\�ELRLQIRUPDWLFV�SURJUDPV�UHTXLUH�WKLV�W\SH�RI�¿OH�IRUPDW��7KH�H[SRUWHG�VHTXHQFH�VKRXOG�ORRN�VRPHWKLQJ�OLNH�WKDW�VKRZQ�LQ�)LJ����

Figure 5. Trimming the end of the chromatogram.

Figure 6. 6DPSOH�RI�D�)$67$�'1$�VHTXHQFH�¿OH�

e. Next you are going to see if there are any similar sequences to yours in the GenBank database. We will do this by using the NCBI BLAST tool.

Go to NCBI BLAST (http://BLAST.ncbi.nlm.nih.gov/BLAST.cgi) and select “nucleotide BLAST”. Then under “Chose Search Set”, use the pull down menu to select “nucleotide collection” (note that the default is for Human se-TXHQFH���3DVWH�\RXU�)$67$�VHTXHQFH�LQWR�WKH�HQWU\�ER[��DQG�WKHQ�FOLFN�RQ�WKH�%/$67�EXWWRQ���

Now do the same for the end of the sequence. Look for the sequence TGATTTTT and highlight the sequence to the right of WKH�7��GR�QRW�LQFOXGH�WKH�7��DV�VKRZQ�LQ�)LJ�����'HOHWH�WKLV�VHTXHQFH�

Page 57: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Proceedings of the Association for Biology Laboratory Education, Volume 35, 2014 49

Major Workshop: Barcoding using the CO1 gene

f. When you do the BLAST, you will get a list of entries in GenBank that are closest in match to your sequence, with the most similar match at the top of the list. (Note that GenBank is constantly updated and the results may differ from what LV�VKRZQ�LQ�)LJ������6FUROO�WKURXJK�WKH�OLVW�DQG�ORRN�DW�WKH�QDPHV�±�RIWHQ�WKHUH�DUH�VHYHUDO�HQWULHV�IRU�WKH�VDPH�*HQXV�DQG�species. Note that for this exercise, we used a barcode sequence from the honeybee, Apis mellifera, which has been well studied so there are many entries in GenBank for this species.

Figure 7. List of BLAST matches.

Figure 8. Sequence alignment from BLAST.

� � 1RZ�VFUROO�GRZQ�EHORZ�WKH�OLVW�WR�VHH�WKH�DFWXDO�DOLJQPHQW�RI�\RXU�VHTXHQFH�WR�WKH�WRS�PDWFK�LQ�1&%,�±�LW�VKRXOG�ORRN�VRPHWKLQJ�OLNH�WKDW�VKRZQ�LQ�)LJ����

The Query sequence is the sequence you submitted to GenBank. The Subject sequence is the sequence of the closest PDWFK�WR�\RXU�VHTXHQFH�LQ�*HQ%DQN��/RRN�¿UVW�DW�WKH�³,GHQWLWLHV´�YDOXH�LQ�)LJ����±�WKLV�WHOOV�\RX�KRZ�VLPLODU�\RXU�VH-quence is to the sequence in GenBank. In this case, the sequence was 99% identical to an entry for Apis mellifera. In WKH�DOLJQPHQW�VKRZQ�LQ�)LJ�����WKH�QXPEHUV�³�������´�WHOO�\RX�WKDW�����RXW�RI�����EDVHV�ZHUH�WKH�VDPH�LQ�WKH�VXEPLWWHG�sequence and the top match found in GenBank. The value in parentheses (99%) tells you how similar this is on a percent-age basis. The Expect value (e-value) of the hit is the match you might expect by chance, given the size of the database. A smaller e-value indicates a more meaningful match.

J��� )RU�QRZ��ZH�DUH�PRVW�LQWHUHVWHG�LQ�WKH�,GHQWLWLHV�YDOXH��$OWKRXJK�WKHUH�LV�QR�KDUG�DQG�IDVW�QXPEHU��DVVXPH�IRU�WKLV�H[HU-FLVH�WKDW�DQ\�PDWFK�WKDW�LV�����RU�DERYH�LV�SUREDEO\�WKH�FRUUHFW�PDWFK�IRU�\RXU�VSHFLPHQ�±�WKDW�LV��DVVXPH�\RXU�VSHFLPHQ�LV�WKH�VDPH�DV�WKH�VSHFLHV�LGHQWL¿HG�LQ�*HQ%DQN��,I�WKH�FORVHVW�PDWFK�WR�\RXU�VHTXHQFH�LV�OHVV�WKDQ�����WR�DQ\�HQWU\�LQ�GenBank, the barcode sequence for your specimen is probably not in GenBank.

Page 58: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

50 Tested Studies for Laboratory Teaching

Butler, Henter and Mel

� � 7R�LOOXVWUDWH�WKLV��RSHQ�WKH�³*RRGBVHTXHQFHB6SLGHU�$%�´�¿OH��*R�WKURXJK�WKH�GLUHFWLRQV�DERYH��WULPPLQJ�WKH�VHTXHQFH�DQG�VDYLQJ�WKH�)$67$�¿OH��DQG�WKHQ�GRLQJ�D�%/$67��,Q�WKLV�FDVH��WKH�,GHQWLWLHV�YDOXH�IRU�WKH�WRS�PDWFK�LV�������7KHUH-IRUH��WKHUH�LV�QR�PDWFK�DW�WKH�VSHFLHV�OHYHO�IRU�WKLV�&2��VHTXHQFH�LQ�*HQ%DQN��:LWK�D�����PDWFK��WKRXJK��ZH�FRXOG�reasonably guess that it is in the same genus.

Part 2. Using ClustalW to Align Sequences and Look for Polymorphisms

� %DUFRGLQJ�VHTXHQFHV�FDQ�EH�XVHG�WR�LOOXVWUDWH�WKH�FRQFHSW�RI�'1$�SRO\PRUSKLVPV��,W�LV�QHFHVVDU\�WR�VHTXHQFH�WKH�&2��JHQH�in several specimens to do this type of analysis.

D��� *R�WR�WKH�¿OH�FDOOHG�³$SLV�¿OH�IRU�&OXVWDO:´��7KLV�¿OH�FRQWDLQV�WKH�EDUFRGH�VHTXHQFHV�IRU�IRXU�GLIIHUHQW�Apis mellifera VSHFLPHQV��7KH\�ZHUH�JHQHUDWHG�E\�WULPPLQJ�IRXU�FKURPDWRJUDPV�MXVW�DV�\RX�GLG�DERYH���&RS\�DOO�WKH�¿OHV�

b. Now go to http://www.genome.jp/tools/clustalw/. This brings you to the ClustalW alignment tool. ClustalW can be used to align several sequences in order to compare the sequences to each other.

c. Paste the Apis sequences into the entry box. Then make sure to click DNA (protein is the default), and then click on “Execute multiple alignment”.

G��� <RX�VKRXOG�JHW�VRPHWKLQJ�WKDW�ORRNV�OLNH�)LJ�����RQO\�ORQJHU�DQG�ZLWK�IRXU�HQWULHV�LQVWHDG�RI�MXVW�WZR�

Note that wherever the sequences match exactly, an asterisk appears at the bottom of the alignment at that position in the sequence. If there is a space, the sequences differ at that point.

Figure 9. Sample results of multiple sequences aligned using ClustalW.

e. How many places in the Apis barcode sequences are there differences among the sequences? In this example, all the polymorphisms are SNPs, or single nucleotide polymorphisms. SNPs can be either transitions or transversions (Transi-tions are interchanges of two-ring purines (A to G) or of one-ring pyrimidines(C to T): they therefore involve bases of similar shape. Transversions are interchanges of purine for pyrimidine bases, which therefore involve exchange of one-ULQJ�DQG�WZR�ULQJ�VWUXFWXUHV���7KH�PRVW�FRPPRQ�PXWDWLRQV�DUH�UHSRUWHGO\�&�7�WUDQVLWLRQV�±�GR�WKHVH�GDWD�VXSSRUW�WKDW"

f. ClustalW can also be used to align sequences from different species and build evolutionary trees. To try this, open the ³6SLGHU�¿OH�IRU�&OXVWDO:´�DQG�FRS\�DQG�SDVWH�WKH�VHTXHQFHV�LQWR�&OXVWDO:��7KHVH�DUH�VHTXHQFHV�IURP�GLIIHUHQW�VSHFLHV�RI�VSLGHUV��DQG�\RX�FDQ�VHH�WKDW�WKHUH�DUH�PDQ\�VHTXHQFH�GLIIHUHQFHV�DPRQJ�WKHP��2QH�RI�WKH�UHDVRQV�WKH�&2��JHQH�LV�used is because the level of intraspecies sequence diversity is low, and the interspecies diversity is high so it is easier to GH¿QH�VSHFLHV�ERXQGDULHV��7R�XVH�&OXVWDO:�WR�GUDZ�HYROXWLRQDU\�WUHHV��JR�WR�WKH�WRS�RI�WKH�SDJH��DQG�VHOHFW�³5RRWHG�WUHH�with branch length”.

Part 3. Using ClustalW to Find Synonymous versus Non-synonymous SNPS

� 6LQFH�WKH�VHTXHQFH�\RX�DPSOL¿HG�IURP�WKH�&2��JHQH�FRGHV�IRU�D�SURWHLQ��\RX�FDQ�GHWHUPLQH�LI�DQ\�RI�WKH�613V�WKDW�\RX�RE-served in doing the DNA alignment in Part 2 changes the protein by doing an alignment of the translated amino acid sequences. Within DNA sequences that code for proteins, a synonymous SNP is one that does not lead to a change in the amino acid and a non-synonymous SNP is one that does lead to a change in the amino acid.

Page 59: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Proceedings of the Association for Biology Laboratory Education, Volume 35, 2014 51

Major Workshop: Barcoding using the CO1 gene

D��� 2SHQ�WKH�VDPH�´&OXVWDO:�$SLV´�¿OH�\RX�XVHG�IRU�WKH�QXFOHRWLGH�DOLJQPHQW�LQ�3DUW����

E��� )LUVW��\RX�QHHG�WR�WUDQVODWH�HDFK�RI�WKH�'1$�VHTXHQFHV�LQWR�DPLQR�DFLG�VHTXHQFH��'R�WKLV�E\�JRLQJ�WR�http://insilico.ehu.es/translate/. Copy and paste one of the sequences into the box making sure that you use only the DNA sequence DQG�QRW�WKH�KHDGHU��6HOHFW�LQYHUWHEUDWH�PLWRFKRQGULDO�'1$��DQG�FOLFN�RQ�³7UDQVODWH�WR�SURWHLQ´��2Q�WKH�QHZ�SDJH��FOLFN�RQ�WKH�ORQJHVW�EOXH�DUURZ��ZKLFK�UHSUHVHQWV�WKH�ORQJHVW�RSHQ�UHDGLQJ�IUDPH��)LJ���������

Note that the translated amino acid sequence should be 219 amino acids long.

F��� &RS\�WKH�DPLQR�DFLG�VHTXHQFH�LQWR�D�QHZ�ZRUG�¿OH��DGGLQJ�EDFN�WKH�³!´DQG�D�¿OH�QDPH�LQ�WKH�OLQH�LPPHGLDWHO\�DERYH�WKH�DPLQR�DFLG�VHTXHQFH�VR�WKDW�\RXU�VHTXHQFH�LV�RQFH�DJDLQ�LQ�WKH�)$67$�IRUPDW�

G��� 5HSHDW�IRU�WKH�WKUHH�RWKHU�VHTXHQFHV��DQG�SDVWH�LQWR�WKH�VDPH�¿OH�OHDYLQJ�QR�VSDFHV�LQ�EHWZHHQ�WKH�VHTXHQFHV���6R�LW�VKRXOG�ORRN�OLNH�WKH�$SLV�¿OH�\RX�¿UVW�RSHQHG�EXW�ZLWK�DPLQR�DFLG�VHTXHQFH�LQVWHDG�RI�'1$��

e. Now go back and do a ClustalW alignment of the amino sequences. Are any of the SNPs non-synonymous?

Part 4. The BOLD Database

� $V�PHQWLRQHG�DERYH��WKH�%2/'�GDWDEDVH�LV�D�GDWDEDVH�VSHFL¿FDOO\�IRU�EDUFRGH�VHTXHQFHV��DQG�DQ\RQH�FDQ�DFFHVV�SXEOLVKHG�EDUFRGH�GDWD��<RX�FDQ�XVH�%2/'�WR�FRPSDUH�\RXU�VHTXHQFH�DJDLQVW�WKH�%2/'�GDWDEDVH��

D��� 7R�VLPSO\�FRPSDUH�\RXU�VHTXHQFHV�WR�WKRVH�LQ�WKH�%2/'�GDWDEDVH��JR�WR�WKH�%2/'�6WXGHQW�3RUWDO�http://www.bold-V\VWHPV�RUJ�LQGH[�SKS�6'3B+RPH��7KHQ�VHOHFW�WKH�³,GHQWL¿FDWLRQ´�WDE�RQ�WKH�XSSHU�WRROEDU�

E��� &RS\�DQG�SDVWH�WKH�³*RRGBVHTXHQFHB6SLGHU´�)$67$�VHTXHQFH�\RX�VDYHG�LQ�VWHS�J�LQ�3DUW����DQG�HQWHU�LW�LQWR�WKH�VHDUFK�box. Make sure you click “All barcode records” for your search and hit submit.

F��� <RX�DUH�QRZ�ORRNLQJ�DW�WKH�OLVW�RI�WKH�PDWFKHV�LQ�%2/'�WR�\RXU�VHTXHQFH��5HPHPEHU�WKH�%/$67�UHVXOWV�IRU�WKLV�VH-TXHQFH"�7KH�WRS�PDWFK�ZDV�����VLPLODU���,Q�%2/'��QRWH�WKHUH�DUH�VHTXHQFHV�WKDW�DUH�����VLPLODU�±�EXW�WKH�VXEPLWWHUV�knew only the order of the spider, Araneae, and in one case, the genus, Cheiracanthium��7KLV�LV�EHFDXVH�%2/'�DOORZV�investigators to submit sequences for organisms even if the genus and species is unknown. Note that the next closest PDWFK�LV�IRU����±WKLV�LV�SUREDEO\�D�GLIIHUHQW�VSHFLHV�

G��� &OLFN�RQ�WKH�OLWWOH�EOXH�DUURZ�PDUN�QH[W�WR�WKH�3XEOLVKHG�QRWH��DQG�LW�ZLOO�EULQJ�\RX�WR�WKH�UHFRUG�SDJH�LQ�%2/'�IRU�WKH�top match. It shows a picture of the spider from which the barcode was obtained. Note that the page contains a lot of LQIRUPDWLRQ�DERXW�WKH�VSLGHU±�ZKHUH�DQG�ZKHQ�LW�ZDV�FROOHFWHG��E\�ZKRP��DQG�D�SLFWXUH�RI�WKH�DFWXDO�VSHFLPHQ��

Figure 10. Sequence of longest open reading frame from barcode sequence. Arrow indicates longest open reading frame.

Page 60: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

52 Tested Studies for Laboratory Teaching

Butler, Henter and Mel

1RWHV�IRU�WKH�,QVWUXFWRU As mentioned in the introduction, barcoding projects may be discovery based (i.e., “what types of insects live on the campus?”) or hypothesis driven (“Do different species of thrips prefer different species of plants?”). Although this module was written with insects as the target specimens, the methods can be easily adapted for other invertebrates and es-sentially the same protocols will work for almost any animal tissue. They will not, however, work for plants which require GLIIHUHQW�SULPHU�VHWV�DQG�LQYROYH�PRUH�GLI¿FXOW�'1$�H[WUDF-tion protocols. This set of experiments from specimen collection to se-quence analysis can be performed in three to four lab periods of two to three hours each. � �1RWH�WKDW�LQ�RUGHU�WR�VXEPLW�VHTXHQFH�GDWD�WR�WKH�%2/'�GDWDEDVH�� WKHUH�DUH�VSHFL¿F�UHTXLUHPHQWV�IRU�VSHFLPHQ�FRO-lection and storage vouchering. This is not necessary if se-quence data is being used only for in-class exercises.)

���&ROOHFWLQJ�6SHFLPHQV�IRU�%DUFRGLQJ

Insects and other arthropods are virtually everywhere and can be collected a number of ways. Insects are easiest to ¿QG�LQ�WKH�ZDUPHU�PRQWKV�VR�WKLV�DFWLYLW\�LV�EHVW�HDUO\�LQ�IDOO�semester or late in spring semester. You can collect without any special equipment beyond glass jars or Tupperware, but a few inexpensive items will help. See Bland et al. (2010) for more information on collecting, identifying, and preserving insects.

Equipment to capture insects

� 1HWV�±�8VH�LQVHFW�QHWV�WR�FDWFK�À\LQJ�LQVHFWV��1R�VSHFLDO�WHFKQLTXH�LV�UHTXLUHG�±�MXVW�GR�ZKDWHYHU�ZRUNV���)ROG�WKH�QHW�over the rim to prevent escape. Use nets to “sweep” soft veg-etation, like long grass. An amazing number of small insects will be caught. Transferring insects from the net to the kill jar is the trickiest part. Again, do whatever works but be aware WKDW�PRVW�LQVHFWV�ZLOO�À\�XSZDUGV�LI�DOORZHG�±�VR�KROG�WKH�QHW�upside down to work your kill jar inside.

� .LOO�MDUV�±�,QVHFWV�DUH�PRVW�HDVLO\�NLOOHG�E\�VLPSO\�SXWWLQJ�them in a freezer for 24 hours. But if you want to collect a lot LQ�WKH�¿HOG��D�NLOO�MDU�LV�XVHIXO��8VH�DQ\�ZLGH�PRXWKHG�JODVV�MDU��������RXQFHV��ZLWK�D�WLJKW�¿WWLQJ�OLG��3RXU�D�WKLFN�PL[-ture of plaster of Paris into the bottom, enough for about one to two inches. When the plaster of Paris is completely dry, add ethyl acetate which acts as a fumigant to kill the insects. Use enough to saturate the plaster of Paris but not so much that there is standing liquid. As the ethyl acetate evaporates you will need to re-charge your jar (after several hours of collecting).

� $VSLUDWRUV�±�7KHVH�DUH�SODVWLF�YLDOV�ZLWK�D�FRUN�DQG�WZR�WXEHV��2QH�WXEH�KDV�D�VFUHHQ�RQ�WKH�HQG��WKH�RWKHU�GRHV�QRW��You suck through the tube with the screen (to create suc-tion without inhaling the specimen) and use the other tube to

Materials)RU����VWXGHQWV��WZHOYH�JURXSV�RI�WZR��

Insect Collection

�� Twelve kill jars�� Twelve aspirator setups (http://www.

bioquip.com/ #1135A)�� Twelve nets (http://www.bioquip.com/ #7612NA)�� Tubes with 70% ethanol�� Labels (http://www.bioquip.com #1213)�� Insect pins and boxes (http://www.bio-

quip.com/ 1208B2 and 1009)

'1$�([WUDFWLRQ

�� Twelve disposable blue microfuge tubes with pestles (KWWS���ZZZ�¿VKHUVFL�FRP� #K749520) or plain Ep-pendorf tubes without pestles if overnight incubation

�� Twelve small scissors and tweezer�� Six dissecting scopes (or magnify-

ing glasses if scopes not available)�� DNA extraction kit for twelve samples (http://

www.qiagen.com/ #69504 or similar)�� Vortexers�� Minicentrifuges�� Twelve sets of micropipettes�� Water bath at 56oC

PCR

�� ����ȝO�*R7DT�*UHHQ� (http://www.promega.com#M712B)

�� Thermal cycler�� PCR tubes�� Primers from IDT (http://www.idtdna.com/site)

Agarose Gel

�� Three agarose gel rigs �� Agarose and Sybr Safe�� '1$�ODGGHU�±�ODPEGD�+LQGOOO�LV�JRRG�� TAE buffer�� UV light box �� Camera

PCR Clean-up

�� *HQH-(7�3&5�3XUL¿FDWLRQ�.LW��http://www.WKHUPRVFLHQWL¿FELR�FRP��.�����or similar)

Sequence Analysis

�� &RPSXWHUV�ZLWK�)LQFK�79��� Internet connection

Page 61: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Proceedings of the Association for Biology Laboratory Education, Volume 35, 2014 53

Major Workshop: Barcoding using the CO1 gene

OHDVW� H[SHQVLYH� RSWLRQ�� )RU� D� UHYLHZ� RI�PHWKRGV�� VHH�%DOO�and Armstrong (2008) and Protocols for High Volume DNA Barcode Analysis (http://barcoding.si.edu/PDF/Proto-FROVBIRUB+LJKB9ROXPHB'1$B%DUFRGHB$QDO\VLV�SGI). If using the Qiagen DNeasy kit, overnight incubation is good if you want to skip the grinding step or if your lab pe-riod is not long enough to do the two hour incubation and VXEVHTXHQW�H[WUDFWLRQ��:H�¿QG� WKDW�ERWK�HWKDQRO�SUHVHUYHG�and dry tissue work equally well. With large insects, we take just one leg; with small insects, we may use two or three legs, or even the whole insect. Although we will grind up the legs before digesting the tissues today, this is not really nec-HVVDU\�±�\RX�FDQ�VNLS�WKH�JULQGLQJ�VWHS�DQG�MXVW�LQFXEDWH�WKH�WLVVXH�RYHUQLJKW�LQ�WKH�$7/�EXIIHU�DQG�SURWHLQDVH�.�VROXWLRQ��If you have a small organism and want to save it for voucher-ing purposes, you can just soak the whole insect overnight, spin down the carcass and save it, and use the supernatant for the rest of the procedure. Luckily PCR does not require much DNA and we usually get some product. We have tried digesting overnight at 56oC and then saving the digest at 4oC XQWLO�WKH�QH[W�FODVV�±�WKLV�ZRUNV�¿QH�EXW�WKH�VDPSOHV�VKRXOG�be warmed to room temperature before proceeding with the extraction.

3. Setting up PCR reaction

The Barcode of Life website has lists of primer sets that have been used successfully with various types of organisms. :H�XVH�WKH�)ROPHU�SULPHUV�IRU�LQYHUWHEUDWHV�DQG�WKH\�ZRUN�TXLWH�ZHOO�ZLWK�PRVW�LQVHFWV��)ROPHU�HW�DO����������+RZHYHU��WKHUH�DUH�PRUH�VSHFL¿F�SULPHUV�IRU�FHUWDLQ�LQVHFWV�WKDW�FDQ�EH�XVHG�LI�WKH�UHVXOWV�ZLWK�WKH�)ROPHU�SULPHUV�DUH�XQVDWLVIDFWRU\��� We order the primers from IDT (http://www.idtdna.com/site) and then store the stocks at 100 +M in Tris-EDTA EXIIHU��)RU�WKH�3&5�UHDFWLRQ��ZH�XVH��;�*R7DT�*UHHQ�PL[�from Promega. It is relatively inexpensive and already has a gel loading dye in the master mix. � 7KH� VHTXHQFHV� RI� WKH� )ROPHU� SULPHUV� /&2����� DQG�+&2������ZKLFK�DPSOLI\�D���������ES�IUDJPHQW�RI�WKH�&2,�gene in a wide range of invertebrate taxa, are in Table 1.

���5XQ�*HO�WR�9HULI\�WKDW�3&5�:RUNHG�DQG�WR�&OHDQ�XS�PCR product

You can use whichever procedure you routinely use for agarose gels. The gel is simply a diagnostic tool to see if the PCR reaction worked or not. There should be one clear band at about 660-680 base-pairs and no other bands. We do use a fairly high concentration of primer in these reactions, so often there is a primer band at the very bottom of the gel, but WKLV�FDQ�EH�HDVLO\�LGHQWL¿HG�E\�UXQQLQJ�D�QR�WHPSODWH�FRQWURO�sample. Before sending the PCR samples out to be sequenced, they have to be cleaned up. Many sequencing companies will tell you that you do not have to clean up the PCR samples, EXW�ZH�¿QG�WKDW� WKH�VHTXHQFHV�DUH�GLUW\�LI�ZH�GR�QRW�FOHDQ�them up. We use a Thermo Gene Jet, Qiagen or Lambda

capture the insect. This works extremely well with smaller specimens.

� $TXDULXP�QHWV�±�7KH�W\SH�RI�VPDOO�QHWV�\RX�EX\�IRU�\RXU�KRPH�¿VK�WDQN�ZRUN�ZHOO�WR�FDWFK�DTXDWLF�LQVHFWV�LQ�WKH�VKDO-lows at the edge of a pond.

� )LQH� SDLQW� EUXVKHV� ±�$UH� XVHIXO� IRU�PRYLQJ� YHU\� VPDOO�insects around. Wet the tip with alcohol and the insects will stick.

� )RUFHSV�DQG�EODQN�ODEHOV�±�)RUFHSV�DUH�KDQG\�IRU�PDQLSX-lating the dead specimens, labels are needed to identify the date, location, and collector for each individual specimen.

� %HUOHVH� IXQQHOV� ±�$UH� XVHG� WR� H[WUDFW� LQVHFWV� DQG� RWKHU�arthropods from soil or leaf litter. Insects that live in these environments avoid heat and light. The Berlese funnel is made of a piece of screen or hardware cloth on which you place your soil sample, a light bulb that hangs overhead, a funnel below, and a jar or preservative, such as 70% ethanol at the bottom. As the insects move away from the light, they fall through the funnel and into the beaker. You will catch many Collembola this way, as well as other arthropods not commonly seen. Soil rich in organic matter works best.

Identifying Insects

Identifying insects to species is really tough. Identifying WR�RUGHU�LV�SUHWW\�HDV\��DQG�LV�HQRXJK�LQIRUPDWLRQ�IRU�%2/'��7KHUH�PD\�EH�SXEOLVKHG�¿HOG�JXLGHV�WR�\RXU�DUHD�EXW�WKHUH�are also numerous websites that are very useful. Some sug-gestions include: http://www.cals.ncsu.edu/course/ent425/ (go to Resource Library, then Spot ID); http://bugguide.net/node/view/15740; http://tolweb.org/Insecta; http://biokeys.berkeley.edu (key to orders, including wingless specimens).

