20
UNCORRECTED PROOF PRECAM 2699 1–20 Precambrian Research xxx (2006) xxx–xxx Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): Implications for western Gondwana assembly 3 4 5 6 ergio P. Neves a,, Olivier Bruguier b , Alain Vauchez c , Delphine Bosch c , Jos´ e Maur´ ıcio Rangel da Silva a , Gorki Mariano a 7 8 a Departamento de Geologia, Universidade Federal de Pernambuco, 50740-530 Recife, Brazil 9 b ISTEEM, Service ICP-MS, Universit´ e de Montpellier II, 34095 Montpellier, France 10 c Laboratoire de Tectonophysique, Universit´ e de Montpellier II, 34095 Montpellier, France 11 Received 21 July 2005; received in revised form 10 January 2006; accepted 21 June 2006 12 Abstract 13 The main structural feature of the central domain of Borborema Province (NE Brazil) is a network of dextral and sinistral shear zones. These shear zones rework an older, regionally developed, flat-lying foliation in orthogneisses and supracrustal belts, which in the East Pernambuco belt was formed under amphibolite facies conditions. This study reports LA-ICP-MS U–Pb zircon ages of metaigneous and metasedimentary rocks aiming to constraint the pre-transcurrent tectonothermal evolution in the Eastern Pernambuco domain. Ages of 2125 ± 7 and 2044 ± 5 Ma in a mafic layer of banded orthogneiss are interpreted as the age of the protolith of the orthogneiss and of high-grade Transamazonian metamorphism, respectively. The latter age is consistent with the occurrence of low Th/U, metamorphic zircon xenocrysts, dated at 2041 ± 15 Ma, in the leucosome of a migmatitic paragneiss. A granitic orthogneiss dated at 1991 ± 5 Ma reflects late to post-Transamazonian magmatic event. A similar age (1972 ± 8 Ma) was found in rounded zircon grains from a leucocratic layer of banded orthogneiss. Ages of detrital zircons in a paragneiss sample indicate derivation from sources with ages varying from the Archean to Neoproterozoic, with peak ages at ca. 2220, 2060–1940, 1200–1150 and 870–760 Ma. Detrital zircons constrain the deposition of the supracrustal sequence to be younger than 665 Ma. Magmatic zircons with the age of 626 ± 15 Ma are found in the leucosome of a migmatitic paragneiss and constrain the age of the Brasiliano high-temperature metamorphism. A lower intercept age of 619 ± 36 Ma from a deformed granodiorite dated at 2097 ± 5 Ma and the crystallization age of 625 ± 24 Ma of the felsic layer of banded orthogneiss also confirm the late Neoproterozoic metamorphism. These results show that the present fabric in basement and supracrustal rocks was produced during the Brasiliano orogeny. 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Paleoproterozoic ages reported in this study are similar to those found in other sectors of the Borborema Province, the Cameroon and Nigeria provinces, and the S˜ ao Francisco/Congo craton. They show the importance of the Transamazonian/Eburnean event and suggest that these tectonic units may have been part of a larger, single continental landmass. Likewise, similarities in post- Transamazonian metamorphic and magmatic events in the Borborema, Nigeria and Cameroon provinces suggest that they shared a common evolution and remained in close proximity until the opening of the Atlantic Ocean. 29 30 31 32 33 © 2006 Elsevier B.V. All rights reserved. 34 Keywords: Laser ablation ICP-MS; Zircon U–Pb geochronology; Neoproterozoic belts; Transamazonian orogeny; Brasiliano orogeny 35 36 Corresponding author. Tel.: +55 81 2126 8240; fax: +55 81 2126 8236. E-mail address: [email protected] (S.P. Neves). 1 0301-9268/$ – see front matter © 2006 Elsevier B.V. All rights reserved. 2 doi:10.1016/j.precamres.2006.06.005

Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): Implications

Embed Size (px)

Citation preview

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

Precambrian Research xxx (2006) xxx–xxx

Timing of crust formation, deposition of supracrustal sequences,and Transamazonian and Brasiliano metamorphism in the East