Preserving Insects

Any glass or plastic vials or microcentrifuge tubes are XVHIXO�WR�VWRUH�LQGLYLGXDO�VSHFLPHQV��:H�¿QG�D�FRPELQDWLRQ�of two dram glass vials (any style) and 2.0 ml microcentri-IXJH�WXEHV��ZLWK�VFUHZ�FDSV��¿W�DOO�WKH�DUWKURSRG�VSHFLPHQV�we collect. Avoid tubes smaller than 2.0 ml because it is im-SRVVLEOH�WR�¿W�ODEHOV�LQVLGH�WKH�WXEH��

2. DNA Isolation

There are several different kits that can be used to do the DNA isolation. The easiest is the prepGem Insect kit from ZyGEM (KWWS���ZZZ�]\JHP�FRP�3URGXFWV�3URGXFWV�3*�Insect.html), which only takes about 20 minutes. However, the DNA obtained is not very clean and does not seem to store well. If you want to keep the DNA, a better option is the Qiagen DNeasy Blood and Tissue kit (see Materials sec-tion), and the directions for that kit are in the student pro-tocols. You can also make your own reagents, which is the

Page 62: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

54 Tested Studies for Laboratory Teaching

Butler, Henter and Mel

and they will be sent a login code. If the data your students collect is complete and of high quality and you voucher the VSHFLPHQ��\RX�FDQ�DOVR�VXEPLW�\RXU�ZRUN�LQWR�WKH�%2/'�GD-WDEDVH��7KLV�LV�DOO�H[SODLQHG�RQ�WKH�%2/'�VLWH��XQGHU�4XLFN�Start Guide, Instructor Interface and User Guidelines.

Acknowledgements� 0XFK� RI� WKLV� ZRUN� ZDV� IXQGHG� E\� 16)� 78(6� JUDQW�1140640.

Literature Cited%DOO��6��/���DQG�.��)��$UPVWRQJ���������5DSLG��RQH�VWHS�'1$�

H[WUDFWLRQ�IRU�LQVHFW�SHVW�LGHQWL¿FDWLRQ�E\�XVLQJ�'1$�barcodes. Journal of Economic Entomology, 101:523-532.

Bland, R.G., and H.E. Jaques. 2010. How to know the In-sects. Third edition. Waveland Press Inc., Long Grove, Illinois, 418 pages

)ROPHU��2���0��%ODFN��:��+RHK��5��/XW]��DQG�5��9ULMHQKRHN��������'1$�SULPHUV�IRU�DPSOL¿FDWLRQ�RI�PLWRFKRQGULDO�cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotech-nology, 3: 294-297.

+DPLOWRQ��-���<��%DVVHW��.�.��%HQNH��3��6��*ULPEDFKHU��6�(��Miller, V. Novotny, G. A. Weiblen, and J.D. L. Yen. 2010. Quantifying uncertainty in estimation of tropical arthropod species richness. The American Naturalist, 176: 90-95.

Hebert, P. D. N., A. Cywinska, S.L. Ball, and J. R. deWaard. ������ %LRORJLFDO� LGHQWL¿FDWLRQV� WKURXJK� '1$� EDU-codes. Proceedings of the Royal Society, 270: 313-321.

May, R.M. 2010. Tropical arthropod species, more or less? Science, 329: 41-42.

Santschi, L., R. H. Hanner, S. Ratnasingham, M. Ricon-scente, and R. Imondi. 2013. Barcoding Life’s Matrix: Translating Biodiversity Genomics into High School Settings to Enhance Life Science Education. PLOS Bi-ology, 11:1-8.

Stoeckle M. Y.,and P. D. N. Hebert. 2008. Bar Code of Life: DNA Tags Help Classify Animals. 6FLHQWL¿F� $PHUL-can, 299:66-71.

3&5�FOHDQ�XS�NLW�WR�GR�WKLV�VWHS��EXW�ZH�DOZD\V�UXQ�D�JHO�¿UVW�to make sure that we have product and that it is clean, i.e., that we only have one band at 660-680 base pairs. Because we do the annealing step at such a low temperature, we do sometimes see bands in the PCR reaction besides our desired product. Thus it is sometimes necessary to gel-purify our PCR products and then send them out for sequencing. Any gel pu-UL¿FDWLRQ�NLW�ZRUNV�IRU�WKLV�±�ZH�KDYH�XVHG�WKH�4LDJHQ��,QYLW-rogen, and Thermo kits successfully.

���6HQGLQJ�'1$�6DPSOHV�IRU�6HTXHQFLQJ

Since we want as long a read as possible for analysis, Sanger sequencing is still the best method to use for barcod-ing work. We send our samples out to a company to do the sequencing. We use Eton (http://www.etonbio.com) because ZH�KDYH�QHJRWLDWHG�DQ�HGXFDWLRQDO�GLVFRXQW�ZLWK�WKHP�±�WKH\�charge us $5 a sample and they actually pick up samples from our campus. Genewiz (KWWS���ZZZ�JHQHZL]�FRP�) is the company used by the Urban Barcode Project and we under-stand that they have low rates for academic purposes as well. When you send out the samples, you must also include VRPH�RI�\RXU�SULPHU�DW��ȝ0�±�WKH\�QHHG�WKLV�WR�VWDUW�WKH�VH-quencing reaction. If you want to also sequence in the reverse direction, you must also send the reverse primer� 2QFH�WKH�VHTXHQFHV�FRPH�EDFN�IURP�(WRQ��ZH�JR�WKURXJK�WKHP�WR�VHH�ZKLFK�KDYH�ZRUNHG�DQG�ZKLFK�KDYH�QRW��)RU�WKRVH�that work, we then ask Eton to sequence the DNA using the UHYHUVH�SULPHU�±�WKLV�LV�UHTXLUHG�RI�%2/'�LQ�RUGHU�WR�VXEPLW�samples, but it is not necessary if you are just doing the bar-coding for class projects.

���%LRLQIRUPDWLFV

All the programs used for the bioinformatics analysis in this paper are free and PC and Mac compatible. There are a variety of other programs that can be used to do analyses of \RXU�VHTXHQFHV��)RU�H[DPSOH��\RX�FDQ�KDYH�VWXGHQWV�FDOFX-late how much sequence diversity there is among members of the same species using a program such as Mega (http://www.PHJDVRIWZDUH�QHW����7KH�%2/'�VWXGHQW�SRUWDO�DOVR�KDV�D�YD-riety of tools but you must submit both forward and reverse VHTXHQFHV�WR�%2/'�WR�EH�DEOH�WR�XVH�WKHVH�WRROV�� 1RWH�WKDW�WKH�DPSOL¿HG�&2��VHTXHQFH�LV�D�FRGLQJ�UHJLRQ�of the DNA, and thus should be a continuous open reading frame. When translating the sequence as shown in Part 4 of the bioinformatics section, the longest open reading frame was +2. Your data may differ, however, since it is dependent on how the chromatogram is trimmed.

7. Submitting Sequences to BOLD� ,Q�RUGHU�WR�XVH�%2/'�DV�D�SODFH�WR�VWRUH�DQG�DQDO\]H�VWX-dent work, you must register for an account, and then reg-ister your course (KWWS���ZZZ�EROGV\VWHPV�RUJ�LQGH[�SKS�6'3B+RPH). This information will not be available to the SXEOLF��XQOHVV�\RX�DVN�%2/'�WR�LPSRUW�LW�LQWR�WKHLU�SXEOLF�GD-tabase. You can then upload your students’ names and emails,

Page 63: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Proceedings of the Association for Biology Laboratory Education, Volume 35, 2014 55

Major Workshop: Barcoding using the CO1 gene

for education, conservation and research. Her primary goal is to use the campus reserves as an outdoor laboratory to increase the number of undergraduate students that are able to participate in original research. Stephanie Mel received her Ph.D. from the University of &DOLIRUQLD��6DQ�)UDQFLVFR�ZKHUH�KHU�ZRUN�IRFXVHG�RQ�SURWHLQ�biochemistry and biophysics. As a post-doctoral research fel-low at Harvard Medical School she studied cholera. Stepha-nie moved to a teaching position in the Division of Biologi-cal Sciences at UC San Diego, where she has worked as a Lecturer for the last 16 years. She has taught a wide variety RI�ERWK�ODE�DQG�OHFWXUH�FRXUVHV�LQ�¿HOGV�LQFOXGLQJ�6WUXFWXUDO�Biochemistry, Molecular Biology, Physiology, and Genom-LFV��2QH�RI�6WHSKDQLH¶V�PDLQ�LQWHUHVWV�KDV�EHHQ�WR�LQWURGXFH�research into the undergraduate curriculum at UCSD.

About the Authors Madeline Butler received a PhD in Neuroscience from the University of Rochester School of Medicine and Dentist-ry, and she has since worked in both industry and academia. Since 2002, Mandy has been the Academic Coordinator for the Undergraduate Laboratories in the Division of Biologi-cal Sciences at UCSD. Mandy teaches undergraduate labora-tory courses and oversees the operation of the undergraduate teaching laboratories. Mandy is also involved in the San Di-ego Biodiversity Project which seeks to involve undergradu-ates in novel research experiences related to biodiversity. Heather Henter received her Ph.D. from the Entomology Department at Cornell University. In addition to teaching she has been involved in both applied and basic ecological re-search and science writing for a non-science audience. She is currently the Academic Coordinator for the UC San Diego Natural Reserve System, a network of land preserves set aside

Mission, Review Process & Disclaimer The Association for Biology Laboratory Education (ABLE) was founded in 1979 to promote information exchange among university and college educators actively concerned with teaching biology in a laboratory setting. The focus of ABLE is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, in-QRYDWLYH��DQG�UHOLDEOH�ODERUDWRU\�H[HUFLVHV��)RU�PRUH�LQIRUPDWLRQ�DERXW�$%/(��SOHDVH�YLVLW�http://www.ableweb.org/. Papers published in Tested Studies for Laboratory Teaching: Peer-Reviewed Proceedings of the Conference of the Associa-tion for Biology Laboratory Education are evaluated and selected by a committee prior to presentation at the conference, peer-reviewed by participants at the conference, and edited by members of the ABLE Editorial Board.

Citing This Article %XWOHU��0���+��+HQWHU�DQG�6��0HO��������)URP�%XJV�WR�%DUFRGHV��8VLQJ�0ROHFXODU�7RROV�WR�6WXG\�%LRGLYHUVLW\��3DJHV�������in Tested Studies for Laboratory Teaching, 9ROXPH���� �.��0F0DKRQ��(GLWRU���3URFHHGLQJV�RI� WKH���WK�&RQIHUHQFH�RI� WKH�Association for Biology Laboratory Education (ABLE), 477 pages. http://www.ableweb.org/volumes/vol-35/v35reprint.php?ch=3 Compilation © 2014 by the Association for Biology Laboratory Education, ISBN 1-890444-17-0. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner. ABLE strongly encourages individuals to use the exercises in this proceedings volume in their teaching program. If this H[HUFLVH�LV�XVHG�VROHO\�DW�RQH¶V�RZQ�LQVWLWXWLRQ�ZLWK�QR�LQWHQW�IRU�SUR¿W��LW�LV�H[FOXGHG�IURP�WKH�SUHFHGLQJ�FRS\ULJKW�UHVWULFWLRQ��unless otherwise noted on the copyright notice of the individual chapter in this volume. Proper credit to this publication must be included in your laboratory outline for each use; a sample citation is given above.Endpage

Page 64: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

!

�*)/��/��$*�'*�&./0�$*�"(�$'��*(�!*-�,0 ./$*).�!

�++'4�)*2�!*-��$)/ -����

�# � �$*�'*�&� �/0�$*�� � 1 '*+ �� �.� +�-/� *!� /# � �*2�-�� �0"# .� � �$��'��)./$/0/ � ������� �-*! ..*-� +-*"-�(�� $.� �)� $))*1�/$1 � �)�� �*''��*-�/$1 �2-$/$)"��)$(�/$*)�� .$")�./0�$*�!*-�.�$ )/$!$���*((0)$��/$*)�!*�0. ��*)�/# ��$-���$�)� �'*�&� 5� /# � ��$'4� $)/ -)�'� �'*�&� /#�/� /$( .� �$*'*"$��'� +-*� .. .���-*..�.+ �$ .��!-*(�.' +�2�& ��4�' .�/*�-#4/#($��" ) � 3+- ..$*)���

� � . &� (*/$1�/ �� ./0� )/.� 2$/#� �$1 -. � $)/ - ./.� �.�$ )� �� �*(+0/ -�.�$ )� �� 2-$/$)"�� �*((0)$��/$*)�� �-/�� ( �$��� /���� /*� �*''��*-�/ � $)� /# �� 1 '*+( )/�*!��- �/$1 � �0��/$*)�'�(�/ -$�'.�!*-�./0� )/.��)��/# �+0�'$����

�# ��$*�'*�&��/0�$*�$.������- �$/��*0-. �� � /.�/2$� �2 &'4���*)�� ���/��� ���+(�� �*/ )/$�''4�!0'!$''.����������������������#*)*-.�+-*% �/���

*-�$)� + )� )/�./0�4�- ,0$- ( )/.��0+*)��++-*1�'�� �*0-. ��0((�-4��)���++'$��/$*)��

����0�.�� �0���/$1$/$ .��)�� 1 )/.��*0-. .�#/('� �++'$��/$*).�*+ )�)*2�!*-��$)/ -�����

Page 65: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

BISP 170 “Bioscholars Seminar: From Bench to Bedside and Beyond” Instructors Dr. Kathleen French [email protected] Pacific Hall 3123B Dr. Krista Todd [email protected] Pacific Hall 3119 Lecture Mon 2:00-4:30 PM Pacific Hall 3500 Course Description This student-organized seminar course will examine different aspects of a recent topic in biology--spanning such subjects as the rise of personalized medicine, mapping of the human brain, or research into biofuels and alternative energy sources--to promote a thorough understanding of its scientific basis, medical applications, and implications across other disciplines and in a broader social context. Each series will begin with an examination of the scientific foundation of the chosen theme (“bench”), proceed to address the relevant applications of the subject in the medical field (“bedside”) and current key societal challenges of global dimensions (“beyond”), all of which will be framed within a consideration of diverse perspectives provided by sociology, economics, political science, or ethics. This year’s seminar course will examine topics related to Matters of Mind, Brain, and Society; more specifically, the acutely-current subject of the BRAIN Initiative will be approached from the multiple perspectives of the current research challenges of the neuroscience field, existing and future clinical applications resulting from this investigation, and the critical sociopolitical, philosophical, legal, and ethical ramifications of this scientific endeavor. 2 units, P/NP or letter grade Upper-division course Schedule

Week Date Speaker Topic

1 March 31 Terry Sejnowski Neurobiology

2 April 7 Nick Spitzer Neurobiology

3 April 14 Todd Hylton Technology: Machine-Brain interface

4 April 21 Mark H. Tuszynski Neurodegenerative Diseases and Stem Cells

5 April 28 Patricia Churchland Philosophy/Ethics

Page 66: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

6 May 5 Andrea Chiba Cognitive Science

7 May 13 Alexander Khalil & Victor Minces Electrophysiology on the Music and Brain Dynamics

8 May 20 --- Wrap-up (*class starts later at 3pm)

Prerequisites BILD 1-2 with concurrent enrollment in BILD 3. Course Requirements/Grading Students will receive a P/NP or letter grade in the course based on the following schema:

1. Attendance (25%) The class will meet weekly for 2.5 hours over the course of 8 weeks. More than one absence will result in a no-pass grade.

2. Readings and discussion questions (25%) Relevant readings will be assigned for each class session, as selected by the invited speaker, to be completed prior to class. Students will additionally be required to prepare and submit two questions based on the readings via the TED website prior to each class session.

3. Final paper (50%) Students will prepare a final written assignment that elaborates on a topic grounded in the presentations made as part of the course. At least one source must be from a peer-reviewed scientific literature (non-website) outside of the class readings. The paper must be 3 pages, 1-inch margins, 12-pt Times New Roman font, and double-spaced, and must be turned in by Friday of Week 9 (May 30) to Dr. Kathy French’s office (Pacific Hall 3123B).

Class Website http://ted.ucsd.edu Learning Goals

● introduce the discourse of important topics in science and their broader social/interdisciplinary implications

● foster oral and written communication skills for intellectual discourse ● promote development as scientifically trained individuals with acute sensitivity to the

social, political, cultural, and ethical context of scientific research ● educate students about the contributions of UCSD and local institutions to research that

addresses the pressing societal and global challenges of today

Page 67: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

ACADEMIC SENATE: SAN DIEGO DIVISION, 0002 UCSD, LA JOLLA, CA 92093-0002

October 30, 2007

PROFESSOR STEVE KAY, Dean Division of Biological Sciences PROFESSOR GABRIELLE WEINHAUSEN Associate Dean for Education Division of Biological Sciences SUBJECT: Notice of Retraction of Approval of Post-Screening Biology Majors At its October 12, 2007 meeting, the Committee on Educational Policy (CEP) discussed its November 9, 2001 approving the elimination of pre-majors and establishment of a modified enrollment management process of students, including setting a GPA standard higher than 2.0 in all six biology majors. CEP’s previous approval is in direct conflict with an existing San Diego Regulation. The specific Regulation is SDR 515—Progress Toward Degrees and Probation, paragraphs (A)(3) and (4): (3) “With the approval of the Committee on Educational Policy and when student demand exceeds any

reasonable capacity to accommodate, departments and programs may require undergraduate students to achieve a GPA higher than 2.0 in a specific set of prerequisite courses and may limit admission to the major to students who have met that standard. No department or program may require a GPA higher than 2.0 for continuation in or graduation from any undergraduate major.” [emphasis added]

(4) “With the approval of the Committee on Educational Policy, departments and programs may set a minimum standard for the satisfaction of the requirements within the department’s or program’s undergraduate curriculum. Except as may be provided for in Paragraph 3 of this Regulation, the minimum standard may not be set higher than C-.” [emphasis added]

It is clear that Regulation 515 specifically allows for the establishment of what is commonly known as a pre-major: a specific set of prerequisite courses in which students could be required to achieve a GPA higher than 2.0 before being admitted into a specific major but not once a student has been admitted to a major. It is also clear, however, that setting a GPA standard higher than 2.0 once a student has been admitted into a major as a condition of continuing in the major is not allowed. Given the above, CEP must retract its previous approval of all screening processes that set a GPA standard higher than 2.0 as a condition of students continuing in any Biology major. We apologize for this sudden change. We understand the enrollment management difficulties the Division of Biological Sciences is facing, but it turns out that there are subtle issues involved that require careful treatment of SDR 515. CEP is establishing a working group to study these issues and to address enrollment management in general. We hope to have more to say about this soon, and welcome your ideas. Kim Griest, Chair Committee on Educational Policy cc: D. Donohgue J. Posakony B. Sawrey ChronFile

Page 68: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

ACADEMIC SENATE: SAN DIEGO DIVISION, 0002 UCSD, LA JOLLA, CA 92093-0002

April 10, 2008

ASSOCIATE DEAN GABRIELE WIENHAUSEN Division of Biological Sciences SUBJECT: CEP Approval of the Request to Declare All Biology Majors Impacted, Submit Target

Enrollment Numbers and Establish Admission Criteria for Freshmen, Transfer and Continuing Student

As you know, at its March 14, 2008 meeting, the Committee on Educational Policy (CEP) considered the Division’s response to a number of CEP concerns (CEP January 4, 2008 memo). Remaining issues regarding the Admissions Policy for Continuing Students were identified and noted in our April 2, 2008 memo, to which the Division immediately responded. The Committee was pleased to approve (via electronic vote) to approve the Division of Biological Sciences majors impacted and admission to any of the nine majors effective Fall 2009 according to the below procedures and criteria:

1. Enrollment Target Numbers for Fall 2009: • New Freshman Students (NFS) – 3rd week enrollment: 700 (assuming an additional

influx of continuing freshmen students of 50) • New Transfer Students (NTS) – 3rd week enrollment: 200 • Continuing Students: 150

[Enrollment target numbers must be submitted to the CEP, the AVCUE and the Admissions Office by the first week in January of each year.]

2. Admissions Policy for Freshman Students The Admissions Office will admit the appropriate number of incoming freshmen into the requested impacted major using the comprehensive review score as a ranking. Students will be admitted into an impacted major starting with the highest comprehensive review score until the target number is reached.

3. Admissions Policy for Transfer Students The Admissions Office will admit the appropriate number of transfer students using the community college GPA for the ranking. Transfer students who meet the UCSD transfer admissions criteria and have completed the required courses will be admitted into an impacted major starting with the highest GPA until the target number is reached.

4. Admissions Policy for Continuing Students • Continuing students must submit an application and meet the following minimum

requirements: (a) Completed at least one year/three quarters in residence at UCSD (b) Completed all lower division requirements for the requested major (c) Students will be ranked based on overall GPA and admitted according to rank (d) Students who have completed more than six full quarter at UCSD, i.e., students who

apply later than the final day of their sixth academic quarter at UCSD will not be considered.

Page 69: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

ACADEMIC SENATE: SAN DIEGO DIVISION, 0002 UCSD, LA JOLLA, CA 92093-0002

(To ensure that the target number for continuing students is met, the Division will set two deadlines annually for continuing students, one of which will be the first week in January.)

As you are aware, per the new Enrollment Management Policy, the below also apply:

• Impacted Status is granted for a four year term and application for renewal of Impacted Status must be submitted to CEP before the end of the third year, that is three years after the status begins.

• If the Division decides that there is no need to limit enrollments in a particular major, simply refrain from supplying target numbers to the UCSD Admissions office by the deadline and the major becomes in effect open and no longer impacted.

• Students who transfer out of an impacted major may transfer back into it once without meeting the full requirements for continuing student admission, provided they are in good academic standing.

Kim Griest, Chair Committee on Educational Policy Cc: College Deans of Advising College Provosts

M. Brown F. Atchison D. Donoghue

C. Muessig J. Posakony B. Sawrey ChronFile

Page 70: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

ACADEMIC SENATE: SAN DIEGO DIVISION, 0002 UCSD, LA JOLLA, CA 92093-0002

May 27, 2008

CORRECTED EFFECTIVE DATES FOR ADMISSIONS POLICIES FOR FRESHMAN & TRANSFER STUDENTS TO 2009

ASSOCIATE DEAN GABRIELE WIENHAUSEN Division of Biological Sciences SUBJECT: Clarification of specific procedures regarding CEP’s approval declaring all Division of Biological

Sciences majors to Impacted and the Admission Criteria for Freshmen, Transfer and Continuing Students

This memo clarifies a number of implementation procedures regarding CEP’s approval granting all Division of Biological Sciences majors Impacted Majors and the Admission Criteria.

1. CEP approved all Biology majors Impacted effective Fall 2009. The effective term of this approval is Fall 2009-Spring 2012.

2. Implementation of the Admission Policy for Transfer Students to impacted Biology majors is effective Fall 2011. 3. The Division of Biological Sciences will expect, not require, Transfer students to have completed all of their

lower division coursework prior to matriculating to UCSD (see the list of lower division courses below). Admission to any of the nine Biology majors will follow the below procedures and criteria:

1. Enrollment Target Numbers for Fall 2009: • New Freshman Students (NFS) – 3rd week enrollment: 700 (assuming an additional influx of

continuing freshmen students of 50) • New Transfer Students (NTS) – 3rd week enrollment: 200 • Continuing Students: 150

[Each year, new enrollment target numbers must be submitted to the CEP, the AVCUE and the Admissions Office by the first week in January of each year, and must not be smaller than the approved target numbers noted above.]

2. Admissions Policy for Freshman Students (Effective Fall 2009) The Admissions Office will admit the appropriate number of incoming freshmen into the requested impacted major using the comprehensive review score as a ranking. Students will be admitted into an impacted major starting with the highest comprehensive review score until the target number is reached.

3. Admissions Policy for Transfer Students (Effective Fall 2011) The Admissions Office will admit the appropriate number of transfer students using the community college GPA for the ranking. Transfer students who meet the UCSD transfer admissions criteria will be admitted into an impacted major starting with the highest GPA until the target number is reached. The Division of Biological Sciences expects transfer students to have completed all of their lower division courses, i.e., the equivalent of: Chemistry 6A, B, C and 6BL; Mathematics 10A, B, C or 20A, B, C; Physics 1A/1AL, 1B/1BL,1C/1CL or 2A, B, C and one lab; and BILD 1, 2, and 3 prior to matriculation to UCSD.

4. Admissions Policy for Continuing Students (Effective Fall 2009) • Continuing students must submit an application and meet the following minimum requirements:

(a) Completed at least one year/three quarters in residence at UCSD (b) Completed all lower division requirements for the requested major (c) Students will be ranked based on overall GPA and admitted according to rank (d) Students who have completed more than six full quarter at UCSD, i.e., students who apply later than

the final day of their sixth academic quarter at UCSD will not be considered. (To ensure that the target number for continuing students is met, the Division will set two deadlines annually for continuing students, one of which will be the first week in January.)

Page 71: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

ACADEMIC SENATE: SAN DIEGO DIVISION, 0002 UCSD, LA JOLLA, CA 92093-0002

As you are aware, per the new Enrollment Management Policy, the below also apply:

• Impacted Status is granted for a four year term and application for renewal of Impacted Status must be submitted to CEP before the end of the third year, that is three years after the status begins.

• If the Division decides that there is no need to limit enrollments in a particular major, simply refrain from supplying target numbers to the UCSD Admissions office by the deadline and the major becomes in effect open and no longer impacted.

• Once admitted to one of the biology major, students may freely transfer once between the 9 Biological Sciences majors without meeting the full requirements for continuing student admission, provided they are in good academic standing.

Kim Griest, Chair Committee on Educational Policy Cc: College Deans of Advising College Provosts

M. Brown F. Atchison D. Donoghue

C. Muessig J. Posakony B. Sawrey ChronFile

Page 72: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

BILD  4  Introductory  Biology  Lab    BILD  4  is  designed  as  an  independent,  on-­‐going  research  project  on  soil  microbiomes  at  the  Natural  Reserve  System,  with  students  acting  as  the  primary  researchers.  The  course  aims  to  help  students  develop  an  understanding  of  research  in  biology  through  inquiry-­‐based  laboratory  experiments.  Students  work  in  teams  to  collect,  analyze,  and  present  original  research  data  while  learning  laboratory  methods  common  to  a  variety  of  biological  disciplines.      The  course  is  divided  into  three  major  portions:  lectures  on  the  concepts  and  theory  behind  each  experiment,  laboratory  sessions  where  students  collect  and  analyze  data,  and  a  project  in  which  students  develop  hypothetical  research  proposals  using  the  experimental  methods  they  learned  in  BILD  4.  Learning  in  each  of  the  components  are  assessed  by  quizzes,  laboratory  reports  written  in  the  format  of  journal  papers,  and  a  poster  presentation  respectively.    Goals   Activities  1. Learn  fundamentals  of  scientific  processes   • Carry  out  experiments  in  BILD  4  project  

• Develop  hypothetical  research  proposals  2. Learn  laboratory  skills  in  modern  biology   • Carry  out  experiments  in  BILD  4  project  

• Lectures  on    3. Become  familiar  with  mathematical  tools    

• Compare  soil  microbiomes  using  statistics  • Align  16S  rDNA  sequences  • Determine  microbial  biodiversity  

4. Develop  analytical  reasoning  and  communication  skills  

 

• Write,  review,  and  revise  laboratory  reports  in  the  format  of  journl  papers  

• Present  and  review  hypothetical  research  proposals  at  poster  fair  

5. Develop  information  literacy  skills    

• Identify  news  articles  on  microbiomes  • Perform  literature  search  for  hypothetical  research  project  

6. Understand  the  relevance  of  the  BILD  4  project  in  broader  contexts  

• Guest  lectures  from  UCSD  scientists  • Develop  hypothetical  research  proposals  

 Learning  through  research  The  BILD  4  research  project  focuses  on  soil  microbiomes  at  the  Natural  Reserve  System.  While  the  long-­‐term  goal  is  discovery-­‐based  (i.e.  exploring  the  longitudinal  characteristics  of  soil  microbial  communities),  every  few  years  we  will  have  a  specific  short-­‐term  focus  that  is  inquiry  based  and  hypothesis  driven.  The  current  project  involves  examining  if  and  how  soil  microbiomes  are  different  for  native  vs.  invasive  plant  species.    Students  collect,  analyze,  and  present  three  key  sets  of  original  data:  soil  properties  (moisture  and  pH),  functional  biodiversity  (carbon  source  utilization),  and  genetic  biodiversity  (16S  rDNA  sequencing).  With  the  anchoring  question  on  native  vs.  invasive  plants,  we  tie  in  concepts  and  

Page 73: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

content  across  biological  scales  from  macroscopic  to  microscopic  to  molecular,  providing  opportunities  to  connect  student  learning  across  biology  disciplines.    Implementation  schedule  The  pilot  year  of  2014-­‐2015  involves  the  scaling  up  from  1  to  3  sections  of  32  students  each,  and  the  full-­‐scale  program  of  12  sections  per  quarter  will  begin  in  2015-­‐2016.  At  full  implementation,  each  section  will  be  led  by  2  instructional  assistants,  who  will  be  trained  by  an  immersion  method.  Each  week,  instructional  assistants  will  participate  as  students  in  a  mock  laboratory  section  led  by  faculty,  who  will  model  how  to  lead  the  section,  followed  by  a  reflective  discussion  on  how  they  can  be  effective  in  leading  the  same  section.    In  the  pilot  phase,  we  plan  to  optimize  lab  protocols  so  that  they  can  be  completed  within  the  allotted  3-­‐hour  lab  time,  develop  training  material  for  instructional  assistants,  and  identify  instruments  to  evaluate  student  outcomes.  Furthermore,  the  pilot  year  provides  an  opportunity  for  us  to  understand  the  needs  of  our  students,  so  that  we  can  tailor  material  in  the  course  to  support  their  learning.    Year   Biology  Research   Education  Research   Collaborations  1   Pilot  experiment:     Basic  evaluation:  6  pilot  

sections  and  framework  Library,  writing  center,  and  colleagues  in  biology  and  other  disciplines  to  design  the  course  

2   Reliability  of  student-­‐generated  research  data  

Efficacy  student:  36  sections  of  students  and  up  to  72  instructional  assistants  per  year  

Upper-­‐division  lab  courses,  chemistry  lab  courses  

3-­‐4   Large-­‐scale  experiment:  native  vs.  invasive  plants  

5-­‐7   New  research  project   Expansion  study,  embedded  education  research  questions  

Local  community  colleges,  Preuss  School  

8-­‐10   New  research  project   Historical  impact  study  at  UCSD,  expansion  and  efficacy  study,  embedded  research  questions    

Universities,  community  colleges,  high  schools,  and  middle  schools  nationwide  

 

Page 74: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

UNIVERSITY OF CALIFORNIA - SAN DIEGOE COURSE REQUESTDate: 10/29/2014

Request Type : New

Subject Code : BILD

Course Number : 4

Department : Biology

Course Title : Introductory Biology Lab

Transcript Title : Introductory Biology Lab

Effective Term : FALL 14

Extent of Approval :Summer Only : N

Description :

Students gain hands on experience and learn the theoretical basis of labtechniques common to a variety of biological disciplines such as biochemistry,molecular biology, cell biology and bioinformatics. Students will work in groups,learning how to collect, analyze, and present data while using the scientificmethod to conduct inquiry-based laboratory experiments.

Course Justification :

Biology is an empirical science and, as such, hands-on learning experiences areessential as a foundation for understanding Biological concepts. The new LD labcourse will teach the fundamentals of the scientific process, prepare students forthe more demanding upper division labs, and will provide students with importantlaboratory training experiences early in their careers.

Request Justification :Until recently, Biology has not had the physical capacity to offer a lower divisionbiology lab. Recent lab infrastructure expansions will allow Biology to offer, for thefirst time ever, a lower division lab course for all Biology majors.

FIAT : Lecture Plus Suppl. Activity

Instructors:Instructor Assignment : Department Chair Assigned

Department Title/Rank First Name Initial Last Name

Crosslisted Courses:Subject Code Course Number Department Course Title Status End Term

Instructional Units/Hours:Unit Type : FIXED

Fixed Units : 2.00

Variable Units : Min : 0.00 Max : 0.00 Increment : 0.00

Types of Instruction: Fixed Hours Var Hours Min Var Hours Max Grade Report OtherOP 1.00 0.00 0.00 N

LE 2.00 0.00 0.00 NLA 3.00 0.00 0.00 Y

Total Hours(Fixed) : 6.00 Total(Var)Min/Max :

Course Repeatability:Number of Times Taken forCredit: 1

Total Unit Credits : 2.00

Justification :

Grade Options:Undergraduate : Standard(letter/or P/NP)Graduate :

In Progress Grading:Does course use in-progressgrading : N

IP Justification :

In Progress Sequence Courses:

Status Subject Code Course No. Course Title Seq No. Final Grade End Term

Final Evaluation:Final Exam Method : C

Keys: C=In Class Final Exam; L=Lab Final; P=Final Paper; P2=Final Presentation; P3=Final Project; O=Other; NL=No final(Lab); NG=No Final(Grad Course);

Description :Justification :

E Course Request https://act.ucsd.edu/qlink/easyquery

1 of 2 10/29/2014 10:20 AM

Page 75: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Course Prerequisites:

BILD 1

Status Department Subject Code Course No. Title End Term Prerequisite SeqExisting Biology BILD 1 The Cell 1

Test Prerequisites:

Test Description Low Score High Score

Department Restrictions:Department Approval Req : NDepartment Approval Req Justification:Other Enrollment Requirements :

Academic Level Restrictions:Freshman: Y Sophomore : Y Junior : N Senior : NLower Div: N Upper Div : N Graduate : N Pharmacy : N Medical : N

Course Corequisites:

Status Department Subject Code Course No. Course Title End Term

Course Duplicates:

Status Department Subject Code Course No. Course Title End Term

Other Catalog Information:Other Catalog Information(Optional): Material lab fee may apply.

Recommended Preporation(Optional) :Material Fee : Y

Animal Subjects:Uses Animal Subjects: NProtocol Number :Approval Date :

Human Subjects:Uses Human Subjects: NProtocol Number :Approval Date :

Decisions:

Reviewer Department Decision Userid DateDepartment Chair BIOL APPROVED biogkw 2014-02-04 15:37:19.0Registrar Reviewer REVIEWED regmac 2014-02-07 13:31:58.0

Registrar Approver APPROVED regwrh 2014-02-24 11:31:34.0Academic Senate APPROVED acskml 2014-03-18 09:39:00.0

CEP/Grad Council APPROVED acskml 2014-03-18 09:39:07.0

E Course Request https://act.ucsd.edu/qlink/easyquery

2 of 2 10/29/2014 10:20 AM

Page 76: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  1  

DoBS:  Teaching  Assignment  Process    

The  Teaching  Assignments  Process  for  the  Division  of  Biological  Sciences  has  three  parts.  

 

Part  1  

SIS  identifies  course  needs,  based  on  past  enrollment  and  changes  to  major  numbers  or  other  factors;  

identified  via  the  database.  

Part  2  

1. The  Education  Committee  Section  Representative  contacts  each  section  faculty  member  to:  

o review  past  teaching  assignments  (assuring  accuracy  of  records)  and  previous    years  

comments  submitted  via  the  on-line  Teaching  Assignment  tool  

o solicit  feedback  about  faculty  members  future  teaching  contributions  (including  confirming  

current  teaching  contributions  and  collecting  proposal  for  changes).    

2. Section  representative  summarizes  outcomes  of  these  conversations  and  communicates  them  

to  EC  Co-Chair  for  Course  Assignments  (L.  Smith)  to  support  coordination  of  teaching  

assignments.      

3. The  Education  Committee  continually  reviews  section  representative  information,  makes  

updates  as  appropriate  and  develops  teaching  schedule.  

Part  3  

Each  faculty  member  receives,  via  the  on-line  Teaching  Assignment  system,  notification  about  the  

proposed  teaching  assignment  for  the  subsequent  year.    Faculty  members  will  be  asked  to  confirm  and  

may  submit  assignment  related  comments  within  the  system  if  appropriate.  

 

 Timeline  

 

Early  Fall  

! Teaching  database  updated  with  known  information:  

• Pre-loading  from  previous  year  if  no  known  changes  

• Pre-loading  information  regarding  sabbatical    

o putting  someone  back  into  a  course  

o taking  someone  out  of  a  course  and  listing  as  “staff”  

• Leaving  labs  as  documented  for  previous  year  (see  note  below);  temp  instructors  left  on  

schedule  

• Updating  2-1-2  teaching  rotation  

• Taking  off  known  and  confirmed  retirements  

• Taking  off  previous,  non-continuing,  temp  instructors  allowing  active  faculty  to  fill  slot    

o Continuing  Unit  18  lecturers  include  Soowal,  Gustafson-Brown  and  Strause;  will  

be  assigned  courses  as  needed  and  agreed  upon.    Faculty  may  fill  those  slots  but  

EC  section  representative  must  communicate  that  information.      

• Taking  off  previous  recall  instructors  allowing  active  faculty  to  fill  slot  

 

Note:  Ugrad  Lab  information  treated  separate  from  “regular”  teaching  assignment  process.    Lab  

Coordinator  to  communicate  lab  offering  needs  and  potential  instructors  back  to  Chair.  

 

! Sabbatical  Call  Letter  sent  out  to  faculty  by  Biology  AP  

 

Page 77: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

  2  

Early  Fall  EC  meeting  

! Co-chair  for  Course  Assignments  (L.  Smith),  guides  the  teaching  assignment  process  working  

with  EC  section  representatives  to  ensure  that  (1)  all  courses  are  staffed  and  (2)  all  faculty  meet  

Divisional  teaching  expectations.  

 

! All  EC  members  have  access  to  proposed/tentative  and  past  teaching  information  via  the  EC  

web  page.  Listed  under  “Teaching  Document  Links”  requires  Single  Sign-On  (SSO).    Any  notes  

regarding  teaching  assignments  will  also  be  posted  (does  not  require  SSO).  

http://biology.ucsd.edu/education/undergrad/ec/index.html  

 

! As  updates  and  changes  are  received,  SIS  will  correct  information  in  the  database.    Changes  will  

appear  on  Teaching  Documents.  

 

Early  Winter  EC  meeting  

Fall  scheduling  begins  mid-January,  therefore;  

! All  teaching  assignments  for  the  subsequent  Academic  Year  must  be  set.      

! EC  will  conduct  a  final  review  to  assure  that  (1)  course  offerings  are  aligned  with  student  

enrollments  (preventing  bottleneck  courses)  and  major  requirements  (2)  all  faculty  members’  

teaching  is  aligned  with  Divisional  expectations.  

! Email  notification  will  go  out  to  active  faculty  (Unit  18  and  recall  are  not  included)  regarding  

teaching  assignments.    Teaching  assignment  information  includes  course  information  only.    The  

“percent”  used  in  the  notification  system  indicates  percentage  when  multiple  instructors  teach  

or  100%  for  a  single  instructor.  

Lack  of  teaching  assignments  means  that  DoBS  has  no  record  of  teaching  responsibility  for  that  

particular  faculty  member.  

Faculty  will  be  asked  to:  

o review  and  respond  to  proposed  teaching  assignment  via  the  on-line  Teaching  

Assignment  tool.    They  will  have  approximately  one  week  to  respond.    

o provide  teaching  related  comments  within  the  system  if  appropriate.    

o Faculty  taking  an  approved  sabbatical  must  review  if  the  on-line  tool  accurately  reflects  

sabbatical  leave.  

 

Mid-Winter  

All  teaching  assignments  are  considered  complete;  no  further  action  from  EC  members  is  needed  unless  

unforeseen  situations  occur.    Unforeseen  situations  will  be  dealt  with  on  a  case-by-case  basis  and  may  

involve  any  of  the  following:  Associate  Dean  for  Education,  SIS  staff,  affected  faculty,  EC  section  

representative,  other.  

 

Page 78: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Division of Biological Sciences Teaching Portfolio

! General Information:

• Signed biography/bibliography • Curriculum Vitae

! Reflective Statement or teaching philosophy; scholarly teaching:

• discussion of the instructor’s core beliefs about learning and teaching; and how the science education research literature has guided his or her teaching-learning experience

• statement about the specific teaching goals of each course taught by the instructor (e.g. what are the major themes to be developed in a course) and which learning outcomes the faculty wishes to achieve

• statement that provides rational for pedagogical tools used for achieving specific educational outcomes

! Documentation: set of detailed entries investigating how effectively the

goals of the course have been put into practice; e.g.: • syllabi • student assignments and results • exams • papers • website • other kinds of student work • mentorship of students • supervision and mentorship of TA’s • evidence of creating/using pedagogical tools (i.e. web layer or

creating visual arguments) • methods used for obtaining feedback from students, and any

forms used for self-assessment • information obtained through assessment techniques, including

CAPES and in-house evaluations

! Reflections: instructor demonstrates scholarly teaching practice: evidence that instructor conducts systematic observations, analyzes the outcomes, and obtains peer evaluation of their classroom performance

Teaching Portfolio Resources: http://www.cmu.edu/teaching/resources/DocumentingYourTeaching/TeachingPortfolios/TeachingPortfolios.pdf

Page 79: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Richard�FirtelDistinguished�Professor

Associate�DeanKathy�Hay

Divisional�Business�Officer

Maryam�AttariPr�Ad�Analyst�Sup

Chief�Fin�Mgr/Asst�DBO

Melissa�ZhangCore�Operations�Fiscal�Analyst

Jennifer�LouieAdmin�Coordinator�Sup/Sponsored�Projects�Mgr

Lien�NgoGrad�Support�Analyst

Donna�AizussFinancial�Asst

Kinuko�KandaResearch�Operation�

Analyst�Sup

Mandy�ButlerTeaching�ProfessorUndergrad�Labs

Lorina�AlmazanSRA�IV�Sup

Kenneth�EdwardsLA�II

Ana�GomezSRA�I

Dennis�HickeySRA�II

Andrew�MooreSRA�II

Jamie�SanchezLA�II

Joe�StaggSRA�II

Unit�18�

Bobby�WaddellLA�I

Dwayne�FernandezSr�Sup�Mech�ShopsFac�&�Shops�Mgr

Alberto�MirandaSr.�Bldg�M�Wkr

Steven�RomanSr�Bldg�M�Wkr�B

Trevor�ThiessenMaint�Mech

Sam�HernandezSr�Adm�Analyst�SupAnimal�Facilities�Mgr

Neil�BautistaAnimal�Tech

Kai�ChauvinAnimal�Tech

Scott�DavisAnimal�Tech

Juliana�EmertAnimal�Tech

George�FriederichSr�Animal�Tech

Erick�RinconAnimal�Tech

Rimma�LevenzonAnimal�Tech

Kyle�McCunneyAnimal�Tech

Bronislava�Nizamova

Pr�Animal�Tech

Roger�RainvilleSr.�Animal�Tech

Irina�SnitserSr�Animal�Tech

Student�Emp�(1)�

Noel�VillanuevaSr�Animal�Tech

Melanie�DoyleAdmin�Coord.�Sup

Mgr.�Staff�Personnel�&�Payroll

Dana�BrehmSAO�III

Supervisor�Mgr,�USIS

Dawn�BlessmanInstructional�Svcs�Mgr

SAO�II�Supervisor

Jamie�HammondSAO�I

Natalie�NolesSAO�I

Lindsay�WardSAO�I

Julie�VitaleMgr,�UG�AdvisingSAO�II�Supervisor

Christine�LiouUG�Advisor�SAO�I

Laura�MajochUG�Advisor�SAO�I

Vanesa�de�BoerUG�Advisor�SAO�I

Teaching�Professors

Jude�PooleCRM�III

Computer�Services�Mgr

Jennifer�RothAA�III

Asst.�to�DBO,�AD

Vicky�ScalesEH&S�Specialist

Safety�Officer�Mgr

Hanako�WylesAsst�EH&S�Spec�

(60%)

Thomas�TompSAO�II

Supervisor�Mgr,�GSIS

Marifel�AlfaroSAO�I/Grad

Cathy�PughSAO�I/Grad

Student�EmpVarious

Gabriele�WienhausenSLSOE

Associate�Dean,�Education

Student�Emps�(1)�

Hermila�TorresDO/Bio�Mgr

SAO�II

Kim�GravesAP�Admin�Spec

Rexanne�DayesHR�Admin�Spec

Tracy�Felts�(Hiscock)

HR�Admin�Spec

Kris�TouchetAP�Admin�Spec

Emma�Chan�Fiscal�Admin.�

Spec.

Monica�Flores�Fiscal�Admin.�

Spec.�

Wayne�Zhang��Fiscal�Admin.�

Spec.

Tasha�Hsu�Fiscal�Admin.�

Spec.�

Lisa�Jandt�Auvil�Fiscal�Admin.�

Spec.�

Tahira�Mershon��Fiscal�Admin.�

Spec.

Tina�Bucay�Fiscal�Admin.�

Spec.�

Student�Emp�(2)�

Steve�BatesPA�III

Mark�CheneyPA�IV�–�Supr

App�Dev.�&�DB�Sys�Mgr

IͲTeh�HsiehPA�III�(40%)

Sarah�KelleyPA�III

Katie�LeePA�II

Nicole�OliverPA�I

Tom�PfenderPA�III

Student�Emp�(1)�

Andres�HerreraLA�II

Christine�GachHR�Admin�Asst

Duke�LeePA�II

Fadi�RahawiPA�II

Victor�VasquezPA�II

David�TaylorLA�II�–�Fly�Kitchen

Stephanie�SchuckAAIII/Purchasing/

Res�Ops

Laura�TaAdm�Analyst�Sup

AP�Mgr

Carissa�BainesAAIII/Fiscal�Asst

Mark�WhelanAAIII/Fiscal�Asst

Anna�DicksonAAIII/Fiscal�Asst

Ria�Del�RosarioAA�III

Joanna�DunnAA�III

April�HunterAA�III

Kathleen�McPhersonAA�III

Marie�StarkAA�III

Sutara�TangAA�III

Jackie�VignesAA�III

Elizabeth�WeberAA�III

Emmeline�DomingoAsst�SAO

Deborah�WongSRA�I

Secondarily�reports�to�Gabriele�Wienhausen

In�recruitmentLab�Asst�II

In�recruitmentLA�II�–�Fly�Kitchen

Undergraduate�Student�&

�Instructional�Services�(USIS)

DO/Bio

Page 80: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Student & Instructional ServicesUndergraduate

Dana�BrehmSAO�III

Supervisor�Manager,�USIS

Dawn�BlessmanInstructional�Services�Manager

SAO�II�Supervisor

Hermila�TorresDO/Bio�Manager

SAO�III

Julie�VitaleUndergraduate�Advising�Manager

SAO�II�Supervisor

Natalie�NolesSAO�I

Laura�MajochUG�Advisor�SAO�I

Christine�LiouUG�Advisor�SAO�I

Jamie�HammondSAO�I

Student�Emps�(1)�

Vanesa�de�BoerUG�Advisor�SAO�I

Lindsay�WardSAO�I

Emmeline�DomingoAsst�SAO

Richard�FirtelDistinguished�Professor

Associate�DeanGabriele�Wienhausen

SLSOEAssociate�Dean�for�Education

Kathy�HayDivisional�Business�Officer

Page 81: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

BIOLOGY MAJORS: 1988-2014(3 Quarter Average)

Breakdown_Bio_Major_88-14_per_yr_total USIS, 4/30/2014

   

MAJOR 1988-89 1989-90 1990-91 1991-92 1992-93 1993-94 1994-95 1995-96 1996-97 1997-98 1998-99 1999-2000 2000-01 2001-02 2002-03 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14Animal Physiology & Neurosciences 340 309 331 403 419 434 448 524 621 623 635 582 512 461 473 399 316 232 182 93 26 3 2Biochemistry & Cell Biology 585 572 567 627 747 739 872 1,017 994 985 993 916 788 703 723 757 801 891 937 1,018 1,213 1,165 967 788 761 1,088Ecology, Behavior, and Evolution 100 110 134 180 200 206 217 223 213 184 168 150 132 113 94 90 98 103 98 117 160 157 160 131 102 118General Biology 931 997 1,059 1,189 1,286 1,385 1,502 1,625 1,556 1,442 1,449 1,497 1,360 1,323 1,329 1,330 1,184 1,032 1,017 1,057 1,109 1,156 1127 928 848 1,003Human Biology 163 744 1,206 1,583 1,789 2,095 2,071 1718 1418 1267 1,577Microbiology 114 113 112 121 151 156 152 178 192 213 208 192 173 138 140 129 125 117 115 128 131 140 137 112 120 140Molecular Biology 95 104 115 123 124 170 196 226 237 242 220 203 195 201 223 214 219 230 225 234 241 225 181 136 136 172Physiology & Neurosciences 57 198 363 552 634 583 540 540 753Bioinformatics 5 11 12 8 6 9 10 9 8 10 16 24TOTAL MAJORS 2,165 2,205 2,318 2,643 2,927 3,090 3,387 3,793 3,813 3,689 3,673 3,540 3,160 2,939 2,987 3,093 3,499 3,876 4,361 4,808 5,535 5,558 4,883 4,063 3,790 4,875Undeclared: Biological Science 204 246 242 295 300

269 (FA08) 3 1

Total w/ Undeclared 3,297 3,745 4,118 4,655 5,108 5,804 5,561 4,884 4,063

*Undeclared: Biological Sciences was designated on the UC application beginning 2003. Total not included in graph figure. The UNBS was discontinued as of WI09.

0

1,000

2,000

3,000

4,000

5,000

6,000

1988-89 1989-90 1990-91 1991-92 1992-93 1993-94 1994-95 1995-96 1996-97 1997-98 1998-99 1999-2000 2000-01 2001-02 2002-03 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 2011-12 2012-13 2013-14

Animal Physiology & Neurosciences

Biochemistry & Cell Biology

Ecology, Behavior, and Evolution

General Biology

Microbiology

Molecular Biology

Human Biology

Bioinformatics

Physiology & Neurosciences

TOTAL MAJORS

Page 82: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

1

Transfer(Opportunities(for(Success:(ToPS(

http://biology.ucsd.edu/undergrad/tops.html(

Strategies(for(Success(Fundamentals6

BISP(191<Fall(2014(

Section(ID(818357(

Wednesdays:(3(<(4:45(pm(

York(Hall(3010(

6Instructor:6Dr.6Gabriele6Wienhausen,6Associate6Dean6for6Education6>6Division6of6Biological6Sciences6Email:[email protected](hours:6by6appointment6Office(location:6Natural6Sciences6Building6E205,6Eth6floor,6Bio6Dean6Suite66Goals(This6seminar6assists6you6in6your6transition6from6community6college6to6UC6San6Diego.6It6focuses6on6first6quarter6transition6issues,6academic6planning,6utilizing6campus6resources,6and6connecting6to6the6Division6of6Biological6Sciences6community6(students,6staff6and6faculty)6and6to6UC6San6Diego6and6the6La6Jolla6Mesa.6666Learning(Outcomes(The6seminar6will6help6you6to:6

1. acquire6an6understanding6of6academic6and6professional6expectations6and6identify6strategies6to6meet6those6expectations6

2. learn6about6the6academic6skills6you6acquire6through6coursework6and6the6professional6skills6you6should6develop6through6hands>on6and6co>curricular6educational6experiences6

3. express6your6educational6and6professional6goals6and6develop6a6roadmap6for6achieving6those6goals6while6here6at6UCSD6

4. develop6a6connection6to6UCSD6through6interacting6with6fellow6students,6faculty,6and6staff65. develop6an6awareness6of6the6resources6for6managing6some6of6the6transitional6issues6you6may6

encounter6E. Feel6comfortable6on6campus6and6have6a6cognitive6map6of6the6Division6of6Biological6Sciences6and6

the6UC6San6Diego6campus6and6know6about:6

• the6Center6for6Discovering6Opportunities6in6Biological6Sciences,6do/bio;6academic6resources6and6services6inside6and6outside6the6Division6of6Biological6Sciences,6incl.6the6tiered6system6of6academic6advising;6undergraduate6research6and6research6scholarships6

• student6life6and6student6resources6and6services,6including6Biological6Sciences’6student6organizations6

• logistical6resources,6such6as6the6shuttle6system,6commuter6center6and6lounges66• the6culture6and6traditions6of6the6UCSD6campus6and6its6community66

6

Page 83: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

2

Schedule:(6October(8:(no#class#meeting(October(15:(Getting#to#know#each#other,#Division#of#Biological#Sciences,#UCSD#and...#How#do#I#find#what#I#need#at#this#huge#campus?6In#class#reflection#and#discussion:#

• Biggest6hopes6and6biggest6fears6or6obstacles;6impressions6after6week6one…66• Who6are6we?66

o getting6to6know6each6other66o getting6to6know6ourselves66

• About6UCSD:66o UCSD,6a6Public6Research6University:6the6teaching6and6learning6environment6at6a6research6

university6o UCSD’s6organizational6structure6

! UCSD’s6College6System6! Academic6Divisions6and6academic6departments6! Student6Affairs6! Student6Government6

o UCSD6student6profile66o UCSD6traditions:6http://students.ucsd.edu/student>life/_organizations/student>

affairs/ucsd>traditions.html6o UCSD6culture6and6community66

! Community6Centers:6(http://community.ucsd.edu/)6o University6Centers6(http://universitycenters.ucsd.edu/)6

• What's6different6about6UCSD?66o quarter6vs.6semester66o 6large6classes6o 6Faculty;6TA's;6students66

• Some6of6the6Important6resources6to6know:66o 6Biology6Undergraduate6Student6and6Instructional6Services6(USIS)6

! esp.:6http://biology.ucsd.edu/education/undergrad/transfer/index.html6o 6Discover6Opportunities6in6Biological6Sciences6>6do/bio:6

! do/bio:6http://biology.ucsd.edu/education/undergrad/student>opp/bssp.html6o Transfer6Student6Resources6and6Organizations:6

! Colleges:6http://commuter.ucsd.edu/commuter_lounges.html6! BSSA:6http://bssa.ucsd.edu/6! ACTA:6http://acta.site88.net/6! Commuter6Org:6http://accb.ucsd.edu/6! Transfer6Student6Handbook:6

http://students.ucsd.edu/academics/_organizations/new>student>guide6o on>campus6resources6

! Community6Centers:6http://community.ucsd.edu/6! Library:6

• Geisel:6http://libraries.ucsd.edu/6• Biomed:6http://libraries.ucsd.edu/locations/bml/6

o How6to6get6around6on6campus:66

Page 84: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

3

! UCSD6transportation:6http://blink.ucsd.edu/facilities/transportation/shuttles/index.html6

o How6do6I6find6what6I6need?66! TritonLink:6https://students.ucsd.edu/6

o Bio6Student6Orgs:6! BSSA:6http://bssa.ucsd.edu/6! Saltman6Quarterly:6http://sq.ucsd.edu/6! BioScholars:6http://biology.ucsd.edu/education/undergrad/student>

opp/bssp.html66#Discussion#of#course#assignments:#What#are#they,#why#are#they#assigned?#1.#“My#goals#while#at#UC#San#Diego#and#where#I#want#to#be#3#–#5#years#after#graduation.”#

#Due#Date:#Oct#20,#midnight#2.#“#Discover#and#reflect:#places#to#know.”6#

Due#Date:#Oct#27,#midnight#3.#“Getting#to#know#a#UCSD#faculty:#Faculty6interview.”6and6invitation6to6Dinner6(December610)6#

Due#Date:#November#3,#midnight#(Exploring#Resources:#

• New6undergraduate6student6guide:6https://students.ucsd.edu/academics/_organizations/new>student>guide/glossary.html6

• Fun6stuff:6o Theater6and6Dance:6All6Season6Pass:6

http://studentevents.ucsd.edu/m/?a=11770&pr=arts&p=26and6also:6Access6Pass:6http://www>theatre.ucsd.edu/season/tickets/AccessPass.html6

o UCSD6Wellness:6https://recreation.ucsd.edu/registration/index.php?location=list&user_area=55&main_cat=504&sub_cat=E156

o Student6Events6Insider:6http://studentevents.ucsd.edu/6• Student6Jobs:6http://students.ucsd.edu/finances/jobs/6

(Guests:#BSSA,#SQ#leaders,#SACNAS#leader##Upcoming#Info#Sessions:#http://biology.ucsd.edu/education/undergrad/advising/index.html##Learning#Outcomes:6

• get6to6know6each6other6and6who6is6taking6which6courses6• understand6the6need6to6reach6out,6getting6to6know6other6and6starting6to6build6a6diverse6social6

network6• become6familiar6with6campus6resources6and6how6and6where6to6find6them6• become6familiar6with6Bio6Student6Organizations6

#66October(22:((What(is(Academic(Advising?(Seeking#and#Getting#Advice(Academic#and#Career#Advising#

Page 85: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

4

One6of6the6most6essential,6yet6underutilized,6resources6during6college6is6the6academic6advisor.66What6are6the6benefits6of6academic6advising?6How6often6should6you6see6an6academic6advisor?6What6to6do6when6you6meet6with6an6advisor?6What6is6the6difference6between6a6staff6advisor6and6a6faculty6advisor?6Sample6questions6to6ask6an6academic6advisor.6

• Advising#structure#at#UC#San#Diego##o Your6College6o Division6of6Biological6Sciences:6

! Staff6Advisors6! Faculty6Advisors6! Info6Session6! Advising6Resources:6

• Virtual6Advising6Center6(VAC)6• Drop>in6and6appointments6

o Career6Service6• Meet#some#of#your#advisors#

o Academic6Advisors66o Faculty6Advisors6#

6Upcoming#Info#Sessions:#http://biology.ucsd.edu/education/undergrad/advising/index.html#6Learning#Outcomes:6

• understand6the6multi>tiered6advising6structure6and6how6to6effectively6use6advising6tools,6incl.6the6VAC6

• know6how6to6best6utilize6university6staff6and6resources6to6be6academically6and66personally6successful66

• be6able6to6effectively6navigate6through6the6UC6San6Diego6academic6environment66666October(29:(Campus(Resources:(Academic(Success(and(Opportunities(In#class#discussion:#share6key6findings6of6homework#O#special6finds,6cool6places…#We6will6subsequently6visit6the6Writing6Center6and6AEP.6We6will6leave6together6from6York6Hall66Academic#Support:#

• Writing6Center:6https://writingcenter.ucsd.edu/6• OASIS:6https://students.ucsd.edu/academics/_organizations/oasis/index.html6• Triton6Link6Academic6Success6Resources:6

http://students.ucsd.edu/academics/advising/academic>success/index.html66Special#Academic#and#CoMCurricular#Resources:#

• Undergraduate6Research6Portal:6urp.ucsd.edu6• Academic6Enrichment6Program6(AEP):6

https://students.ucsd.edu/academics/_organizations/aep/index.html6• Center6for6Discovering6Opportunities6in6Bio6Sciences:6do/bio6• Center6for6Student6Involvement:6http://students.ucsd.edu/student>life/_organizations/student>

involvement/index.html66

Page 86: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

5

Upcoming#Info#Sessions:#http://biology.ucsd.edu/education/undergrad/advising/index.html#6Learning#Outcomes6

• know6the6location6of6and6services6provided6by6Writing6Center,6AEP6and6do/bio(• understand6the6importance6of6seeking6help(• understand6the6need6to6importance6of6engagement6outside6the6classroom(

(((November(5:(Campus#Resources:#Developing#General#Skills,#Workplace#Preparedness#and#Community#Involvement6We6will6leave6around63:456pm6to6visit6the6Academic6Internship6Office66Academic#and#CoMCurricular#Resources:#

• Academic6Internship6(AIP):6http://aip.ucsd.edu/66Community(Involvement:(

• Community6Resource6Centers:(http://community.ucsd.edu/(• Student6organizations(• Volunteer6Opportunities:6

o Volunteer6Connections:6http://volunteer.ucsd.edu/6o Moores6Cancer6Center:6http://cancer.ucsd.edu/about>us/careers>

volunteers/Pages/default.aspx(o Volunteer650:6http://volunteer50.ucsd.edu/(

6#Upcoming#Info#Sessions:#http://biology.ucsd.edu/education/undergrad/advising/index.html##Learning#Outcomes:#

• know6the6location6of6and6services6provided6by6AIP6and6the6Community6Resource6Centers(• know6about6the6numerous6volunteer6opportunities6(• get6inspired6to6give6back(

66(November(12:(Campus#Resources:#The#Libraries(**Meet#at#BioMed#Library#Guest:6Bethany6Harris6(Bio6Librarian):[email protected]#Upcoming#Info#Sessions:#http://biology.ucsd.edu/education/undergrad/advising/index.html#6Learning#Outcomes:#

• meet6and6get6to6know6the6Biology6librarian6and6know6the6location6of6and6services6provided6by6UCSD’s6libraries,6esp.6the6BioMed6Library(

666

Page 87: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

6

November(19(:(Campus(Resources:(Developing#General#Skills,#Developing#Workplace#Preparedness#**Meet#at#International#Center#Plaza#Guest:6Jim6Galvin6(Director:6Global6Seminars):[email protected];6Craig6Schmidt6(Director:6Career6Center):[email protected]

• Career6Service6Center:6resources6and6opportunities6(http://career.ucsd.edu/)6• International6Center:6resources6and6opportunities6(http://icenter.ucsd.edu/)6

#Upcoming#Info#Sessions:#http://biology.ucsd.edu/education/undergrad/advising/index.html#6Learning#Outcomes:#

• know6the6location6of6the6International6Center6and6meet6and6get6to6know6the6key6staff6(• learn6about6the6different6options6for6studying6abroad(• know6the6location6of6the6Career6Center6and6get6to6know6key6staff(• learn6about6the6resources6available6to6you6at6the6Career6Center(

6November(19:(Thanksgiving(Holiday(#December(3:(Developing(a(Roadmap(<(Academic(and(Personal(Well<Being(6

• What6can6I6do6with6my6Bio6degree6and6how6do6I6get6there?6#• Bring6your6Goals6and6Roadmap#• RIMAC:6http://recreation.ucsd.edu/hours>of>operation.html6

#6Upcoming#Info#Sessions:#http://biology.ucsd.edu/education/undergrad/advising/index.html#6Learning#Outcomes:#

• students6will6be6able6to6articulate6their6own6major6decision6making6process6and6determine6whether6they6need6to6engage6in6further6major/career6exploration6

• students6understand6the6importance6of6developing6general6skills6and6act6on6that6understanding6• students6understand6the6need6for6goal6setting6and6are6able6to6identify6major6exploration6tools6

and6resources6to6solidify6their6major/career6decisions6• develop6strategies6for6increasing6health6and6fitness6and6reducing6stress6and6managing6anxiety6

66December(10(WrapOup#and#dinner#at#Drs.#W2#house#(

• Students6invite6the6faculty6they6interviewed6earlier6in6the6quarter.666#

6Course(Assignments(Py#Roadmap:#Describe:6(1)6My6goals6while6I6am6at6UC6San6Diego6and6(2)6where6I6want6to6be636–656years6after6graduation.66"6Due#Date:#October#96

Page 88: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

7

6Places#to#Know#M#Reflection#Choose6one6place6that6was6discussed6in6class6on6September629th.66Visit6that6location6for6at6least6306minutes.66Based6on6your6observations,6please6describe6your6experience6in6a6two>page6reflection6paper.66Examples6of6questions6you6may6want6to6ask6yourself:6What6types6of6students6frequent6this6location?66What6is6the6feeling6I6get6being6here?66What6does6it6look6like?66How6does6it6reflect6the6culture6of6UCSD?66How6does6it6fit6into6UCSD?6! #Due#Date:#Oct#27,#midnight##6Faculty#InterviewMInvitation#to#Dinner#on#November#20##Identify6one6faculty6member6who6you6want6to6learn6about.66Schedule6an6appointment6with6the6faculty6member6or6visit6the6faculty6during6office6hours.66Prepare6questions6to6ask6this6faculty6member.66Be6sure6to6ask6meaningful,6purpose>driven6and6open>ended6questions.66Write6a6two6>6three6page6paper6summarizing6your6experience6interviewing6the6faculty6member.66What6did6you6learn?66What6was6it6like6scheduling6the6appointment?66How6did6you6feel6during6the6interview?66What6was6the6response6from6the6faculty?6! #Due#Date:#November#3,#midnight##666

6

66Transferable(Skills(UNIVERSITY6OF6CALIFORNIA,6SAN6DIEGO66EDUCATION6INITIATIVE66REAL6WORLD6PREPAREDNESS/TRANSFERRABLE6SKILLS/CAREER6COMPETENCIES6666General(Real<World(Skills((Draft)6616Effective(oral(and(written(communication(skills(that6anticipate6and6adapt6to6the6needs6of6diverse6audiences6and6contexts6(including6digital6environments)66

26Critical(thinking(and(complex(problem(solving(skills:6Skill6in6analytic6reasoning6and6systems6thinking6in6real>world6settings,6resulting6in6innovative6solutions6within6desired6constraints66

36Effective(interdisciplinary(teamwork(and6interpersonal6skills66

46Effective(cross<cultural(collaboration(in6diverse6settings66

56Proactive(ability(for(research:(Ability6to6identify6reliable6sources6of,6and6to6access6and6evaluate6information,6including6images6and6visual6media,6for6life>long6supplementation6of6initial6knowledge6base66

E6Demonstrated(integrity(and(ethical(responsibility,6and6how6to6apply6it6in6real>world6settings66

76Demonstrated(understanding(of(global(context(and(issues,6and6their6implications6for6the6future66

Page 89: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

8

86Demonstrated(ability(for(self<reflection(and6self>improvement,6ability6to6seek6and6use6feedback66

96Demonstrated(local(and(global(civic(engagement(and6social6responsibility66

106Leadership:(Demonstrated6initiative,6effective6decision6making,6informed6risk6taking;6ability6to6motivate6and6inspire6others6to6a6shared6purpose6

Page 90: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Biology  Undergraduate  Major  

Faculty  Advisors  -  Handbook  2014-15  

Page 91: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  1  

 

Table  of  Contents  DIVISION OF BIOLOGICAL SCIENCES UNDERGRADUATE MAJOR FACULTY ADVISOR HANDBOOK ... 2  

The Importance of Faculty Advising .......................................................................................... 2  Responsibilities ........................................................................................................................... 2  Expectations ................................................................................................................................ 3  Biology Undergraduate Student and Instructional Services (USIS) Role .................................. 3

GENERAL GUIDELINES FOR PETITION PROCESSING ......................................................................... 4  Petition Routing Process ............................................................................................................. 4  

DEPARTMENTAL PETITION REVIEW GUIDELINES ............................................................................. 5  Course Equivalency .................................................................................................................... 5  Satisfy a Major Requirement ...................................................................................................... 5  Laboratory Exceptions ................................................................................................................ 6  

ACADEMIC REGULATIONS................................................................................................................ 8  Incomplete Grade ........................................................................................................................ 8  Academic Integrity...................................................................................................................... 8  Grades and Changes in Grades ................................................................................................... 8  

STUDENTS IN NEED .......................................................................................................................... 8  Help a Student in Distress ........................................................................................................... 8  Referrals to Counseling and Psychological Services (CAPS) .................................................... 9 I’m Concerned About a Student – What Should I Do? .............................................................. 9  Red Folder Resources ................................................................................................................. 9 Sexual Assault and Violence Prevention Resource Center (SARC) .......................................... 9  

APPENDIX ...................................................................................................................................... 10  Laboratory Petition Resources .................................................................................................. 10  

Research Summary Guidelines for Special Studies Lab Petition Requests ...................... 11  Laboratory Criteria for Specific Lab Credit Petition Requests ......................................... 11  

USIS Contact Information and Office Hours ............................................................................ 14  Resources .................................................................................................................................. 15  Helpful URL’s .......................................................................................................................... 17  

         

Page 92: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  2  

 

DIVISION  OF  BIOLOGICAL  SCIENCES  UNDERGRADUATE  MAJOR  FACULTY  ADVISOR  HANDBOOK    

This  handbook  was  developed  to  help  clarify  your  roles  and  responsibilities  as  a  faculty  advisor,  to  provide  information  which  will  assist  you  in  advising  students,  and  guidelines  for  processing  student  petitions.    

As  a  divisional  Undergraduate Major Faculty Advisor  you  will  be  a  resource  for  both  undergraduate  students  and  staff  members  in  the  Undergraduate  Student  and  Instructional  Service  (USIS)  unit.  Students  may  contact  you  for  advice  on  course  selection  and  content,  graduate  school  information,  study  abroad  advice,  and  more.  Staff  from  USIS  may  ask  you  to  review  student  petitions  and  participate  in  information  sessions  or  other  USIS  sponsored  workshops.    Please  note  that  the  USIS  team  will  support  you  in  your  faculty  advisor  role.  If  at  any  time  you  have  questions,  please  call  or  email  one  of  the  advisors.    All  contact  information  can  be  found  in  the  Appendix  section  at  the  end  of  this  document.  

The  Importance  of  Faculty  Advising  Because  students  often  go  to  advisors  for  reasons  other  than  just  academic  questions  and  concerns,  you  have  a  rare  opportunity  to  reach  out  and  positively  affect  a  student's  educational  experience.  Your  broad  knowledge  and  understanding  of  your  academic  discipline  uniquely  positions  you  to  discuss  a  student's  academic  interests,  educational  goals  and  professional  ambitions.  As  a  faculty  advisor  you:  

• are  invaluable  as  a  mentor  for  students  pursuing  new  areas  of  inquiry  and  study;  • have  knowledge  of  courses  that  are  relevant  to  a  student’s  particular  interest  within  the  

major  and  his  or  her  specific  educational  and  professional  goals;  • can  assist  students  in  considering  courses  that  can  enrich  their  experience;  • may  guide  students  to  take  advantage  of  special  opportunities  (such  as  undergraduate  

research,  internship  or  scholarship  opportunities)  that  would  enrich  a  students’  educational  trajectory.  

 Responsibilities  As  a  faculty  advisor,  you  are  asked  to  contribute  to  three  general  areas:  

• Provide  broad  educational  advising  by  meeting  with  students  to  discuss  general  career  and  graduate  school  options,  etc.    Students  may  also  have  questions  regarding  course  content/preparation,  etc.  

• Review  and  finalize  decisions  on  submitted  petitions.  This  means  that  you  would  determine  course  equivalency  or  appropriateness  for  using  an  alternate  course  as  a  degree  requirement.  Students  often  take  courses  at  other  institutions,  or  on  study  abroad  that  have  not  yet  been  evaluated.    

• Attend,  participate  and  contribute  to  Information  Sessions,  Convocation,  Welcome  Week,  major  group  advising  sessions,  internship  program  or  other  USIS  sponsored  workshops.  

Page 93: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  3  

 

 Expectations  

• Review,  act  upon,  and  return  petitions  in  a  timely  manner.  The  turnaround  time  should  be  no  more  than  one  week.  If  you  are  unable  to  meet  this  time  commitment,  please  communicate  this  with  an  advisor  in  USIS.    

• Inform  a  USIS  advisor  if  you  will  be  out  of  town  or  otherwise  unavailable  to  review  material  or  speak  with  students;  please  let  USIS  know  as  far  in  advance  as  possible.  

• Actively  participate  in  meetings  organized  by  USIS  including,  but  not  limited  to  information  sessions  and  workshops.  

• Ask  for  clarification  if  something  is  not  understood.  • Direct  students  to  the  correct  resource.  If  you  are  unsure,  ask  an  advisor  in  USIS.  • Be  available  for  student  appointments,  questions  and  emails.  • Maintain  confidentiality  and  be  knowledgeable  of  the  Federal  Educational  Rights  and  

Privacy  Act  (FERPA).    Please  reference  the  “Frequently  Asked  Questions”  and  “Written  Consent  Form”  for  detailed  FERPA  information.    

• Be  knowledgeable  about  University  resources  that  can  help  students  with  problem  areas  (study  skills,  tutoring,  career  exploration),  and  assist  them  in  making  contact  with  the  appropriate  support  services.  Resources  are  provided  in  the  Appendix.  

 Biology  Undergraduate  Student  and  Instructional  Services  (USIS)  Role  Biology  faculty  advisors  have  authority  to  make  academic  decisions  regarding  the  approval  or  disapproval  of  petitions.    To  assist  faculty  in  this  effort,  the  Biology  Undergraduate  Staff  Advisors  will:  

1.   Discuss  options  with  students  during  advising  sessions.  2.   Determine  which  petitions  meet  current  division  and  university  criteria  for  automatic  

approval.  3.   Attach  a  syllabus  to  the  petition,  and  any  other  pertinent  course  materials. The  USIS  

staff  will  make  every  effort  to  include  any  and  all  pertinent  information  so  that  faculty  advisors  can  make  an  informed  decision.      

4.   If  required,  include  pertinent  information  on  University  or  Division  regulations/policies  and  background  history  on  the  specific  situation.    

5.   Maintain  a  database  of  all  reviewed  petitions  (approved  and  denied).    Decisions  on  a  petition  set  a  five  year  precedent  per  the  divisions  Education  Committee.    This  means  if  a  student  petitions  a  course  that  was  previously  approved,  USIS  staff  will  automatically  approve  the  petition  without  faculty  advisor  review  if  it  falls  within  the  five  year  timeline.    If  setting  a  precedent  is  not  the  intent,  please  write  “sets  no  precedence”  in  the  comments  section  of  the  petition.    

6.   Follow  up  with  faculty  advisor  if  petition  has  not  been  returned  within  a  one  week  time                                                                period  or  if  further  clarification  is  needed.  

   

 

 

 

Page 94: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  4  

 

Questions  about  the  following  topics  should  be  referred  to  USIS:  

Biology  major  or  minor  requirements                                       Petition  policies/protocol  and  the  submission  process  

Biology  residency  requirement   Student  disability  accommodation  

Taking  courses  outside  UCSD  (e.g.  concurrent  enrollment,  EAP/OAP,  etc.)  

Double  major    

Summer  Session   Prerequisite  information  

 

GENERAL  GUIDELINES  FOR  PETITION  PROCESSING  Petition  Routing  Process  Student  submits  petition  >  USIS  prepares  the  petition  for  faculty  advisor  review  >  faculty  advisor  approves/denies  the  petition  and  returns  petition/coursework  to  USIS  (both  steps  are  usually  done  via  email)  >  USIS  finalizes  the  petition  and  notifies  the  student  of  outcome  >  student  retrieves  coursework  from  USIS.    Facilitating  the  petition  process  is  a  major  responsibility  of  USIS.  Undergraduate  petitions  generate  a  major  part  of  the  workload  for  the  USIS  staff.  Therefore,  you  can  expect  to  receive  petitions  from  USIS  via  email  or  intercampus  mail  regularly.  In  this  portion  of  the  handbook  you  will  find  information  on  the  types  of  petitions  you  will  receive  and  guidelines  on  how  they  should  be  reviewed  and  processed.  

1. Petitions  are  received  from  students.    USIS  reviews  petitions  to  make  sure  they  are  filled  out  correctly,  that  necessary  coursework  is  provided  (course  syllabus/description  from  the  term  the  course(s)  was  taken  including  the  title  of  the  text(s)  used,  etc.),  and  that  the  course  transferred  with  the  appropriate  number  of  units  and  level.    

2. Petitions  are  then  forwarded  to  the  appropriate  faculty  advisor  for  review.    Faculty  advisors  can  expect  to  receive  petitions  from  courses  taken  at  other  UC’s,  CSU’s,  other  four-year  institutions,  and  courses  taken  through  Education  and  Opportunities  Abroad  Programs  (EAP/OAP).  

3. Requests  are  reviewed  based  on  course  content,  not  student  information/situation.    For  example,  if  a  request  has  been  made  to  use  a  transfer  course  from  another  UC,  the  evaluation  focus  is  on  the  content  of  the  course,  the  pedagogy,  level  at  which  the  course  is  taught,  etc.      

4. Students  may  request  use  of  a  transfer  course  that  UCSD  does  not  offer  (e.g.,  upper  division  Anatomy).    Again,  the  review  is  based  on  content.    If  the  faculty  advisor  determines  the  course  content  is  appropriate  for  major  credit,  in  terms  of  rigor  and  content,  the  course  could  be  approved  for  a  general  major  requirement  (e.g.an  upper  division  biology  elective,  P/N  Core,  HB  Core,  etc).    Students  are  often  encouraged  to  take  courses  at  other  institutions  that  UCSD  does  not  offer  to  gain  better  breadth  in  Biology.  

5. Per  divisional  policy,  a  transfer  course  cannot  be  counted  for  more  than  one  UCSD  Biology  course  unless  the  unit  factors,  instruction  hours,  and  course  content  are  comparable  to  more  than  one  UCSD  course.  For  example,  a  4.5  unit  transfer  course  cannot  be  counted  in  lieu  of  two  UCSD  4.0  unit  courses.  Additionally,  if  a  student  has  taken  a  lecture  course  that  included  a  lab,  and  received  six-quarter  units  for  the  course,  it  is  often  the  case  that  the  lab  portion  was  only  given  two  units  of  credit.  The  transfer  

Page 95: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  5  

 

course  can  only  count  as  one  UCSD  lecture  course,  and  not  one  lecture  course  plus  one  lab  course.  If  there  is  such  a  question  on  the  petition,  we  will  try  to  clarify  the  unit  factors.  

6. If  you  receive  course  materials  via  email  or  intercampus  mail,  please  review  the  materials,  email  USIS  with  the  decision  on  the  petition  (email  response  will  act  as  signature),  and  return  the  course  materials  to  the  USIS  office  (mail  code  0348)  within  one  week.    

7. If  you  deny  a  petition,  please  include  information  as  to  why  the  petition  was  denied.    Students  often  want  to  know  why  a  petition  was  not  approved  and  by  providing  this  information  to  USIS,  we  may  convey  this  as  appropriate.    USIS  will  also  maintain  this  information  for  future  reference.  

8. If  a  course  is  approved  or  denied,  it  will  set  a  five  year  precedent  for  any  other  student  who  takes  the  same  course.    Courses  will  be  re-reviewed  after  five  years  to  confirm  that  course  content  has  not  changed.  

9. Please  do  not  sign  a  petition  which  has  been  hand  delivered  (or  mailed)  directly  to  you  by  a  student.  If  you  receive  such  a  petition,  please  route  it  (and  if  needed,  the  student)  to  the  USIS  office  first.    

 

DEPARTMENTAL  PETITION  REVIEW  GUIDELINES   Faculty  Advisors  will  only  be  asked  to  review  departmental  exception  petitions  which  are  used  for  course  equivalency  or  applicability  of  major  credit  for  courses  taken  outside  UCSD. Course  Equivalency  When  a  student  petitions  to  use  a  course  from  another  institution  to  satisfy  a  specific  biology  requirement  e.g.  BICD  100  (Genetics),  please  consider  the  following:  

� Assess  the  content:  Did  the  student  learn  at  least  80%  of  the  concepts  and/or  techniques  covered  in  the  specified  Division  of  Biological  Sciences  course?      

� Even  if  the  topics  don’t  overlap  perfectly,  did  the  objectives,  breadth,  and  scope  of  the  course  seem  comparable  to  the  Divisional  course?      

 Satisfy  a  Major  Requirement  When  determining  if  a  course  should  satisfy  a  biology  elective  requirement,  please  consider  the  following:  

� Assess  the  content:  Are  at  least  80%  of  the  concepts  and/or  techniques  covered  in  the  course  biologically-based?        

Note: once a course is approved as an upper division biology elective, it can be used as an elective for any of the 8 majors the division offers e.g. a course that is approved by petition as a biology elective for the General Biology degree can also be used as a biology elective for the Human Biology major.  

 

When  determining  if  a  course  should  satisfy  a  core  requirement  (e.g.  P/N  Core,  HB  Core,  etc.),  please  consider  the  following:  

� Assess  the  content:  Did  the  student  learn  at  least  80%  of  the  concepts  and/or  techniques  covered  in  the  specified  Division  of  Biological  Sciences  requirement?        

Note: once a course is approved for a core requirement (e.g. P/N, EBE, HB Core), the course can be used as either a core requirement or an upper division biology elective for all 8 majors the division offers.

 

Page 96: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  6  

 

When  petitioning  courses  from  other  institutions,  students  may  petition  courses  from  departments  other  than  Biology.    For  such  petitions,  please  also  consider  the  following:  

� Assess  the  content:  Even  if  the  topics  aren’t  purely  biological,  is  the  course  content  scientifically  based  or  themed?  

� Did  the  student  develop  a  deep  understanding  of  scientific  knowledge  while  taking  into  consideration  historical  and  cultural  content?  

� When  reviewing  non-UCSD  courses,  please  recall  that  the  division  has  created  an  Inventory  of  Educational  Effectiveness  Indicators  document.    Described  in  the  document  are  the  Attitudes and Values: What should students value?  as  part  of  each  Biology  major.    These  are:  

o Recognize  the  interactions  between  biology  and  society:  the  impact  of  biological  discoveries  on  society,  the  long-term  and  ethical  implications  of  biological  discoveries,  and  the  impact  of  social  context  on  scientific  progress  

o Habitually  analyze  every-day  events  using  the  principles  of  scientific  inquiry  to  evaluate  the  credibility  and  value  of  information  acquired  from  many  different  sources  

Laboratory  Exceptions   Each  Biology  major  prescribes  the  completion  of  at  least  two  upper-division  Biology  labs  (other  than  Bioinformatics  which  requires  the  completion  of  three  labs).    In  preparation  of  anticipated  limited  laboratory  space  leading  to  requests  for  laboratory  exceptions,  USIS  is  utilizing  the  following  laboratory  completion  and  exception  practices  effective  Winter  2014.      

As  published,  students  are  advised  to  complete  the  biology  lab  requirements  as  outlined  for  each  major.  Students  must  complete  the  specifically  required  lab  for  their  major  (if  applicable)  at  UCSD  or  elsewhere  (via  approved  petition  for  lab  course  equivalency).    For  example,  Physiology  &  Neuroscience  majors  must  complete  BIPN  105,  or  an  equivalent  course  (if  taken  outside  UCSD).      As  well,  students  must  complete  at  least  one  formal  biology  lab  at  UCSD  that  is  prescribed  by  their  specific  major.  

Pending  both  stipulations  above  are  satisfied,  students  may  opt  to  complete  one  biology  lab  requirement  in  the  following  ways:  

1.  Take  an  EAP/OAP  laboratory  course  that  has  been  approved,  by  petition,  for  biology  lab  credit.    Petition  possibly  required.    

2.  Take  a  laboratory  course  through  another  UC,  CSU,  or  other  four-year  institution  that  has  been  approved,  by  petition,  for  biology  lab  credit.  Petition  possibly  required.    

4.  Take  a  non-biology  UCSD  course  that  has  been  approved,  by  petition,  for  biology  lab  credit.    Petition  possibly  required.  

5.  Receive  biology  lab  credit  from  lower  division  biology  coursework  taken  at  a  community  college  that  has  been  approved,  by  petition,  for  biology  lab  credit.  Petition  possibly  required.  

6.  Use  one  4-unit  special  studies  course  (e.g.  BISP  199,  BISP  196,  BISP/AlP  197,  MED  199,  etc.)  for  biology  lab  credit.    All  requests  must  be  petitioned.  

Petition  Processing  Guidelines  for  Biology  Laboratory  Credit    

� When  determining  if  a  course  should  satisfy  a  general  (non-specific)  lab  requirement,  please  consider  the  following  Learning  Objectives  for  General  Lab  Credit:    

Page 97: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  7  

 

1. Learn  a  variety  of  current  laboratory  techniques,  the  theory  behind  them,  and  the  applications  of  the  methodologies  in  biological  research  

2. Become  proficient  at  a  variety  of  biological  techniques  through  hands-on  experimentation  

3. Learn  how  to  design  proper  controls  and  understand  why  they  are  important  in  designing  experiments  and  interpreting  results    

4. Strengthen  the  ability  to  propose  hypotheses  to  explain  observations    

5. Become  proficient  at  designing  experiments  to  critically  test  hypotheses  

6. Learn  to  keep  a  complete  and  thorough  laboratory  notebook  

7. Improve  the  ability  to  analyze  and  to  present  data  

8. Practice  deriving  logical  conclusions  from  experimental  data  

9. Learn  to  find,  understand,  and  evaluate  primary  literature  

10. Learn  to  report  experimental  methods,  results,  and  conclusions  in  a  conventionally  accepted  written  format  

In  your  evaluation  for  general  lab  credit,  please  consider  the  following  in  relation  to  the  Learning  Objectives  for  General  Lab  Credit  listed  above:  

 • Was  the  student’s  research  or  course  comparable  in  objectives,  breadth  and  scope  to  the  lab  

classes  our  Division  offers?      

• If  the  student  completed  a  Special  Studies  course  (e.g.  BISP  196/199,  etc.),  review  the  research  paper  and/or  the  Research  Summary  Guidelines*  produced  by  the  student.  Does  it  fulfill  most  of  the  requirements  outlined  in  the  Learning  Objectives  for  General  Lab  Credit  listed  above?  

 • If  the  student  is  petitioning  a  non-special  studies  course,  the  student  should  have  completed  

approximately  80  hours  of  time  in  the  lab  and  the  petition  should  be  accompanied  by  sample(s)  of  required  written  work,  i.e.  research  paper,  lab  report,  lab  notebook,  etc.    If  course  has  not  yet  been  completed,  syllabus  should  reflect  assignments  requiring  written  evaluation  of  laboratory  learning.  

 

� When  determining  if  a  course  should  satisfy  a  specific  lab  (e.g.,  BIMM  101)  requirement,  please  utilize  the  list  of  lab  criteria  in  the  Appendix  (pages  12  and  13)  to  compare  the  content  of  the  student’s  research  project  or  course  to  the  specific  biology  lab  for  which  credit  is  being  sought.    In  your  evaluation,  please  consider  the  following:  

 • Assess  the  content:    Did  the  student  learn  at  least  80%  of  the  concepts  and/or  techniques  

covered  in  the  specified  Division  of  Biological  Sciences  lab  course?        

Page 98: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  8  

 

• Even  if  the  topics  don't  overlap  perfectly,  did  the  objectives,  breadth,  and  scope  of  the  research  project  or  course  seem  comparable  to  the  Division  lab  course?      

 • If  the  student  is  petitioning  a  non-special  studies  course,  the  student  should  have  completed  

approximately  80  hours  of  time  in  the  lab  and  the  petition  should  be  accompanied  by  sample(s)  of  required  written  work,  i.e.  research  paper,  lab  report,  lab  notebook,  etc.    If  course  has  not  yet  been  completed,  syllabus  should  reflect  assignments  requiring  written  evaluation  of  laboratory  learning.  

*In  order  to  appropriately  evaluate  a  Special  Studies  experience  for  biology  laboratory  credit,  students  should  respond  to  the  Research  Summary  Guidelines  (see  pages  10  and  11  in  the  Appendix),  as  previously  developed  by  the  Education  Committee,  and/or  submit  the  research  paper  generated  from  their  special  studies  experience,  along  with  their  petition,  for  review.    Petition  requests  for  laboratory  credit  via  special  studies  courses  cannot  be  appealed  if  the  petition  is  denied.    As  a  result,  students  are  informed  to  submit  as  much  information  as  possible  and  if  responding  to  the  Research  Summary  Guidelines,  they  should  assure  the  information  they  submit  is  as  complete  as  possible.    

 

ACADEMIC  REGULATIONS  Incomplete  Grade    If  a  student  inquires  about  an  incomplete  grade,  he/she  should  be  referred  to  the  instructor  of  the  given  course.        Academic  Integrity      Instructors  should  state  the  objectives  of  each  course  at  the  beginning  of  the  quarter,  clearly  defining  what  kinds  of  aids  and  collaboration,  if  any,  on  assignments  are  permitted.  The  primary  responsibility  for  maintaining  academic  honesty  rests  with  the  faculty  and  the  administration.  When  a  student  has  admitted  to  or  has  been  found  guilty  of  a  violation  of  the  standards  of  academic  honesty,  two  separate  actions  shall  follow:  1)  The  instructor  shall  determine  the  student’s  grade  on  the  assignment  and  the  course  as  a  whole  (serious  breach  is  failure  in  the  course)  and  2)  In  all  cases  of  suspected  Academic  Dishonesty,  the  instructor  should  notify  the  Academic  Integrity  Coordinator.  Even  if  no  action  can  be  taken,  the  Academic  Integrity  office  will  maintain  evidence  of  historical  precedence  on  the  part  of  the  particular  student.  

Grades  and  Changes  in  Grades  If  a  student  inquires  about  a  change  of  grade,  he/she  should  be  referred  to  the  instructor  of  the  given  course.      

STUDENTS  IN  NEED    Help  a  Student  in  Distress  Counseling  and  Psychological  Services  (CAPS)  is  here  to  support  the  UCSD  community  in  serving  the  needs  of  our  students.  At  times,  the  UCSD  community,  including  faculty,  staff,  and  student  leaders,  must  provide  assistance  to  students  in  distress.  CAPS  has  written  a  handbook  to  provide  you  with  quick-and-easy  access  to  information  on  how  to  assess  students  in  distress,  how  to  provide  immediate  assistance,  and  how  to  refer  the  student  to  CAPS.  

Page 99: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  9  

 

  Referrals  to  Counseling  and  Psychological  Services  (CAPS)  If  you  would  like  to  refer  a  student  to  CAPS,  please  have  him  or  her  contact  the  CAPS  office  at  (858)  534-3755  to  make  an  appointment.  If  the  matter  is  urgent  and  the  student  must  be  seen  immediately,  she  or  he  can  go  to  Urgent  Care  Services  at  CAPS  Central  Offices  at  Galbraith  Hall  190.  If  you  need  consultation  on  how  to  refer  students  to  CAPS,  please  call  (858)  534-3755.    I’m  concerned  about  a  student  –  what  should  I  do?  You  have  many  choices.  First,  you  can  contact  the  student’s  college  principal  administrator  (i.e.,  the  Dean  of  Student  Affairs  at  your  student’s  college)  and  express  your  concerns.    Deans  of  Student  Affairs  are  often  not  bound  to  confidentiality  restrictions  in  comparison  to  psychologists  so  they  may  be  able  to  offer  you  more  information  about  your  student’s  situation  than  CAPS  legally  can.  If  your  student’s  concerns  require  counseling  or  psychological  assessment,  they  are  often  referred  to  CAPS  to  meet  with  a  psychologist.  If  the  matter  is  mental  health  related,  you  can  encourage  your  student  to  make  an  appointment  at  CAPS  at  (858)  534-3755.      Red  Folder  Resources  With  the  assistance  of  many  dedicated  UCSD  administrators,  faculty,  and  staff,  a  Red  Folder  form  has  been  developed,  which  includes  emergency  protocols,  contacts,  and  resources.  All  faculty  and  staff  are  encouraged  to  have  a  copy  of  the  Red  Folder  for  reference.    Additional  Red  Folder  related  resources  can  be  found  here.    Sexual  Assault  and  Violence  Prevention  Resource  Center  (SARC)   SARC  offers  educational  programs  and  workshops  on  violence  prevention  for  the  entire  UCSD  campus  and  provides  free  and  confidential  services  for  students  impacted  by  violence,  with  a  focus  on  survivors  of  sexual  assault,  relationship  violence,  and  stalking.        In  addition  to  the  educational  programs  offered  by  SARC,  the  following  services  are  also  available:  individual  counseling;  crisis  intervention  and  safety  planning;  support  groups;  on-campus  advocacy  for  academic  and  housing  concerns;  assistance  with  police,  campus,  and  non-investigative  reporting  options;  accompaniment  to  police  interviews,  medical  evidentiary  exams,  and  court  dates;  referrals.    SARC  staff  is  on-call  24  hours  a  day  and  on  weekends  throughout  the  year.            

Page 100: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  10  

 

 Appendix  

Laboratory  Petition  Resources  

RESEARCH SUMMARY GUIDELINES FOR SPECIAL STUDIES LAB PETITION REQUESTS (The questions below should be responded to by the student in a document independent of their coursework or

these questions should be addressed in the research paper generated from the course that is being petitioned. The research summary and/or research paper should be included with the students’ petition and utilized to

evaluate the students’ petition request) 1. Content: A research paper should have a title, introduction, methods, results, discussion, and reference sections. Introduction: This section addresses the following questions: Why was this study performed? What knowledge already existed about this subject at the start of the study? What was the specific purpose of the study? Did you have a hypothesis you had formulated? The purpose of an introduction is to acquaint the reader with the purpose of the experiments, the rationale behind the work, and enough background to enable the reader to understand and appreciate your work. The introduction should be thorough but should only include information that is directly relevant to the experiments described in the paper. Methods: This section addresses the following questions: What materials were used? What experimental methods or technologies were used? The objective of the methods section is to describe the experimental procedure in sufficient detail for someone else to replicate your experiments, but it is not a set of directions or a recipe. Instead, it tells your reader what you did, leaving out any description of standard lab techniques (e.g., using a sizing column or pulling glass micropipettes) or standard lab equipment (e.g., Pasteur pipettes, graduated cylinders). You want to provide enough detail for the reader to understand the experiment without overwhelming them with the details. When procedures from a lab manual or a paper are followed exactly, simply cite the work, noting any changes. Results: The results section should present your data and experimental results in a clear and concise manner; this includes both qualitative observations and quantitative measurements. Tables and figures should be used as much as possible. You should include any observations that have bearing on the interpretation of the results, but the actual interpretation and implications of the data should be presented in the Discussion section.

• This section should be constructed from a verbal description of the results AND from tables and figures. • Each table and figure must be numbered and have a title and legend or key. • Tables and figures are assigned numbers in the order in which they appear in the text. • Never divide a table or figure between pages- confine each figure/table to a single page • Data included in a table should not be duplicated in a figure or graph. Use one or the other format,

whichever most clearly shows the result.

Discussion: This section should focus on the interpretation of your results and the conclusions you can make based on the data. You should support your conclusions using generally accepted knowledge and previously published work. When you use information from published work, you must cite the source. You should discuss whether your data support or disprove your original hypothesis if you presented one and whether your results confirm or challenge previously published work. Suggestions for the improvement of techniques or

Page 101: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  11  

 

experimental design may also be included here (but avoid drawn-out tales of woe), as well as suggestions for future experiments. References: You should list all the sources you used for background information, for methods and techniques, and to support your conclusions.

2. General Stylistic and Formatting Guidelines: • The research paper should be a cohesive, flowing piece of writing. Use complete sentences. • Use present tense to report well accepted facts - for example, “E. coli is…” • Use past tense to describe specific results - for example, “When we observed the plates”. Note that you

can use first person – you do not have to use passive voice. • Be careful about adding superfluous pictures, data, etc. or repetitious wording. • Longer isn’t always better – aim to say what you need to in 5 to10 pages (excluding figures and tables). • Never place a heading at the bottom of a page with the following text on the next page (insert a page

break!) • Do not use pompous language, which is difficult to read. • Do not use informal wording, use of jargon, slang terms, or superlatives (“My experiment was a bomb.”)

3. Reference Format:

If you cite information from other scientists as background or in support of a conclusion you make, you MUST provide a reference.

Example reference formats (these are from the APA guidelines but you can use others like MLA instead)

book: Author, A. A. (Year of publication). Title of work: Capital letter also for subtitle. Location of publisher: Publisher.

journal article: Author, A. A., Author, B. B., & Author, C. C. (Year). Title of article. Title of Periodical, volume number (issue number), pages.

 

Page 102: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  12  

 

LABORATORY CRITERIA FOR SPECIFIC LAB CREDIT REQUESTS General Goals Microbiology Lab (BIMM 121) Physiology Lab (BIPN 105) Controls - experimental design Quantitative data analysis Statistics Data presentation Find and read primary literature Hypothesis testing Novel research component Bioinformatics

yes yes no yes yes yes yes yes

yes yes yes yes yes yesyes no

Main theories/techniques environmental and medical microbiology techniques bacterial physiology

physiology concepts and recording techniques writing professionally

Specific Projecs/Techniques sterile techniques pipetting solutions and dilutions  Microscopy: bright field and phase wet mount and smear prep simple and Gram stains flaggelar and capsule stains  Bacterial physiology and morphology: differerential and selective media identification of an unknown  Microbes in health and safety: evaluation of food and water samples antibiotic testing antiseptics and disinfectants dental flora hemolysis  Environmental microbes: Food microbiology - yogurt soil microbes microbes capable of extracellular degradation plant pathogens nitrogen cycle: nitrate reduction and fixation  Identification of antibiotic producers from soil: PCR of 16SrRNA gene purification of PCR product Sequencing and bioinformatics  DNA dynamics: transposon mutageneis lytic and lsogenic phages cloning and transformation

general: tissue harvesting use of data acquisition software transducer use and calibration catheterization use of data analysis and presentation software RBCs and osmosis evaluation of nerve function evaluation of synaptic function evaluation of skeletal muscle function evaluation of smooth muscle function evaluation of cardiac muscle function non-invasive cardiac monitoring evaluation of transcapillary fluid flow urine analysis student project and final symposium

Databases and software used Genbank, Blast Kaleidagraph, Applework, Maclab

Page 103: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  13  

 

 General Goals Biochemical Techniques (BIBC 103) Recombinant DNA techniques (BIMM 101) Controls - experimental design Quantitative data analysis Statistics Data presentation Find and read primary literature Hypothesis testing Novel research component Bioinformatics

yes yes yes yes yes yes no yes

yes yes no yes yes no yes yes

Main theories/techniques techniques used in protein purification and characterization basic mol bio techniques

molecular biology techniques bioinformatics reverse genetics techniques

Specific Projecs/Techniques making solutions and buffers pipetting spectrophotometry sterile techniques  Lactose dehydrogenase purification:

ammonium sulfate precipitation affinity chromatography ion exchange chromatography size chromatography protein assay enzyme kinetics bioinformatics

 MAPK kinase phosphorylation and sea urchin egg fertilization:

Microscopy SDS PAGE electrophoresis Western Blotting Chemiluminescent detection

 Protein crystallization: hanging drop method

 Expression and characterization of fluorescent proteins:

alkaline lysis plasmid prep agarose gel electrophoresis restriction digest transformation purification of protein using His-tag spectral properties of proteins SDS-Page

making solutions and dilutions pipetting spectrophotometry sterile techniques  Creation of Vibrio fischeri genomic library:

Chromosomal DNA isolation DNA quantitation Agarose gel electrophoresis Restriction digest Ligations and transformations Blue-white screening Plasmid preps Sequencing

 Cloning luxAB :

PCR theory, primer design Restriction maps Directional cloning Expression vectors

 RNAi targeting unc-22 in C. elegans:

RNAi treatment of C elegans RNA purification Use of qRTPCR to quantitate unc-22 and ama-1 mRNA levels

 Typing Human SNPs by CAPs: Isolation of buccal cell DNA Test for PTC taster or non-taster phenotype or non-taster phenotype Use of PCR and restriction digest to type SNP in taste receptor gene

Databases and software used Genbank Blast Clustal W PDB

Genbank Blast ORF finder HapMap Wormbase Primer3  

Page 104: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  14  

 

  USIS  Contact  Information  and  Office  Hours    Phone  Number:  (858)  534-0557  Location:  Pacific  Hall  1128  Mail  Code:  0348  UCSD  students  contact  advisors  via  the  Virtual  Advising  Center  (VAC)  vac.ucsd.edu    Advising  Services  Information  &  Staff  Julie  Vitale,  Manager,  Undergraduate  Advising  (858)  534-9850  [email protected]  Vanesa  de  Boer,  Undergraduate  Advisor  (858)  534-9766  [email protected]  Christine  Liou,  Undergraduate  Advisor  (858)  246-0082  [email protected]  Laura  Majoch,  Undergraduate  Advisor  (858)  534-2786  [email protected]  

 Advising  Schedule  (Fall,  Winter,  Spring  Quarters,  Summer  Session,  Academic  Breaks)    

We e k # Fa s t 1 5 (Wa lk -in ) Ap p o in t m e n t s

1-10

M: 9-11am Tu: 1-3pm W: 1-3pm Th: 9-11am, 1-3pm F: 9-11am, 1-3pm

M: 1-3pm W: 9-11am

Finals

M: 9-11am, 1-3pm Tu: 1-3pm W: 9-11am, 1-3pm Th: 9-11am, 1-3pm F: 9-11am, 1-3pm

Not Available

Summer, Winter, Spring Breaks

M: 9-11am, 1-3pm Tu: 1-3pm W: 9-11am, 1-3pm Th: 9-11am, 1-3pm F: 9-11am, 1-3pm

Not Available

           

Page 105: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  15  

 

Resources      Career  Services  Center  The  Career  Services  Center  offers  a  variety  of  programs  and  resources  (see  page  16  for  details)  to  assist  UC  San  Diego  students  and  alumni  with  their  career  goals  including  career  advising,  on-line  job  listings,  internships,  professional/graduate  school  information,  resource  tools,  workshops,  job  fairs,  and  special  events.   Office  of  Academic  Support  &  Instructional  Services  (OASIS)  OASIS  is  the  learning  center  at  UCSD  that  provides  most  of  the  free  tutoring  on  campus  in  a  collaborative,  supportive  environment.  OASIS  also  provides  peer  mentors  and  peer  counselors  to  support  students  with  issues  that  can  be  a  distraction  from  academic  priorities,  such  as  personal  and  family  issues,  setting  and  reaching  goals,  etc.    Center  for  Discovering  Opportunities  in  Biological  Sciences  (DO/Bio)  The  DO/Bio  Center,  housed  within  the  USIS  unit,  is  a  student  engagement  center  that  complements  and  enriches  undergraduate  scholarship  with  experiential  learning  opportunities  and  connecting  students  to  resources.  The  Center  helps  prepare  students  for  today’s  global,  cross-disciplinary  workplace.    Students  will  learn  about  21st  century  skills  needed  to  successfully  compete  in  the  contemporary  job  market  by  offering  professional  development  opportunities,  critical  training  in  communication,  leadership,  and  networking.      GOALS  

Provide a Compass: empower students to find their own educational paths and encourage them to take risks  and  discover  Develop  Scholarship:  support  students  to  become  engaged  learners  and  share  tools  for  academic  excellence  Prepare  for  real  world  success:  introduce  students  to  21st  century  skills  and  provide  opportunities  to  experience  and  hone  these  skills  Foster  Community  Connections:  introduce  students  to  the  on-  and  off-campus  community  and  alumni  networking  

 Program  offerings  include:  Transfer  Opportunities  for  Success  (TOpS)  Program,  Journeys  in  Discovery  Program,  group  advising  sessions,  workshops,  and  networking  events.    Student  Leadership  opportunities  include:  Biological  Sciences  Student  Association  (BSSA),  BioScholars  Program,  Saltman  Quarterly  Program  (SQ),  and  Undergraduate  Student  Advisory  Council  (USAC).    For  detailed  information  on  each  of  the  programs  and  opportunities  listed  above,  please  visit  the  DO/Bio  web  site.    DO/Bio Center Contact Information  Phone  Number:  (858)  534-0557  Location:  Pacific  Hall  1128  Mail  Code:  0348  General  questions:  [email protected]    Staff Hermila  Torres:  Manager,  DOBio  Center  (858)  534-5515  [email protected]  

Page 106: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  16  

 

 

UCSD  Career  Services  Center  

Services

Career & Internship Advising

Meet individually with an advisor for help exploring career options, internship opportunities, and planning an effective job search.

Job and Internship Listings

Access Port Triton, UC San Diego's centralized online job listing database of off-campus jobs, internships, volunteer opportunities and on-campus jobs (including work-study).

Express-15 Advising

Advisors are available to see students on a first-come, first-served basis. Students can get quick answers to their questions and an introduction to available services and resources.

Job Fairs

The Fall, Winter and Spring Job and Internship Fairs draw a nation-wide base of employers who offer internships and employment opportunities. There are a variety of industry-specific events held throughout the year.

Online Career Development Tools

Access a myriad of powerful online tools through Port Triton. You will find references to these tools throughout the Career Service Center website.

Interview Preparation

Find out how to begin strong in an interview, how to communicate your skills effectively, and how to follow-up after the interview.

Career Exploration Panels

Attend panel presentations to meet and make contacts with professionals in your chosen career field. Learn more about what career options are available. Hear professionals discuss their career paths, education, typical daily tasks, skills and qualifications.

Professional School Advising

Want to go to graduate school? You can review web and library resources, attend workshops, learn about letters of recommendation, get your essays critiqued and get one-on-one advice and information on preparing for and applying to professional schools.

Resources and Libraries

The Career Services Center features a specialized library filled with career, internship, and professional school resources. Knowledgeable staff are available to assist you and computers are available for research, job search and resume preparation.

On-Campus Interviews

During the course of the academic year, over 90 employers will conduct over 1,700 on-campus interviews with candidates who meet their eligibility requirements. The interview calendar is accessible through Port Triton.

Resume & Application Essay Writing

The Career Services Center offers resources to help identify ones skills and strengths, and learn how to present them effectively. Career advisors are available to critique resume or application essays.

Seminars

The Career services Center offers a series of seminars designed to assist with all stages of the career development process.

 

Page 107: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Page  17  

 

Career Services Center Contact Information Helpful  URL’s    Biology’s  Course  Offerings  2014-15  http://biology.ucsd.edu/publicinfo/dwc?action=ug_course_list    Biology’s  Eight  Majors  http://biology.ucsd.edu/education/undergrad/maj-min/majors/index.html    Biology’s  Wait  List  Procedures  http://biology.ucsd.edu/education/undergrad/course/waitlist.html    Blink  http://blink.ucsd.edu    CAPS  Department  Brochure    http://caps.ucsd.edu/Downloads/brochures/brochure_caps.pdf    Information  for  Transfers  http://biology.ucsd.edu/education/undergrad/transfer/admitted.html    Minor  in  General  Biology  http://biology.ucsd.edu/education/undergrad/maj-min/minor.html        Prerequisite  Information  http://biology.ucsd.edu/education/undergrad/course/prereq.html      Special  Studies  Information  (99/196/197/199)  http://biology.ucsd.edu/education/undergrad/research/research-acad-cred/index.html      Study  Abroad  (EAP/OAP)  Information  http://pao.ucsd.edu    http://biology.ucsd.edu/education/undergrad/course/study-abroad.html      UCSD  Catalog  http://www.ucsd.edu/catalog/    UCSD  Catalog-Division  of  Biological  Sciences  Section  http://www.ucsd.edu/catalog/curric/BIOL-ug.html        

Page 108: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

UC San Diego - WASC Exhibit 7.1 Inventory of Educational Effectiveness Indicators

Academic Program

(1)

Have formal learning outcomes

been developed?

(2)

What are these learning outcomes?

Where are they published? (Please specify)

(3)

Other than GPA, what data/evidence is used to

determine that graduates have achieved stated

outcomes for the degree? (e.g., capstone course,

portfolio review, licensure examination)

(4)

Who interprets the evidence? What is the process?

(5)

How are the findings used?

(6)

Date of last Academic

Senate Review?

Department:

Division of Biological Sciences Major: General Biology

Yes Understand: � evolution and diversity of

living organism � heredity and its molecular

basis � the correlation of biological

structure, function and processes at all levels of biological organizations

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

� biotic interactions and the relationship of organisms to the physical environment

� how mathematics, physics and chemistry are integrated into the study of biology

Skills: What should students be able to do with their knowledge? � Construct reasonable

hypotheses to explain biological phenomena and design effective experiments to test the hypotheses

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

Data/Evidence:

1. Courses that challenge students to integrate, synthesize and evaluate knowledge and new information( currently not done; will be implemented).

a) Key Core Courses (marked with an “a” in Learning Goal tables)

b) Capstone courses provide evidence of how well students can integrate and apply a body of knowledge in a culminating project. (Examples of Capstone laboratory courses: BICD 131, BIMM 127, BIBC 104, BIBC 105, BICD 123; Examples of Capstone lecture courses: BICD 136, BIBC 120, BIPN 108, BIBC 130)

c) Special Topics Upper Division Seminar courses: BISP 190 and BISP 194

d) Undergraduate Research Opportunities (BISP 196, BISP 197, BISP 199, AIP 199)which require students to present their findings via: presentation at UCSD’s Undergraduate Research Conference; publication in divisional undergraduate peer-reviewed journal (Saltman Quarterly; poster at annual Spring Quarter Undergraduate Poster Session

� The Education Committee (EC), a divisional committee with faculty representatives from each section (department), reports to and advises the Associate Dean for Education, who is ultimately responsible for the quality and effectiveness of the Academic Programs. The EC establishes programmatic learning objectives, identifies learning outcomes, and establishes curriculum review criteria that are aligned with learning objectives of the education program.

� CEP reviews education program via the Undergraduate Review Committee (every seven years). Associate Dean and EC work collaboratively to address issues identified in CEP review.

� Section Chairs (Department Chairs) and Associate Dean for Education meet regularly to assure additional faculty input for all educational matters.

� Individual faculty comment directly to Associate Dean if they perceive a problem with the prerequisites in preparing students for their courses.

� EC reviews assessment data annually and report back to the Associate Dean, who will initiate processes with the goal to eradicate shortcomings. Associate Dean initiates major internal curricular reviews, which involves ad hoc Biological Sciences faculty workgroups.

� Ad hoc meetings with Vice Chairs for Education from Physics, Mathematics and Chemistry & Biochemistry departments provide a forum for identifying and addressing changed or new educational needs in science and math courses outside the Biological Sciences.

February 20, 2007

Page 109: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

� Clearly and accurately communicate biological concepts

Attitudes and Values: What should students value? � Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

Learning outcomes published: � Divisional Undergraduate

website

2. Feedback from instructors teaching upper division courses that depend directly on material students learned in lower division courses

3. Surveys: a) Exit survey of graduating

seniors solicit their opinions about the nature, extent, and scope of their learning

b) follow-up surveys done by the Career Service Center show how well the department has prepared students for advanced work or future careers.

c) campus-wide surveys of current students, including the new Undergraduate Experience Survey (UCUES), solicit their views about learning

d) course evaluations (CAPE) at the end of the quarter solicits students’ opinions about how much they have learned during the course.

Page 110: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

General Biology

Foundational Courses: 1 year of calculus

1 year of calculus based physics with lab 1 year of general chemistry with lab

2 quarters of organic chemistry with lab

I= Introductory Level A= Advanced Level a= Could be used for program assessment activities

Learning Goals

Knowledge: What should our students know by the time they graduate? BI

LD 1

BILD

2

BILD

3

BIBC

102

BICD

100

UD La

b x 2

*

UD E

lectiv

e x 7

** Op

tiona

l Ad

vanc

ed

Stud

ies –

BISP

194+

Optio

nal

Adva

nced

St

udies

–BI

SP19

5+

Optio

nal

Adva

nced

St

udies

–BIS

P 19

6,197

/199+

Understand: � evolution and diversity of living

organisms

I

I/A I/A

� heredity and its molecular basis I$

A$a

I/A I/A

� the correlation of biological structure, function and processes at all levels of biological organizations

I

I $

I $A

$A$a

I/A

I/A

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

$I

$I

$I

$A

$A$a

$I/A

$I/A

� biotic interactions and the relationship of organisms to the physical environment

$I

$I/A

$I/A

� how mathematics, physics and chemistry are integrated into the study of biology

I

I $

I $A

$A

$A

$A

$I/A

$I/A

$A a

Page 111: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Learning Goals

BILD

1

BILD

2

BILD

3

BIBC

102

BICD

100

UD La

b x 2

*

UD E

lectiv

e x 7

* Op

tiona

l Ad

vanc

ed

Stud

ies –

BISP

194+

Optio

nal

Adva

nced

St

udies

–BI

SP19

5+

Optio

nal

Adva

nced

St

udies

–BIS

P 19

6,197

/199+

* Must be chosen from the following: BIBC 103, 105, BICD 101, 111, 123, 131, 133, 145, BIEB 121, 165, 167, 179, BIMM 101, 103, 121, 127, BIPN 105, 145 ** Only one quarter or BISP 195 and one quarter of either BISP 196, 197, or 199 may be applied towards this requirement. + Content varies with instructor

Skills: What should students be able to do with their knowledge? � Construct reasonable

hypotheses to explain biological phenomena and design effective experiments to test the hypotheses

$I

I $

A$a

$I

I

$A$a

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

$$A$a

$$A$a

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

I$a

A$a

� Clearly and accurately communicate biological concepts

$A$a$

$

$A

A

$A$a$

Attitudes and Values: What should students value? � Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

$$I

$$I

$$I

$$I

$$A$a$$

$$A$a$

A

$$A

$$A

A$a$

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

$$I

$$I

$$I

$$I

$$A

$$A$a$

A

$$A

$$A

A$a$

Page 112: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

UC San Diego - WASC Exhibit 7.1 Inventory of Educational Effectiveness Indicators

Academic Program

(1)

Have formal learning outcomes

been developed?

(2)

What are these learning outcomes?

Where are they published? (Please specify)

(3)

Other than GPA, what data/evidence is used to

determine that graduates have achieved stated

outcomes for the degree? (e.g., capstone course,

portfolio review, licensure examination)

(4)

Who interprets the evidence? What is the process?

(5)

How are the findings used?

(6)

Date of last Academic

Senate Review?

Department:

Division of Biological Sciences Major: Molecular Biology

Yes Understand: � evolution and diversity of

living organism � heredity and its molecular

basis � the correlation of biological

structure, function and processes at all levels of biological organizations

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

� biotic interactions and the relationship of organisms to the physical environment

� how mathematics, physics and chemistry are integrated into the study of biology

Have an in-depth understanding of: � the physiological

mechanisms that coordinate functions within and between organ systems, considering all levels of organization from molecules to whole organisms

� how the nervous system carries out its central role of acquiring information about information, and generating effective behavior

Skills: What should students be able to do with their knowledge? � Construct reasonable

Data/Evidence:

1. Courses that challenge students to integrate, synthesize and evaluate knowledge and new information (currently not done; will be implemented).

a) Key Core courses (marked with an “a” in Learning Goal tables)

b) Capstone courses provide evidence of how well students can integrate and apply a body of knowledge in a culminating project. (Examples of Capstone laboratory courses: BICD 131, BIMM 127, BIBC 104, BIBC 105, BICD 123; Examples of Capstone lecture courses: BICD 136, BIBC 120, BIPN 108, BIBC 130)

c) Special Topics Upper Division Seminar courses: BISP 190 and BISP 194

d) Undergraduate Research Opportunities (BISP 196, BISP 197, BISP 199, AIP 199)which require students to present their findings via: presentation at UCSD’s Undergraduate Research Conference; publication in divisional undergraduate peer-reviewed journal (Saltman Quarterly; poster at annual Spring Quarter Undergraduate Poster Session

� The Education Committee (EC), a divisional committee with faculty representatives from each section (department), reports to and advises the Associate Dean for Education, who is ultimately responsible for the quality and effectiveness of the Academic Programs. The EC establishes programmatic learning objectives, identifies learning outcomes, and establishes curriculum review criteria that are aligned with learning objectives of the education program.

� CEP reviews education program via the Undergraduate Review Committee (every seven years). Associate Dean and EC work collaboratively to address issues identified in CEP review.

� Section Chairs (Department Chairs) and Associate Dean for Education meet regularly to assure additional faculty input for all educational matters.

� Individual faculty comment directly to Associate Dean if they perceive a problem with the prerequisites in preparing students for their courses.

� EC reviews assessment data annually and report back to the Associate Dean, who will initiate processes with the goal to eradicate shortcomings. Associate Dean initiates major internal curricular reviews, which involves ad hoc Biological Sciences faculty workgroups.

� Ad hoc meetings with Vice Chairs for Education from Physics, Mathematics and Chemistry & Biochemistry departments provide a forum for identifying and addressing changed or new educational needs in science and math courses outside the Biological Sciences.

February 20, 2007

Page 113: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

hypotheses to explain biological phenomena and design effective experiments to test the hypotheses

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

� Conduct procedures widely used by molecular biologists to isolate, separate, amplify and analyze nucleic acids, design experiments utilizing these procedures, and draw appropriate conclusions from the results

Attitudes and Values: What should students value? � Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

Learning outcomes published:

� Divisional Undergraduate website

2. Feedback from instructors teaching upper division courses that depend directly on material students learned in lower division courses

3. Surveys: a) Exit survey of graduating

seniors solicit their opinions about the nature, extent, and scope of their learning

b) follow-up surveys done by the Career Service Center show how well the department has prepared students for advanced work or future careers.

c) campus-wide surveys of current students, including the new Undergraduate Experience Survey (UCUES), solicit their views about learning

d) course evaluations (CAPE) at the end of the quarter solicits students’ opinions about how much they have learned during the course.

Page 114: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Molecular Biology

Foundational Courses: 1 year of calculus

1 year of calculus based physics with lab 1 year of general chemistry with lab

2 quarters of organic chemistry with lab

I= Introductory Level A= Advanced Level a= Could be used for program assessment activities

Learning Goals

Knowledge: What should our students know by the time they graduate? BI

LD 1

BILD

3

BIBC

100

BIBC

102

BIBC

103

BICD

100

BICD

110

BIMM

100

BIMM

101

BIMM

112

BIMM

122

UD E

lectiv

e x 4

Optio

nal

Adva

nces

St

udies

- BI

SP 19

4+

Optio

nal

Adva

nces

St

udies

-BI

SP 19

5+

Optio

nal

Adva

nces

St

udies

- BI

SP

196/1

97/19

9+

Understand: � evolution and diversity of living

organism

!

I

!I!/A

!I!/A

� heredity and its molecular basis !I!

!A!a

!

A

!A

!A!a

!A

!I!/A

!I!/A

� the correlation of biological structure, function and processes at all levels of biological organizations

!I!

!I

!A

!A

A

!A!a!

!A!a

!A!a

!A!a

!A!a

!A!a

!I!/A

!I!/A

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

I !I

!A

!A!!a

!A

!A!a

!A

!A!a

!A

!I!/A

!I!/A

� biotic interactions and the relationship of organisms to the physical environment

!I

!

!

!I!/A

!I!/A

� how mathematics, physics and chemistry are integrated into the study of biology

!I

I

!A

!A

!A

A

!A

!A!a

!A!a

!A

!A

!A

!I!/A !

!I!/A

!A

Have an in-depth understanding of: � the properties, structures, and

functions of biological molecules, and how they interact to accomplish processes that are essential and unique to living cells

!A

!A

!A

!A

!A

!A!a

!A!a

!

!

� Mechanisms regulating the

expression of genetic information

!

I

!

!A!a

!A!a

Page 115: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Learning Goals

BI

LD 1

BILD

3

BIBC

100

BIBC

102

BIBC

103

BICD

100

BICD

110

BIMM

100

BIMM

101

BIMM

112

BIMM

122

UD E

lectiv

e x 4

Optio

nal

Adva

nces

St

udies

- BI

SP 19

4+

Optio

nal

Adva

nces

St

udies

-BI

SP 19

5+

Optio

nal

Adva

nces

St

udies

- BI

SP

196/1

97/19

9+

+ Content varies with instructor

Skills: What should students be able to do with their knowledge? � Construct reasonable hypotheses

to explain biological phenomena and design effective experiments to test the hypotheses

!I

!I

!A

!I

!I

!I

!A!a

!I

!I

!I

!A

!A!a

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

!A

!

!A!a

!

A!a

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

!I

!I

!A!a

� Clearly and accurately communicate biological concepts

!A

!A!a

!A

!A

!A!a

� Conduct procedures widely used by molecular biologists to isolate, separate, amplify and analyze nucleic acids, design experiments utilizing these procedures, and draw appropriate conclusions from the results

!!A

!!A!a

Attitudes and Values: What should students value? � Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

!!I

!!I

!!I

!!I

!!I

!!A!a

!!I

!!I

!!A

!!I

!!I

!!A

!!I/A

!!I

!!A!a

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

!I

!I

!I

!I

!A

!A

!I

!I

!A

!I

!I

!A

!A!

!A!

!A!a!

Page 116: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

UC San Diego - WASC Exhibit 7.1 Inventory of Educational Effectiveness Indicators

Academic Program

(1)

Have formal learning outcomes

been developed?

(2)

What are these learning outcomes?

Where are they published? (Please specify)

(3)

Other than GPA, what data/evidence is used to

determine that graduates have achieved stated

outcomes for the degree? (e.g., capstone course,

portfolio review, licensure examination)

(4)

Who interprets the evidence? What is the process?

(5)

How are the findings used?

(6)

Date of last Academic

Senate Review?

Department:

Division of Biological Sciences Major:

Ecology, Behavior, &Evolution

Yes Students graduating with a degree should be able to:

Understand: � evolution and diversity of

living organisms � heredity and its molecular

basis.

� the correlation of biological structure, function and processes at all levels of biological organizations

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

� biotic interactions and the relationship of organisms to the physical environment

� how mathematics, physics and chemistry are integrated into the study of biology

Have an in-depth understanding of: � the historical path of

evolution, the processes and forces contributing to evolutionary change and how evolution by natural selection shapes the behavior, morphology, and life history of organisms

� the interactions between organism (including humans) and the

Data/Evidence:

1. Courses that challenge students to integrate, synthesize and evaluate knowledge and new information (currently not done; will be implemented).

a) Key Core Courses (marked with an “a” in Learning Goal tables)

b) Capstone courses provide evidence of how well students can integrate and apply a body of knowledge in a culminating project. (Examples of Capstone laboratory courses: BICD 131, BIMM 127, BIBC 104, BIBC 105, BICD 123; Examples of Capstone lecture courses: BICD 136, BIBC 120, BIPN 108, BIBC 130)

c) Special Topics Upper Division Seminar courses: BISP 190 and BISP 194

d) Undergraduate Research Opportunities (BISP 196, BISP 197, BISP 199, AIP 199)which require students to present their findings via: presentation at UCSD’s Undergraduate Research Conference; publication in divisional undergraduate peer-reviewed journal (Saltman Quarterly; poster at annual Spring Quarter Undergraduate Poster Session

� The Education Committee (EC), a divisional committee with faculty representatives from each section (department), reports to and advises the Associate Dean for Education, who is ultimately responsible for the quality and effectiveness of the Academic Programs. The EC establishes programmatic learning objectives, identifies learning outcomes, and establishes curriculum review criteria that are aligned with learning objectives of the education program.

� CEP reviews education program via the Undergraduate Review Committee (every seven years). Associate Dean and EC work collaboratively to address issues identified in CEP review.

� Section Chairs (Department Chairs) and Associate Dean for Education meet regularly to assure additional faculty input for all educational matters.

� Individual faculty comment directly to Associate Dean if they perceive a problem with the prerequisites in preparing students for their courses.

� EC reviews assessment data annually and report back to the Associate Dean, who will initiate processes with the goal to eradicate shortcomings. Associate Dean initiates major internal curricular reviews, which involves ad hoc Biological Sciences faculty workgroups.

� Ad hoc meetings with Vice Chairs for Education from Physics, Mathematics and Chemistry & Biochemistry departments provide a forum for identifying and addressing changed or new educational needs in science and math courses outside the Biological Sciences.

February 20, 2007

Page 117: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

environment on a hierarchy of scale ( organismal to global)

Skills: What should students be able to do with their knowledge? � Construct reasonable

hypotheses to explain biological phenomena and design effective experiments to test the hypotheses

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

� Clearly and accurately communicate biological concepts

Attitudes and Values: What should students value? � Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

Learning outcomes published:

� Divisional Undergraduate website..

2. Feedback from instructors teaching upper division courses that depend directly on material students learned in lower division courses

3. Surveys: a) Exit survey of graduating

seniors solicit their opinions about the nature, extent, and scope of their learning

b) follow-up surveys done by the Career Service Center show how well the department has prepared students for advanced work or future careers.

c) campus-wide surveys of current students, including the new Undergraduate Experience Survey (UCUES), solicit their views about learning

d) course evaluations (CAPE) at the end of the quarter solicits students’ opinions about how much they have learned during the course.

Page 118: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Ecology, Behavior, & Evolution

Foundational Courses: 1 year of calculus

1 year of calculus based physics with lab 1 year of general chemistry with lab

2 quarters of organic chemistry with lab

I= Introductory level A=Advanced level a= could be used for program assessment activities

Learning Goals

Knowledge: What should our students know by the time they graduate? BI

LD 1

BILD

2

BILD

3

BICD

100

BIEB

100

BIEB

102

BIEB

150

BIEB

Elec

tive

x 5*

BIEB

Elec

tive

Lab x

2*

UD E

lectiv

e x 3

**

Optio

nal

Addit

ional

Stud

ies –B

ISP

194+

Optio

nal

Addit

ional

Stud

ies –B

ISP

195+

Optio

nal

Addit

ional

Stud

ies –B

ISP

196/1

97/19

9+

Understand: � evolution and diversity of

living organisms

!I!

!A!

!A!a!

!A

!A

!I!/A

!I!/A

� heredity and its molecular basis

I!

! A!a!

!!

A! I!/A

I!/A

I!/A

I!/A

� the correlation of biological structure, function and processes at all levels of biological organizations

!I!

!I!

!I!

!A!a!

!A!a!

!A!a!

!A!

!A!

!I!/A

!I!/A

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

I !

I!!

I!!

A!a!

!A!a!

!A!a!

!A!

!A!a!

!I!/A

!I!/A

� biotic interactions and the relationship of organisms to the physical environment

! !I!

! !A!a!

!!

!A!

!A!a!

!I!/A

!I!/A

� how mathematics, physics and chemistry are integrated into the study of biology

!I

!I!

!I!

!A!

A

!A!

!A!

!A!

!A!

!A

!I!/A !

!I!/A

!A!a

Have an in-depth understanding of: � the historical path of evolution,

the processes and forces contributing to evolutionary change and how evolution by natural selection shapes the behavior, morphology, and life history of organisms

!A!a!

!A!

!A!

!A

!A

!A!a

� the interactions between organism (including humans) and the environment on a hierarchy of scale ( organismal to global)

!A

!A!a!

!A!

!A!

!I

!A

!A!a

Page 119: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Learning Goals

BILD

1

BILD

2

BILD

3

BICD

100

BIEB

100

BIEB

102

BIEB

150

BIEB

Elec

tive

x 5*

BIEB

Elec

tive

Lab x

2*

UD E

lectiv

e x 3

**

Optio

nal

Addit

ional

Stud

ies –B

ISP

194+

Optio

nal

Addit

ional

Stud

ies –B

ISP

195+

Optio

nal

Addit

ional

Stud

ies –B

ISP

196/1

97/19

9+

Skills: What should students be able to do with their knowledge?

� Construct reasonable hypotheses to explain biological phenomena and design effective experiments to test the hypotheses

!I

!I

!I

!I

!I

A!a

!I/A

!A

!A!a

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

!!A!a!

!!A!a

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

!I

!A!a!

!A!a

� Clearly and accurately communicate biological concepts

!A!a

!!A!a

Attitudes and Values: What should students value?

� Recognize the interactions between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

!!

I!

!!

I!

!!I!

!!A!a!

!!I!

!!A!

!!A!a!

!!A!

!!A!

!!A!

!!

A!a

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

!I!

!I!

!I!

!A!

!I!

!A!

!A!a!

!A!

!A!

!A!

!A!a

* Must be chosen from the following: BIEB 121-BIEB 180. Al least two of these courses must be laboratory or field courses (BIEB 121, 131, 165, 167 and/or 179) ** Only one quarter or BISP 195 and one quarter of either BISP 196, 197, or 199 may be applied towards this requirement. + Content varies with instructor

Page 120: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

UC San Diego - WASC Exhibit 7.1 Inventory of Educational Effectiveness Indicators

Academic Program

(1)

Have formal learning outcomes

been developed?

(2)

What are these learning outcomes?

Where are they published? (Please specify)

(3)

Other than GPA, what data/evidence is used to

determine that graduates have achieved stated

outcomes for the degree? (e.g., capstone course,

portfolio review, licensure examination)

(4)

Who interprets the evidence? What is the process?

(5)

How are the findings used?

(6)

Date of last Academic

Senate Review?

Department:

Division of Biological Sciences Major: Human Biology

Yes Understand: � evolution and diversity of

living organism � heredity and its molecular

basis � the correlation of biological

structure, function and processes at all levels of biological organizations

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

� biotic interactions and the relationship of organisms to the physical environment

� how mathematics, physics and chemistry are integrated into the study of biology

Have an in-depth understanding of:

� the many biological characteristics that the human species shares with a vast array of other living species

� the physiological mechanisms that coordinate function within and between organ systems and how these change disease states

Skills: What should students be able to do with their knowledge? � Construct reasonable

hypotheses to explain biological phenomena and design effective experiments

Data/Evidence:

1. Courses that challenge students to integrate, synthesize and evaluate knowledge and new information (currently not done; will be implemented).

a) Key Core courses (marked with an “a” in Learning Goal tables)

b) Capstone courses provide evidence of how well students can integrate and apply a body of knowledge in a culminating project. (Examples of Capstone laboratory courses: BICD 131, BIMM 127, BIBC 104, BIBC 105, BICD 123; Examples of Capstone lecture courses: BICD 136, BIBC 120, BIPN 108, BIBC 130)

c) Special Topics Upper Division Seminar courses: BISP 190 and BISP 194

d) Undergraduate Research Opportunities (BISP 196, BISP 197, BISP 199, AIP 199)which require students to present their findings via: presentation at UCSD’s Undergraduate Research Conference; publication in divisional undergraduate peer-reviewed journal (Saltman Quarterly; poster at annual Spring Quarter Undergraduate Poster Session

� The Education Committee (EC), a divisional committee with faculty representatives from each section (department), reports to and advises the Associate Dean for Education, who is ultimately responsible for the quality and effectiveness of the Academic Programs. The EC establishes programmatic learning objectives, identifies learning outcomes, and establishes curriculum review criteria that are aligned with learning objectives of the education program.

� CEP reviews education program via the Undergraduate Review Committee (every seven years). Associate Dean and EC work collaboratively to address issues identified in CEP review.

� Section Chairs (Department Chairs) and Associate Dean for Education meet regularly to assure additional faculty input for all educational matters.

� Individual faculty comment directly to Associate Dean if they perceive a problem with the prerequisites in preparing students for their courses.

� EC reviews assessment data annually and report back to the Associate Dean, who will initiate processes with the goal to eradicate shortcomings. Associate Dean initiates major internal curricular reviews, which involves ad hoc Biological Sciences faculty workgroups.

� Ad hoc meetings with Vice Chairs for Education from Physics, Mathematics and Chemistry & Biochemistry departments provide a forum for identifying and addressing changed or new educational needs in science and math courses outside the Biological Sciences.

February 20, 2007

Page 121: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

to test the hypotheses � Implement contemporary

biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

� Clearly and accurately communicate biological concepts

� Attitudes and Values: What should students value? � Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

Learning outcomes published: � Divisional Undergraduate

website

2. Feedback from instructors teaching upper division courses that depend directly on material students learned in lower division courses

3. Surveys: a) Exit survey of graduating

seniors solicit their opinions about the nature, extent, and scope of their learning

b) follow-up surveys done by the Career Service Center show how well the department has prepared students for advanced work or future careers.

c) campus-wide surveys of current students, including the new Undergraduate Experience Survey (UCUES), solicit their views about learning

d) course evaluations (CAPE) at the end of the quarter solicits students’ opinions about how much they have learned during the course.

Page 122: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Human Biology

Foundational Courses: 1 year of calculus

1 year of calculus based physics with lab 1 year of general chemistry with lab

2 quarters of organic chemistry with lab

I= Introductory Level A= Advanced Level a= Could be used for program assessment activities

Learning Goals

Knowledge: What should our students know by the time they graduate? BI

LD 1

BILD

2

BILD

3

BIBC

102

BICD

100

BIMM

100

BIMM

110

BIPN

100

1 or 2

from

Hu

man

Phys

iolog

y Cl

uster

*

1 or 2

from

Hu

man

Dise

ase

Clus

ter *

2 UD

LAB*

*

UD E

lectiv

e x 2

Optio

nal

Adva

nced

St

udies

- BIS

P 19

4+

Optio

nal

Adva

nced

St

udies

- BIS

P 19

5+

Optio

nal

Adva

nced

St

udies

- BIS

P 19

6/197

/199+

Understand: � evolution and diversity of living

organism

!!

! !I!

! ! ! ! ! !!

I/A

I/A

� heredity and its molecular basis

I! ! ! !!

A!a!

A!a!

A!a!

! ! I/A

I/A

� the correlation of biological structure, function and processes at all levels of biological organizations

!I!

!I!

!I!

!A!

!A!a!

!A!a!

!A!

!A!

!A!a!

A!a

!I/A

!I/A

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

!I!

!I!

!I!

!A!

!A!a!

!A!a!

! !A!

!A!a!

A!a

I/A

I/A

� biotic interactions and the relationship of organisms to the physical environment

! ! !I!

! ! ! !A!

!!

!!

!A

!I/A

!I/A

� how mathematics, physics and chemistry are integrated into the study of biology

!I!

!I!

!I!

!A!

!A!

!A!

!A!

!A!

!A!

A!

A!a

!A

I/A

I/A

A!a

Have an in-depth understanding of:

� the many biological characteristics that the human species shares with a vast array of other living species

! ! ! ! ! ! !!

!A!

!A!

� the physiological mechanisms that coordinate function within and between organ systems and how these change disease states

! !!

! ! ! ! !A!

!A!a!

!A!a!

A

Page 123: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Learning Goals

BILD

1

BILD

2

BILD

3

BIBC

102

BICD

100

BIMM

100

BIMM

110

BIPN

100

1 or 2

from

Hu

man

Phys

iolog

y Cl

uster

*

1 or 2

from

Hu

man

Dise

ase

Clus

ter *

2 UD

LAB*

*

UD E

lectiv

e x 2

Optio

nal

Adva

nced

St

udies

- BIS

P 19

4

Optio

nal

Adva

nced

St

udies

- BIS

P 19

5

Optio

nal

Adva

nced

St

udies

- BIS

P 19

6/197

/199

* Note: Both groups must be included: a) Human Physiology: BIBC 120, BICD 130, 134, 140, 150, BIMM 116, BIPN 102, 148 b) Human Disease: BICD 136, BIMM 114, 118, 120, 124, 134, 166 ** Must be chosen from the following: BICB 103, 105, BICD 111, 131, 145, BIMM 101, 121, BIPN 105 + Content varies with instructor

Skills: What should students be able to do with their knowledge? � Construct reasonable hypotheses

to explain biological phenomena and design effective experiments to test the hypotheses

! ! ! !A!

!I!

!I!

!I!

!A!

!A!

!A

A!a

I

!A!a

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

! ! ! ! !!

! ! ! A!a

A!a

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

! ! ! ! ! ! ! !

!I

A!a

� Clearly and accurately communicate biological concepts

! ! ! ! ! ! ! ! A!a!

! A! A A!a

Attitudes and Values: What should students value? � Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

!!I!

!!

I!

!!I!

!!

I!

!!

A!a!

!!

I!

!!A!a!

!!

A!

!!

A!a!

!!A!a

!!

A!

!!

A!

!!

I/A!

!!I

!!A!a!

� Habitually analyze everyday events using scientific inquiry to evaluate the credibility and value of information acquired from many different sources

!I!

!I!

!I!

!I!

!A!

!I!

!A!a!

!A!

!A!a!

!A!a

!A

!A

!A

A

!A!a

Page 124: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

UC San Diego - WASC Exhibit 7.1 Inventory of Educational Effectiveness Indicators

Academic Program

(1)

Have formal learning outcomes

been developed?

(2)

What are these learning outcomes?

Where are they published? (Please specify)

(3)

Other than GPA, what data/evidence is used to

determine that graduates have achieved stated

outcomes for the degree? (e.g., capstone course,

portfolio review, licensure examination)

(4)

Who interprets the evidence? What is the process?

(5)

How are the findings used?

(6)

Date of last Academic

Senate Review?

Department:

Division of Biological Sciences Major: Microbiology

Yes Understand: � evolution and diversity of

living organism � heredity and its molecular

basis � the correlation of biological

structure, function and processes at all levels of biological organizations

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

� biotic interactions and the relationship of organisms to the physical environment

� how mathematics, physics and chemistry are integrated into the study of biology

Have an in-depth understanding of:

� structure, physiology, and diversity of microorganisms

� interactions of microbes with their hosts, including microbial diseases

Skills: What should students be able to do with their knowledge? � Construct reasonable

hypotheses to explain biological phenomena and design effective experiments to test the hypotheses

� Implement contemporary biological research techniques to conduct

Data/Evidence:

1. Courses that challenge students to integrate, synthesize and evaluate knowledge and new information (currently not done; will be implemented).

a) Key Core Courses (marked with an “a” in Learning Goal tables)

b) Capstone courses provide evidence of how well students can integrate and apply a body of knowledge in a culminating project. (Examples of Capstone laboratory courses: BICD 131, BIMM 127, BIBC 104, BIBC 105, BICD 123; Examples of Capstone lecture courses: BICD 136, BIBC 120, BIPN 108, BIBC 130)

c) Special Topics Upper Division Seminar courses: BISP 190 and BISP 194

d) Undergraduate Research Opportunities (BISP 196, BISP 197, BISP 199, AIP 199)which require students to present their findings via: presentation at UCSD’s Undergraduate Research Conference; publication in divisional undergraduate peer-reviewed journal (Saltman Quarterly; poster at annual Spring Quarter Undergraduate Poster Session

� The Education Committee (EC), a divisional committee with faculty representatives from each section (department), reports to and advises the Associate Dean for Education, who is ultimately responsible for the quality and effectiveness of the Academic Programs. The EC establishes programmatic learning objectives, identifies learning outcomes, and establishes curriculum review criteria that are aligned with learning objectives of the education program.

� CEP reviews education program via the Undergraduate Review Committee (every seven years). Associate Dean and EC work collaboratively to address issues identified in CEP review.

� Section Chairs (Department Chairs) and Associate Dean for Education meet regularly to assure additional faculty input for all educational matters.

� Individual faculty comment directly to Associate Dean if they perceive a problem with the prerequisites in preparing students for their courses.

� EC reviews assessment data annually and report back to the Associate Dean, who will initiate processes with the goal to eradicate shortcomings. Associate Dean initiates major internal curricular reviews, which involves ad hoc Biological Sciences faculty workgroups.

� Ad hoc meetings with Vice Chairs for Education from Physics, Mathematics and Chemistry & Biochemistry departments provide a forum for identifying and addressing changed or new educational needs in science and math courses outside the Biological Sciences.

February 20, 2007

Page 125: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

� Clearly and accurately communicate biological concepts

� Isolate, grow, identify, and quantitate microorganisms

Attitudes and Values: What should students value? � Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

Learning outcomes published: � Divisional Undergraduate

website

2. Feedback from instructors teaching upper division courses that depend directly on material students learned in lower division courses

3. Surveys: a) Exit survey of graduating

seniors solicit their opinions about the nature, extent, and scope of their learning

b) follow-up surveys done by the Career Service Center show how well the department has prepared students for advanced work or future careers.

c) campus-wide surveys of current students, including the new Undergraduate Experience Survey (UCUES), solicit their views about learning

d) course evaluations (CAPE) at the end of the quarter solicits students’ opinions about how much they have learned during the course.

Page 126: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Microbiology

Foundational Courses: 1 year of calculus

1 year of calculus based physics with lab 1 year of general chemistry with lab

2 quarters of organic chemistry with lab

I= Introductory level A=Advanced level a= could be used for program assessment activities

Learning Goals

Knowledge: What should our students know by the time they graduate? BI

LD 1

BILD

3

BIBC

102

BIBC

103

BICD

100

BICD

140

BIMM

100

BIMM

114

BIMM

120

BIMM

121

BIMM

124

UD E

lectiv

e x 3

Optio

nal

Adva

nced

St

udies

- BIS

P 19

4+

Optio

nal

Adva

nced

St

udies

- BIS

P 19

5+

Optio

nal

Adva

nced

St

udies

- BIS

P 19

6/197

/199+

Understand: � evolution and diversity of living

organism

!!

!I!

! ! ! ! ! ! ! ! ! !I/A!

!I/A!

� heredity and its molecular basis

I! ! !!

! A!a!

! A! ! A! ! ! I/A! I/A!

� the correlation of biological structure, function and processes at all levels of biological organizations

!I!

!I!

!A!a!

!A!

!A!a!

!A!a!

!A!a!

!A!

!A!

!A!

! !I/A!

!I/A!

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

!I!

!I!

!A!a!

! !A!a!

!A!

!A!a!

! ! !A!

!A!a!

!I/A!

!I/A!

� biotic interactions and the relationship of organisms to the physical environment

! !I!

! ! ! ! ! !A!

!A!a!

!A!a!

!A!a!

!I/A!

!I/A!

� how mathematics, physics and chemistry are integrated into the study of biology

!I!

!I!

!A!

!A!

!A!

!I!

!A!a!

!A!

!A!

!I!

!I!

!A!

!I!/A !

!I!/A

!A!a

Have an in-depth understanding of:

� structure, physiology, and diversity of microorganisms

! ! ! ! ! ! ! !A!a!

!A!a!

!A!a!

!A!a!

!!

� interactions of microbes with their hosts, including microbial diseases

! ! ! ! ! !A!a!

! !A!a!

! !A!a!

!A!a!

!!

Page 127: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Learning Goals

BILD

1

BILD

3

BIBC

102

BIBC

103

BICD

100

BICD

140

BIMM

100

BIMM

114

BIMM

120

BIMM

121

BIMM

124

UD E

lectiv

e x 3

Optio

nal

Adva

nced

St

udies

- BIS

P 19

4+

Optio

nal

Adva

nced

St

udies

- BIS

P 19

5+

Optio

nal

Adva

nced

St

udies

- BIS

P 19

6/197

/199+

Skills: What should students be able to do with their knowledge? � Construct reasonable hypotheses

to explain biological phenomena and design effective experiments to test the hypotheses

! ! !I!

!A!a!

!I!

!I!

!I!

!I!

!I!

!A!

!I!

!I!

!A

!A!a

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

! ! ! !A!a!

!!

! ! ! ! !A!

A!a

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

! ! ! !I!

! ! ! ! ! !A!!

A

A!a

� Clearly and accurately communicate biological concepts

! ! ! A!a!

! ! ! ! ! A! A A A!a

� Isolate, grow, identify, and quantitiate microorganisms

! ! ! ! ! ! ! ! ! A!

Attitudes and Values: What should students value? � Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

!!I!

!!I!

!!

I!

!!

I!

!!

A!a!

!!

A!a!

!!

I!

!!A!a!

!!

I!

!!A!

!!

A!a!

!!

A!

!!A

!!I

!!A!a!

� Habitually analyze everyday events using scientific inquiry to evaluate the credibility and value of information acquired from many different sources

!I!

!I!

!I!

!A!

!A!!

!A!a!

!I!

!A!a!

!I!

!A!

!A!a!

!A!

!A!

!A!

!A!a!

Page 128: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

UC San Diego - WASC Exhibit 7.1 Inventory of Educational Effectiveness Indicators

Academic Program

(1)

Have formal learning outcomes

been developed?

(2)

What are these learning outcomes?

Where are they published? (Please specify)

(3)

Other than GPA, what data/evidence is used to

determine that graduates have achieved stated

outcomes for the degree? (e.g., capstone course,

portfolio review, licensure examination)

(4)

Who interprets the evidence? What is the process?

(5)

How are the findings used?

(6)

Date of last Academic

Senate Review?

Department:

Division of Biological Sciences Major: Physiology & Neuroscience

Yes Understand: � evolution and diversity of

living organism � heredity and its molecular

basis � the correlation of biological

structure, function and processes at all levels of biological organizations

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

� biotic interactions and the relationship of organisms to the physical environment

� how mathematics, physics and chemistry are integrated into the study of biology

Have an in-depth understanding of: � the physiological

mechanisms that coordinate functions within and between organ systems, considering all levels of organization from molecules to whole organisms

� how the nervous system carries out its central role of acquiring information about information, and generating effective behavior

Skills: What should students be able to do with their knowledge? � Construct reasonable

Data/Evidence:

1. Courses that challenge students to integrate, synthesize and evaluate knowledge and new information( currently not done; will be implemented).

a) Key Core Courses (marked with an “a” in Learning Goal tables)

b) Capstone courses provide evidence of how well students can integrate and apply a body of knowledge in a culminating project. (Examples of Capstone laboratory courses: BICD 131, BIMM 127, BIBC 104, BIBC 105, BICD 123; Examples of Capstone lecture courses: BICD 136, BIBC 120, BIPN 108, BIBC 130)

c) Special Topics Upper Division Seminar courses: BISP 190 and BISP 194

d) Undergraduate Research Opportunities (BISP 196, BISP 197, BISP 199, AIP 199)which require students to present their findings via: presentation at UCSD’s Undergraduate Research Conference; publication in divisional undergraduate peer-reviewed journal (Saltman Quarterly; poster at annual Spring Quarter Undergraduate Poster Session

� The Education Committee (EC), a divisional committee with faculty representatives from each section (department), reports to and advises the Associate Dean for Education, who is ultimately responsible for the quality and effectiveness of the Academic Programs. The EC establishes programmatic learning objectives, identifies learning outcomes, and establishes curriculum review criteria that are aligned with learning objectives of the education program.

� CEP reviews education program via the Undergraduate Review Committee (every seven years). Associate Dean and EC work collaboratively to address issues identified in CEP review.

� Section Chairs (Department Chairs) and Associate Dean for Education meet regularly to assure additional faculty input for all educational matters.

� Individual faculty comment directly to Associate Dean if they perceive a problem with the prerequisites in preparing students for their courses.

� EC reviews assessment data annually and report back to the Associate Dean, who will initiate processes with the goal to eradicate shortcomings. Associate Dean initiates major internal curricular reviews, which involves ad hoc Biological Sciences faculty workgroups.

� Ad hoc meetings with Vice Chairs for Education from Physics, Mathematics and Chemistry & Biochemistry departments provide a forum for identifying and addressing changed or new educational needs in science and math courses outside the Biological Sciences.

February 20, 2007

Page 129: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

hypotheses to explain biological phenomena and design effective experiments to test the hypotheses

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

� Clearly and accurately communicate biological concepts

Attitudes and Values: What should students value? � Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

� Learning outcomes published: Divisional Undergraduate website

2. Feedback from instructors teaching upper division courses that depend directly on material students learned in lower division courses

3. Surveys: a) Exit survey of graduating

seniors solicit their opinions about the nature, extent, and scope of their learning

b) follow-up surveys done by the Career Service Center show how well the department has prepared students for advanced work or future careers.

c) campus-wide surveys of current students, including the new Undergraduate Experience Survey (UCUES), solicit their views about learning

d) course evaluations (CAPE) at the end of the quarter solicits students’ opinions about how much they have learned during the course.

Page 130: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Physiology and Neuroscience

Foundational Courses: 1 year of calculus

1 year of calculus based physics with lab 1 year of general chemistry with lab

2 quarters of organic chemistry with lab

I= Introductory Level A= Advanced Level a= Could be used for program assessment activities

Learning Goals

Knowledge: What should our students know by the time they graduate? BI

LD 1

BILD

2

BILD

3

BIBC

102

BICD

100

BIMM

100

AP&N

COR

E

x 4*

1 Phy

siolog

y LA

B **

1 Elec

tive

LAB*

**

UD E

lectiv

e x 3

Optio

nal

Adva

nced

St

udies

BIS

P 19

4+

Optio

nal

Adva

nced

St

udies

BIS

P 19

5+

Optio

nal

Adva

nced

St

udies

BIS

P 19

6/197

/199+

Understand: � evolution and diversity of

living organism

!I

I!/A

I!/A

I!/A

� heredity and its molecular basis

I!

A!a!

A I!/A

I!/A

� the correlation of biological structure, function and processes at all levels of biological organizations

!I!

!I!

!I

!A

!A!a

!A!a!

!A!a

!A!a

I!/A

I!/A

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

I !

I!!I

!A

!A!a

!A!a

!A!a

!A!a

I!/A

I!/A

� biotic interactions and the relationship of organisms to the physical environment

! !I

!

!

!A!a

!A!a

I!/A

I!/A

� how mathematics, physics and chemistry are integrated into the study of biology

!I

!I!

I

!A

A

!A

!A!a

!A!a

!A!a!

I!/A

!I!/A !

!I!/A

!A

Have an in-depth understanding of: � the physiological mechanisms

that coordinate functions within and between organ systems, considering all levels of organization from molecules to whole organisms

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!A!!!!!!!!A!!!!!!!!!!!

!A!a

!A

!

!

!A

!A

!A!a

� how the nervous system carries out its central role of acquiring information about information, and generating effective behavior

!A!a

!A

I

!A

!A!a

Page 131: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Learning Goals

BILD

1

BILD

2

BILD

3

BIBC

102

BICD

100

BIMM

100

AP&N

COR

E

x 4*

1 Phy

siolog

y LA

B **

1 Elec

tive

LAB*

**

UD E

lectiv

e x 3

Optio

nal

Adva

nced

St

udies

BIS

P 19

4+

Optio

nal

Adva

nced

St

udies

BIS

P 19

5+

Optio

nal

Adva

nced

St

udies

BIS

P 19

6/197

/199+

Skills: What should students be able to do with their knowledge?

� Construct reasonable hypotheses to explain biological phenomena and design effective experiments to test the hypotheses

!I

!I

!I

!A

!A!a

!A!a

!A

!A

!A!a

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

!A!a

!!A!a

!!

!!A!a

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

I !

I

!A!a

� Clearly and accurately communicate biological concepts

!A!a

!

!A

!A

!A!a

Attitudes and Values: What should students value?

� Recognize the interactions between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

!!I

!!

I!

!!I

!!I

!!A!a

!!I

!!A!a

!!A!a

!!A!a

!!A

!!I/A

!!I

!!A!a!

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

!I

!I!

!I

!I

!A

!I

!A!a

!A!a

!A!a

!A

!A!

!A!

!A!a!

* BIPN 100, 102, 106, 140, 142, 144, 146, 148 ** Must be chosen from the following: BICD 131, 133, BIPN 105, 145 *** Must be chosen from the following: BIBC 103, 105, BICD 101, 111, 123, 131, 145, BIEB 121, 131, 165, 167M 179, BIMM 101, 103, 121, 127, BIPN 105, 145. This lab can be selected from those in the ** category that the student has not already taken + Content varies with instructor

Page 132: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

UC San Diego - WASC Exhibit 7.1 Inventory of Educational Effectiveness Indicators

Academic Program

(1)

Have formal learning outcomes

been developed?

(2)

What are these learning outcomes?

Where are they published? (Please specify)

(3)

Other than GPA, what data/evidence is used to

determine that graduates have achieved stated

outcomes for the degree? (e.g., capstone course,

portfolio review, licensure examination)

(4)

Who interprets the evidence? What is the process?

(5)

How are the findings used?

(6)

Date of last Academic

Senate Review?

Department:

Division of Biological Sciences Major: Biochemistry & Cell Biology

Yes Understand: � evolution and diversity of

living organism � heredity and its molecular

basis � the correlation of biological

structure, function and processes at all levels of biological organizations

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

� biotic interactions and the relationship of organisms to the physical environment

� how mathematics, physics and chemistry are integrated into the study of biology

Have an in-depth understanding of: � the properties, structures,

and functions of biological molecules, and how they interact to accomplish processes that are essential and unique to living cells

Skills: What should students be able to do with their knowledge? � Construct reasonable

hypotheses to explain biological phenomena and design effective experiments to test the hypotheses

� Implement contemporary biological research

Data/Evidence:

1. Courses that challenge students to integrate, synthesize and evaluate knowledge and new information (currently not done; will be implemented).

a) Key Core Courses (marked with an “a” in Learning Goal tables)

b) Capstone courses provide evidence of how well students can integrate and apply a body of knowledge in a culminating project. (Examples of Capstone laboratory courses: BICD 131, BIMM 127, BIBC 104, BIBC 105, BICD 123; Examples of Capstone lecture courses: BICD 136, BIBC 120, BIPN 108, BIBC 130)

c) Special Topics Upper Division Seminar courses: BISP 190 and BISP 194

d) Undergraduate Research Opportunities (BISP 196, BISP 197, BISP 199, AIP 199)which require students to present their findings via: presentation at UCSD’s Undergraduate Research Conference; publication in divisional undergraduate peer-reviewed journal (Saltman Quarterly; poster at annual Spring Quarter Undergraduate Poster Session

� The Education Committee (EC), a divisional committee with faculty representatives from each section (department), reports to and advises the Associate Dean for Education, who is ultimately responsible for the quality and effectiveness of the Academic Programs. The EC establishes programmatic learning objectives, identifies learning outcomes, and establishes curriculum review criteria that are aligned with learning objectives of the education program.

� CEP reviews education program via the Undergraduate Review Committee (every seven years). Associate Dean and EC work collaboratively to address issues identified in CEP review.

� Section Chairs (Department Chairs) and Associate Dean for Education meet regularly to assure additional faculty input for all educational matters.

� Individual faculty comment directly to Associate Dean if they perceive a problem with the prerequisites in preparing students for their courses.

� EC reviews assessment data annually and report back to the Associate Dean, who will initiate processes with the goal to eradicate shortcomings. Associate Dean initiates major internal curricular reviews, which involves ad hoc Biological Sciences faculty workgroups.

� Ad hoc meetings with Vice Chairs for Education from Physics, Mathematics and Chemistry & Biochemistry departments provide a forum for identifying and addressing changed or new educational needs in science and math courses outside the Biological Sciences.

February 20, 2007

Page 133: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

� Clearly and accurately communicate biological concepts

� Conduct procedures widely used by biochemists and molecular biologists to isolate, separate, and analyze proteins and nucleic acids, design experiments utilizing these procedures, and draw appropriate conclusions from the results

Attitudes and Values: What should students value? � Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

Learning outcomes published: � Divisional Undergraduate

website

2. Feedback from instructors teaching upper division courses that depend directly on material students learned in lower division courses

3. Surveys: a) Exit survey of graduating

seniors solicit their opinions about the nature, extent, and scope of their learning

b) follow-up surveys done by the Career Service Center show how well the department has prepared students for advanced work or future careers.

c) campus-wide surveys of current students, including the new Undergraduate Experience Survey (UCUES), solicit their views about learning

d) course evaluations (CAPE) at the end of the quarter solicits students’ opinions about how much they have learned during the course.

Page 134: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Biochemistry & Cell Biology

Foundational Courses: 1 year of calculus

1 year of calculus based physics with lab 1 year of general chemistry with lab

2 quarters of organic chemistry with lab

I= Introductory Level A= Advanced Level a= Could be used for program assessment activities * Must be selected from the following: BIBC 104, 110, 120, 130, BICD 118, BIMM 118, 130 ** Must be chosen from the following: BIBC 105, BICD 101, 111, 123, 131, 133, 145, BIMM 101, 103, 121, 127, 141, BIPN 105, 145, or Chem 143C + Content varies with instructor

Learning Goals

Knowledge: What should our students know by the time they graduate?

BILD

1

BILD

3

BIBC

100

BIBC

102

BIBC

103

BICD

100

BICD

110

BIMM

100

CAPS

TONE

*

UD LA

B x

2 **

UD E

lectiv

e x 4

Optio

nal

Adva

nced

St

udies

– BI

SP

194+

Optio

nal

Adva

nced

St

udies

– BI

SP

195+

Optio

nal

Adva

nced

St

udies

– BI

SP

196/1

97/19

9+

Understand: � evolution and diversity of

living organism

!I

I/A

I/A

� heredity and its molecular basis

!I!

!A!a!

!A

I/A

I/A

� the correlation of biological structure, function and processes at all levels of biological organizations

!I!

!I

!A

!A!a!

A

!A!a

!A

!A!a

!A!a

!I/A

!I/A

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

I !I

!A!a

!A!a

!A

!A!a

!A!a

I/A

I/A

� biotic interactions and the relationship of organisms to the physical environment

!I

!

!

!I/A

!I/A

� how mathematics, physics and chemistry are integrated into the study of biology

!I

I

!A

!A

!A!a

A

!A

!A!a!

!A!a

!A!a

!A

I/A

I/A

A!a

Have an in-depth understanding of: � the properties, structures, and

functions of biological molecules, and how they interact to accomplish processes that are essential and unique to living cells

A

!A

!A

!A

!A

!A

!A!a

Page 135: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Learning Goals

BILD

1

BILD

3

BIBC

100

BIBC

102

BIBC

103

BICD

100

BICD

110

BIMM

100

CAPS

TONE

*

UD LA

B x

2 **

UD E

lectiv

e x 4

Optio

nal

Adva

nced

St

udies

– BI

SP

194+

Optio

nal

Adva

nced

St

udies

– BI

SP

195+

Optio

nal

Adva

nced

St

udies

– BI

SP

196/1

97/19

9+

Skills: What should students be able to do with their knowledge?

� Construct reasonable

hypotheses to explain biological phenomena and design effective experiments to test the hypotheses

!I

!I

!A

!I

!I

!I

!I

!A!a!

!I

!A!a

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

!!!A

!!!A!a

!!A!a

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

!I

!I

!A!a

� Clearly and accurately communicate biological concepts

A A!a

A A!

A!a

� Conduct procedures widely used by biochemists and molecular biologists to isolate, separate, and analyze proteins and nucleic acids, design experiments utilizing these procedures, and draw appropriate conclusions from the results

!A

!

Attitudes and Values: What should students value?

� Recognize the interactions between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

!!I

!!I

!!I

!!I

!!I

!!A!a

!!I

!!I

!!A!a

!!A!a

!!A

!!I/A!

!!I

!!A!a!

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

!I

!I

!I

!I

!I

!A

!I

!I

!A!a

!A!a

!A

!A

A

!A!a

Page 136: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

UC San Diego - WASC Exhibit 7.1 Inventory of Educational Effectiveness Indicators

Academic Program

(1)

Have formal learning outcomes

been developed?

(2)

What are these learning outcomes?

Where are they published? (Please specify)

(3)

Other than GPA, what data/evidence is used to

determine that graduates have achieved stated

outcomes for the degree? (e.g., capstone course,

portfolio review, licensure examination)

(4)

Who interprets the evidence? What is the process?

(5)

How are the findings used?

(6)

Date of last Academic

Senate Review?

Department:

Division of Biological Sciences Major: Bioinformatics

Yes Understand: � evolution and diversity of

living organism � heredity and its molecular

basis � the correlation of biological

structure, function and processes at all levels of biological organizations

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

� how mathematics, physics and chemistry are integrated into the study of biology

Have an in-depth understanding of: � biological processes and

properties as complex systems, including how they are analyzed and modeled to make heuristic predictions

� methods used to organize, search, and analyze large sets of biological information

� data functions & designs, and analysis of algorithms

Skills: What should students be able to do with their knowledge? � Construct reasonable

hypotheses to explain biological phenomena and design effective experiments to test the hypotheses

Data/Evidence:

1. Courses that challenge students to integrate, synthesize and evaluate knowledge and new information (currently not done; will be implemented).

a) Key Core Courses (marked with an “a” in Learning Goal tables)

b) Capstone courses provide evidence of how well students can integrate and apply a body of knowledge in a culminating project. (Examples of Capstone laboratory courses: BICD 131, BIMM 127, BIBC 104, BIBC 105, BICD 123; Examples of Capstone lecture courses: BICD 136, BIBC 120, BIPN 108, BIBC 130)

c) Special Topics Upper Division Seminar courses: BISP 190 and BISP 194

d) Undergraduate Research Opportunities (BISP 196, BISP 197, BISP 199, AIP 199)which require students to present their findings via: presentation at UCSD’s Undergraduate Research Conference; publication in divisional undergraduate peer-reviewed journal (Saltman Quarterly; poster at annual Spring Quarter Undergraduate Poster Session

� The Education Committee (EC), a divisional committee with faculty representatives from each section (department), reports to and advises the Associate Dean for Education, who is ultimately responsible for the quality and effectiveness of the Academic Programs. The EC establishes programmatic learning objectives, identifies learning outcomes, and establishes curriculum review criteria that are aligned with learning objectives of the education program.

� CEP reviews education program via the Undergraduate Review Committee (every seven years). Associate Dean and EC work collaboratively to address issues identified in CEP review.

� Section Chairs (Department Chairs) and Associate Dean for Education meet regularly to assure additional faculty input for all educational matters.

� Individual faculty comment directly to Associate Dean if they perceive a problem with the prerequisites in preparing students for their courses.

� EC reviews assessment data annually and report back to the Associate Dean, who will initiate processes with the goal to eradicate shortcomings. Associate Dean initiates major internal curricular reviews, which involves ad hoc Biological Sciences faculty workgroups.

� Ad hoc meetings with Vice Chairs for Education from Physics, Mathematics and Chemistry & Biochemistry departments provide a forum for identifying and addressing changed or new educational needs in science and math courses outside the Biological Sciences.

February 20, 2007

Page 137: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

� Clearly and accurately communicate biological concepts

� Develop and implement computational solutions to biological problems

Attitudes and Values: What should students value? � Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

Learning outcomes published:

� Divisional Undergraduate website

2. Feedback from instructors teaching upper division courses that depend directly on material students learned in lower division courses

3. Surveys: a) Exit survey of graduating

seniors solicit their opinions about the nature, extent, and scope of their learning

b) follow-up surveys done by the Career Service Center show how well the department has prepared students for advanced work or future careers.

c) campus-wide surveys of current students, including the new Undergraduate Experience Survey (UCUES), solicit their views about learning

d) course evaluations (CAPE) at the end of the quarter solicits students’ opinions about how much they have learned during the course.

Page 138: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Bioinformatics Foundational Courses:

1 year of calculus 1 year of calculus based physics

1 year of general chemistry with lab 2 quarters of organic chemistry

Math 20F

I= Introductory Level A= Advanced Level a= Could be used for program assessment activities

Learning Goals

Knowledge: What should our students know by the time they graduate? BI

LD 1

BILD

2

BILD

94

BIBC

102

BIBC

103

BIBC

110 /

Ch

em 12

7

BICD

100

BICD

110

BIMM

100

BIMM

101

BIMM

181

BIMM

182

BIMM

184

BIMM

185

BENG

183

CSE

11

CSE

12

CSE

21/

Math

15B

CSE

100/

Math

176

CSE

101/

Math

188

Math

186

UD E

lectiv

e x 3

Optio

nal

Adva

nced

St

udies

–BI

SP19

4

Optio

nal

Adva

nced

St

udies

–BI

SP19

5

Optio

nal

Adva

nced

St

udies

–BI

SP19

6/197

/ 199

Understand: � evolution and diversity of

living organism

I A I/A I/A

� heredity and its molecular basis

I$ A$$a$

A$

A I/A$ I/A$

� the correlation of biological structure, function and processes at all levels of biological organizations

$I$

$I$

$A$

$A$

$A$

$A$a$

$A$

$A$a$

$A$a$

$A

$A

$A

$I/A$

$I/A$

� how energy, nutrients, metabolites and information are acquired and organized, and how they flow through biological systems

$I$

$I$

$A$

$$

$A$

$A$a$

$A$

$A$a$

$A$

$A$

$A$

$A$

$I/A

$I/A

� how mathematics, physics and chemistry are integrated into the study of biology

I$ I$ I A$ A$a$

A$ A A A$a

A$a

A A$ A$a$

A A$ I A I/A I/A A$a

Have an in-depth understanding of: � biological processes and

properties as complex systems, including how they are analyzed and modeled to make heuristic predictions

$$

$A$

$A

$A

$A

� methods used to organize, search, and analyze large sets of biological information

$I

$A$a$

$A$

$$

$A$

$A$

$I$

$I$

$I$

$A$

$A$

$A$

� data functions & designs, and analysis of algorithms

A$a

A A$a

A A I$ I$ I$ A A A

Page 139: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Learning Goals

Knowledge: What should our students know by the time they graduate? BI

LD 1

BILD

2

BILD

94

BIBC

102

BIBC

103

BIBC

110 /

Ch

em 12

7

BICD

100

BICD

110

BIMM

100

BIMM

101

BIMM

181

BIMM

182

BIMM

184

BIMM

185

BENG

183

CSE

11

CSE

12

CSE

21/

Math

15B

CSE

100/

Math

176

CSE

101/

Math

188

Math

186

UD E

lectiv

e x 3

Optio

nal

Adva

nced

St

udies

–BI

SP19

4

Optio

nal

Adva

nced

St

udies

–BI

SP19

5

Optio

nal

Adva

nced

St

udies

–BI

SP19

6/197

/ 199

Skills: What should students be able to do with their knowledge?

� Construct reasonable

hypotheses to explain biological phenomena and design effective experiments to test the hypotheses

$A

$A$

$A$

$I$

$I

$I

$A$a

$A

$A

$A$

$A$a$

$A$

$I

$A

$A$a

� Implement contemporary biological research techniques to conduct experiments, and use quantitative and/or statistical approaches to analyze the results and draw appropriate conclusions from them

$A

$I

$A$a

$A

$A

$A$

$A$a$

$A$

$A

$A$a

� Use digital technologies to search the scientific literature, and to retrieve and analyze information from reliable databases

$I

$I

$A

$A

$A$

$A$a$

$A$

$A$

$$

$A$a$

� Clearly and accurately communicate biological concepts

$A

$A$a

$

$I

$I$

$A$a$

$I$

$A$

$A$

$A$a$

� Develop and implement computational solutions to biological problems

$A

$A

$A$

$A$a$

$A$

$I

$I

$I

$A$

$A$

$A$

Attitudes and Values: What should students value?

� Recognize the interactions

between biology and society: the impact of biological discoveries on society, the long-term and ethical implications of biological discoveries, and the impact of social context on scientific progress.

$I$

$I$

$I$

$I$

$I$

$A$a$

$I$

$I$

$A$a$

$I$

$A$

$A$

$I$

$A$a$

� Habitually analyze every-day events using the principles of scientific inquiry to evaluate the credibility and value of information acquired from many different sources

$I$

$I$

$I$

$A$

$I$

$A$

$I$

$I$

$A$

$I$

$I$

$I

$I

$I

$A$

$A$

$A$

$A$a$

Page 140: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Biology  and  Diversity:  Use  and  misuse  of  science  to  justify  bias,  inequity,  exclusion  and  prejudice  

BILD  60  –  4  units  Proposed  for  Spring  2015  

   Course  Overview    In  this  course,  we  will  examine  diversity,  equity,  and  inclusion  in  the  context  of  biology  from  a  variety  of  perspectives.    We  will  start  with  a  biological  framework  and  then  examine  how  underlying  biological  differences  can  and  have  been  used  to  support  bias  and  prejudice  against  particular  groups  such  as  women,  African  Americans,  and  Latinos.  Beginning  with  the  history  of  human  heredity  and  the  US  Eugenics  movement,  “science”  has  been  used  to  discriminate  against  specific  human  groups.  Is  eugenics  a  relic  of  the  past  or  is  our  ability  to  manipulate  genomes  simply  a  modern-­‐day  version  of  this  movement?    This  question  will  lead  us  into  the  topic  of  genomes,  genome  sequencing,  and  ultimately  questions  of  how  widely  available  genetic  testing  in  a  post-­‐genomic  age  can  affect  individuals  and/or  different  racial  or  ethnic  groups  in  the  US.    The  topic  of  epigenetics,  beginning  with  the  biology  of  chromosomal  DNA  modification,  lays  the  foundation  for  examining  how  the  environment  can  affect  DNA  modification  patterns  and  how  this  has  long-­‐term  consequences  for  different  ethnic  and  cultural  groups.    A  study  of  brain  structure  and  sex  hormones  will  set  the  stage  for  examining  racial  stereotypes  as  well  as  differences  in  sexual  identity.  We  will  also  consider  how  genetics  as  well  as  environment  and  cultural  issues  affect  public  health  and  disease  in  the  US.  Beginning  with  the  biology  underlying  diabetes,  we  will  consider  how  and  why  the  incidence  of  diabetes  is  much  higher  in  Hispanic/Latino  and  black  populations  as  compared  with  non-­‐Hispanic  whites.      For  each  of  the  topics  covered  in  this  class,  we  begin  with  the  biology.    We  then  consider  how  biological  concepts  are  used  to  understand  differences  between  human  groups  but  also  how  they  are  misused,  leading  to  the  justification  of  prejudice  and  bias.  Ethics,  as  they  relate  to  diversity,  equity,  and  inclusion,  will  be  an  important  focal  point  of  this  class.          Course  Goals    -­‐  To  better  understand  the  biological  basis  of  differences  between  human  groups      -­‐  To  understand  biological  arguments  that  have  been  used  to  explain  differences  between  human  groups      -­‐  To  learn  how  biological  differences  and  arguments  have  been  misused  to  justify  prejudice  and  discrimination.  -­‐  To  learn  how  environmental  influences  play  an  important  role  in  human  biology  at  molecular,  cellular,  and  organismal  levels  and  how  these  influences  can  differ  depending  on  race,  ethnicity,  and  gender.  -­‐  To  better  understand  one’s  racial/ethnic/gender/cultural  identity  in  the  wider  context  of  other  identities  discussed  in  the  course            

Page 141: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

The  course  is  designed  to  be  highly  interactive.    Lectures  will  include  questions  to  the  students  and  plenty  of  time  for  discussion.    Students  will  also  work  cooperatively  in  groups  on  in-­‐class  exercises  as  well  as  on  a  final  oral  presentation.          Course  Structure:  Lecture      The  class  will  meet  twice  a  week  for  80  minutes/session.    Each  week  will  focus  on  one  general  topic.    The  first  session  of  the  week  will  feature  a  speaker  who  will  present  a  lecture  while  also  engaging  the  class  in  discussion.  Based  on  material  from  the  lecture,  a  set  of  group  exercises  will  be  developed  for  the  second  session  of  the  week.    At  that  time,  the  class  will  be  divided  into  groups  of  4  –  5  students;  each  group  will  work  on  the  exercises  and  a  spokesperson  for  the  group  (rotates  each  week)  will  present  to  the  whole  class.    One  session  of  the  course  will  be  an  in-­‐class  ethics  workshop  on  issues  related  to  diversity,  equity,  and  inclusion.    Course  Structure:  Discussion  Sections      Attendance  is  required  at  one  discussion  section/week.  The  sections  will  be  run  by  post-­‐doctoral  fellows  and  will  have  between  12  –  15  students.    In  section,  students  will  be  responsible  for  short  presentations  of  relevant  current  news  articles  and  for  participating  in  discussions  related  to  class  topics  and  readings.        Evaluation/Grading    The  course  will  be  graded  on  a  Pass/No  Pass  basis  however  to  pass  the  course  you  must  hand  in  all  assignments,  give  a  final  oral  presentation  and  submit  a  term  paper,  and  regularly  attend  and  participate  in  a  discussion  section.    Your  work  must  be  of  passing  quality.        Weekly  News  Assignment:    (15%  of  grade)  Every  week  each  student  must  find  a  news  article  that  is  related  to  DEI  and  science.    Students  must  identify  the  source  of  the  news  and  write  a  short  paragraph  (max  ½  page)  briefly  describing  the  news  item  and  how  it  is  related  to  any  aspect  of  diversity,  equity,  and  inclusion.    These  will  be  turned  in  electronically  through  TED.  In  addition,  at  random  times  during  the  quarter,  students  will  give  a  3  minute  oral  presentation  in  discussion  section  analyzing  a  news  item.          Oral  presentation  (10%  of  grade)  Every  group  will  give  a  15  minute  oral  presentation  to  the  entire  class  on  an  approved  DEI  topic  of  their  choice.    All  students  in  the  group  must  participate  in  the  oral  presentation.      8-­‐10  page  Paper  (30%  of  grade).  Each  student  will  write  an  8  -­‐  10  page  paper  (as  an  individual)  on  the  topic  that  you  presented  orally  to  the  class,  with  a  focus  on  your  portion  of  the  oral  presentation.        Quizzes    (15%  each,  30%  total)  There  will  be  3  in-­‐class  quizzes  though  only  the  highest  2  scores  will  count.  They  are  each  worth  15%  of  your  grade.    Quizzes  will  be  on  topics  discussed  in  class  as  well  as  on  readings.        

Page 142: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

Participation  (10%  of  grade)  This  grade  will  be  based  on  your  oral  presentations  in  section  (news  presentation)  and  in  class  (as  spokesperson  for  your  group)  as  well  as  on  your  participation  in  general  class  discussions.      Reflection  (5%)  At  the  end  of  the  class  you  will  be  asked  to  write  a  1  –  2  page  essay  reflecting  on  your  experience  in  the  class,  with  particular  emphasis  on  your  identity  in  relation  to  other  identities  discussed  in  the  class.        Date   Topic  

 Weeks  1  -­‐  4  3/31  –  4/23  

Diversity  in  the  Context  of  Biology  -­‐  A  Historical  Overview  of  the  Science  of  Human  Heredity  in  the  US  -­‐  Eugenics  -­‐  The  Use  of  Science  to  Institutionalize  Discrimination       Prisoner  Testing,  Tuskegee  -­‐  Epigenetics    -­‐  environmental  and  genetic  influences  on  individuals.    Ethical  and  Legal  Implications  -­‐  Race  and  Medicine  in  the  Post  Genomic  Age       Personal,  Societal,  Ethical  questions  raised  by  access  to  private  genetic  information    

Week  5/6  4/28  –  5/7    

Race,  Ethnicity  and  Gender  in  Public  Health  and  Disease  -­‐  Diabesity  –  effects  of  environment  and  lifestyle,  genetic  predisposition,  ethnicity,  and  culture.    -­‐  Gender  and  Public  Health  Issues  -­‐  sexual  and  reproductive  health,  gender-­‐based  violence,  substance  misuse  and  abuse.      -­‐  Hela  Cells,  Sickle  cell  anemia    -­‐  Cultural  influences  on  health:  anthropological  perspective    

Week  7-­‐  10  5/12  –  6/4    

Stereotypes  and  the  brain  -­‐  Ethics  and  Diversity,  Equity  and  Inclusion                                In-­‐class  workshop  –  Stereotypes:    The  brain    -­‐  Stereotypes:    Racism  and  LGBT  issues  -­‐  Student  Presentations  

   Following  is  a  partial  bibliography  for  this  class.    Weekly  readings  will  be  selected  from  the  list  of  sources,  which  is  periodically  updated  and  expanded:    General:  DEI  in  science,  medicine,  and  in  the  news  • Implicit  Bias  test:  https://implicit.harvard.edu/implicit/demo/  • Is  Science  Multi-­‐cultural?  Ch.  4  “Cultures  as  Toolboxes  for  Science  and  Technologies”  

Sandra  Harding  (1998)  • Value-­‐Free  Science:    Purity  and  Power  in  Modern  Knowledge.  Robert  Proctor  (1991)  • Implicit  Bias  Scientific  Foundations  Greenwald  and  Krieger  (2006)    • Racism,  the  misuse  of  Genetics  and  a  Huge  Scientific  Protest.  Los  Angeles  Times.    Hiltzik  

(2014).    

Page 143: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

• Diversity:    A  Nature  and  Scientific  American  Special  Issue:  (2014)  http://www.nature.com/news/diversity-­‐1.15913  

• The  State  of  the  World’s  Science.    Scientific  American  Issue  (2014)  http://www.scientificamerican.com/editorial/state-­‐of-­‐the-­‐worlds-­‐science-­‐2014/  

• Genetic  Information  Nondiscrimination  Act  (GINA)  (2008)  • Ethical,  Legal  and  Social  Issues  related  to  the  Human  Genome  project  –  Minorities,  Race,  

and  Genomics:  http://www.ornl.gov/sci/techresources/Human_Genome/elsi/minorities.shtml  

• The  "Racial"  Economy  of  Science,  Sandra  Harding,  ed.,  (1993)  • Appropriating  the  Idioms  of  Science:  The  Rejection  of  Scientific  Racism”-­‐Nancy  Leys  

Stefan  and  Sander  L.  Gilman  (1991)    Diversity  in  Biology  and  the  Use  of  Science  to  Institutionalize  Discrimination  • The  Genetics  and  Identity  Project:  

http://www.ahc.umn.edu/bioethics/genetics_and_identity/index.html  • Nature  Genetics  Supplement  on  Genetics  and  Race  –  (2004):  

http://www.nature.com/index.html?file=/ng/journal/v36/n11s/index.html  • National  Geographic  Genographic  project  • The  Mismeasure  of  Man.    Stephen  J.  Gould  (1981)  • The  Emperors  New  Clothes:  Biological  Theories  of  Race  at  the  Millennium    Joseph  L.  

Graves  Jr.  (2003)  • Eugenics  Archive:  http://www.eugenicsarchive.org/eugenics/  • The  Code  of  Codes:  Scientific  and  Social  Issues  in  the  Human  Genome  Project,  Daniel  

Kevles  and  Leroy  Hood,  Cambridge:  Harvard  University  Press,  (1992).    Out  of  Eugenics:  The  Historical  Politics  of  the  Human  Genome.  Kevles.      

• The  Social  Power  of  Genetic  Information.  Dorothy  Nelkin,    

Case  Studies:  Building  Mistrust  of  Biomedical  Research  • Bad  Blood:    The  Tuskegee  Syphilis  experiment.  James  H.  Jones  (1992)  • Killing  the  Black  Body:    Race,  Reproduction,  and  the  Meaning  of  Liberty.  Dorothy  Roberts  

(1998)  • The  Immortal  Life  of  Henrietta  Lacks.  Rebecca  Skloot  (2010)  • Medical  Apartheid:    The  Dark  History  of  Medical  Experimentation  on  Black  Americans  

from  Colonial  Times  to  the  Present.  Harriet  Washington  (2008)    

Epigenetics  • The  Ghost  in  our  Genes:  Legal  and  Ethical  Implications  of  Epigenetics.    Rothstein,  Cai,  and  

Marchant.    Health  Matrix  Clevel.  (2009);  19  (1):  1-­‐62.  • Germ  Cells  Carry  the  Epigenetic  Benefits  of  Grandmother’s  Diet.    Cooney.      PNAS,  (2006).  

103  (46)  17071  –  17072.    • Epigenetics:  A  turning  point  in  our  Understanding  of  Heredity  (Rogers)  Scientific  

American  (2012)      • Epigenetic  Influences  and  Disease.    (Simmons)  Nature  Education  (2008)  1(1):  6.    • Bridging  the  Transgenerational  Gap  with  Epigenetic  Memory.  Lim  and  Brunet.  (2013).    

Trends  in  Genetics.  29(3)  176  –  186.  • Epigenetics:  A  Landscape  Takes  Shape.  Goldberg,  Allis,  and  Bernstein.  (2007)    Cell  128;  

635  –  638  • A  Twin  Approach  to  Unraveling  Epigenetics;  Bell  and  Spector.  (2011).    Trends  in  Genetics  

27(3)  116  –  125.      

Page 144: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

•  Use  and  misuse  of  science  in  social  policies  • National  Sickle  Cell  Control  Act  (1972)  • Sickle  Cell  Anemia:  National  Program  raises  problems  as  well  as  hopes.  Culliton.  Science  

178  (4058):283-­‐86  (1972)  •  A  bloody  mess  at  one  federal  lab:  Officials  may  have  secretly  checked  staff  for  syphilis,  

pregnancy,  and  sickle  cell.  Hawkins,  D.  US  World  and  News  Report    (1997)  122  (24):26-­‐27      

Race  and  Medicine  in  the  Post-­‐Genomic  Age  • Personalized  medicine:  who  is  an  Asian?”  Lancet  (2007)    369  (9575)  :  1770-­‐1  •  The  Evidence  Gap  –  Patient’s  DNA  May  Be  Signal  to  Tailor  Drugs.    New  York  Times  

(2008)  • DNAs  Power  to  Predict  is  Limited,  Study  Finds.    New  York  Times.    (2012)  • Washington  Post:  http://www.washingtonpost.com/national/health-­‐science/race-­‐

reemerges-­‐in-­‐debate-­‐over-­‐personalized-­‐medicine/2011/07/18/gIQAzHqMmI_story.html  -­‐    

• Commercial  testing:  ex.  www.23andme.com    • The  Code  of  Codes:  Scientific  and  Social  Issues  in  the  Human  Genome  Project,  Cambridge:  

Harvard  University  Press,  Daniel  Kevles  and  Leroy  Hood,  (1992)  • Addressing  Race  and  Genetics:  Health  Disparities  in  the  Age  of  Personalized  Medicine.    

(2011)  www.americanprogress.org/issues/2011/06/pdf/race_genetics.pdf    

Race,  Ethnicity  and  Gender  in  Public  Health  and  Disease;  Racializing  Medicine  • Making  the  Mexican  Diabetic:  Race,  Science,  and  the  Genetics  of  Inequality  Michael  

Montoya  (2011)  • Dying  in  the  City  of  the  Blues:    Sickle  Cell  Anemia  and  the  Politics  of  Race  and  Health  Keith  

Wailoo  (2001)  • Race  in  a  Bottle.  Kahn  (2007).  Scientific  American  297(2)  40  –  45.    • Primary  Research  article  on  recombination  hotspots  in  African  Americans:  

http://genetics.med.harvard.edu/reich/Reich_Lab/Welcome_files/2011_Hinch_Nature.pdf  

• Addressing  Race  and  Genetics:  Health  Disparities  in  the  Age  of  Personalized  Medicine    www.americanprogress.org/issues/2011/06/pdf/race_genetics.pdf  

•  Race  and  Reification  in  Science.  Troy  Duster.  Science  18  February  (2005):    Vol.  307  no.  5712  pp.  1050-­‐1051      

Evolution  of  the  Human  Brain;  Racial  Stereotyping:  Performance  and  Behavior  • Whistling  Vivaldi:  How  Stereotypes  Affect  Us  and  What  We  Can  Do,  Claude  Steele  (2011)  • The  Blank  Slate,  the  Modern  Denial  of  Human  Nature,  Steven  Pinker  (2002)  • Genes  and  Human  Brain  Evolution,  Geschwind  and  Konopka,  Nature  (2012)  • Lamarckian  evolution  explains  human  brain  evolution  and  psychiatric  disorders,  Guy  

Barry,  Frontiers  in  Neuroscience  (2013)  • Can  race  be  erased?  Coalitional  computation  and  social  categorization,  Kurzban,  Tooby  

and  Cosmides  PNAS  (2001)  • The  Content  of  Our  Cooperation,  Not  the  Color  of  Our  Skin:  An  Alliance  Detection  System  

Regulates  Categorization  by  Coalition  and  Race,  but  Not  Sex  ,  Pietraszewski,  Cosmides,  and  Tooby,  PLoS  1  (2014)  

Page 145: biology.ucsd.edu · ! 1! Academic(Senate(UndergraduateProgram(Review:(ASelf8studyReport(onthe(Division(of(Biological(Sciences(December1,2014’ Introduction’ a.Educational#Mission#

• Yes,  I.Q  Really  Matters,  Hambrick  and  Chabris,  Slate  (2014)  • Epigenetic  mechanisms  in  memory  and  synaptic  function,  Sultan  and  Day,  Epigenomics  

(2011)    

Diversity  and  Sexual  Orientation  • Understanding  sexual  orientation  and  gender  identity.  (2014)  

http://www.apa.org/helpcenter/sexual-­‐orientation.aspx  • Schüklenk,  U.,  Stein,  E.,  Kerin,  J.&    Byne,  W.  (1997).    The  Ethics  of  Genetic  Research  on  

Sexual  Orientation.    Hastings  Center  Report  27(4)  6-­‐13.  • J.M.  Bailey  and  R.C.  Pillard,  "A  genetic  study  of  male  sexual  orientation,"  Archives  of  

General  Psychiatry,  vol.  48:1089-­‐1096,  December  1991.  • LeVay,  S.  (2010).  Gay,  Straight,  and  the  Reason  Why:  The  Science  of  Sexual    

Orientation.    Oxford  University  Press.