Pernambuco belt (Borborema Province, NE Brazil):Implications for western Gondwana assembly

3

4

5

6

Sergio P. Neves a,∗, Olivier Bruguier b, Alain Vauchez c, Delphine Bosch c,Jose Maurıcio Rangel da Silva a, Gorki Mariano a

7

8

a Departamento de Geologia, Universidade Federal de Pernambuco, 50740-530 Recife, Brazil9b ISTEEM, Service ICP-MS, Universite de Montpellier II, 34095 Montpellier, France10

c Laboratoire de Tectonophysique, Universite de Montpellier II, 34095 Montpellier, France11

Received 21 July 2005; received in revised form 10 January 2006; accepted 21 June 2006

12

Abstract13

The main structural feature of the central domain of Borborema Province (NE Brazil) is a network of dextral and sinistralshear zones. These shear zones rework an older, regionally developed, flat-lying foliation in orthogneisses and supracrustal belts,which in the East Pernambuco belt was formed under amphibolite facies conditions. This study reports LA-ICP-MS U–Pb zirconages of metaigneous and metasedimentary rocks aiming to constraint the pre-transcurrent tectonothermal evolution in the EasternPernambuco domain. Ages of 2125 ± 7 and 2044 ± 5 Ma in a mafic layer of banded orthogneiss are interpreted as the age of theprotolith of the orthogneiss and of high-grade Transamazonian metamorphism, respectively. The latter age is consistent with theoccurrence of low Th/U, metamorphic zircon xenocrysts, dated at 2041 ± 15 Ma, in the leucosome of a migmatitic paragneiss. Agranitic orthogneiss dated at 1991 ± 5 Ma reflects late to post-Transamazonian magmatic event. A similar age (1972 ± 8 Ma) wasfound in rounded zircon grains from a leucocratic layer of banded orthogneiss. Ages of detrital zircons in a paragneiss sample indicatederivation from sources with ages varying from the Archean to Neoproterozoic, with peak ages at ca. 2220, 2060–1940, 1200–1150and 870–760 Ma. Detrital zircons constrain the deposition of the supracrustal sequence to be younger than 665 Ma. Magmaticzircons with the age of 626 ± 15 Ma are found in the leucosome of a migmatitic paragneiss and constrain the age of the Brasilianohigh-temperature metamorphism. A lower intercept age of 619 ± 36 Ma from a deformed granodiorite dated at 2097 ± 5 Ma and thecrystallization age of 625 ± 24 Ma of the felsic layer of banded orthogneiss also confirm the late Neoproterozoic metamorphism.These results show that the present fabric in basement and supracrustal rocks was produced during the Brasiliano orogeny.

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Paleoproterozoic ages reported in this study are similar to those found in other sectors of the Borborema Province, the Cameroonand Nigeria provinces, and the Sao Francisco/Congo craton. They show the importance of the Transamazonian/Eburnean eventand suggest that these tectonic units may have been part of a larger, single continental landmass. Likewise, similarities in post-Transamazonian metamorphic and magmatic events in the Borborema, Nigeria and Cameroon provinces suggest that they shared acommon evolution and remained in close proximity until the opening of the Atlantic Ocean.

29

30

31

32

33

© 2006 Elsevier B.V. All rights reserved.34

Keywords: Laser ablation ICP-MS; Zircon U–Pb geochronology; Neoproterozoic belts; Transamazonian orogeny; Brasiliano orogeny35

36

∗ Corresponding author. Tel.: +55 81 2126 8240; fax: +55 81 2126 8236.E-mail address: [email protected] (S.P. Neves).

1 0301-9268/$ – see front matter © 2006 Elsevier B.V. All rights reserved.2 doi:10.1016/j.precamres.2006.06.005

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

2 S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx

1. Introduction37

There is broad consensus that most of western38

Gondwana was already formed by 600 Ma. Continen-39

tal reconstructions for this period (e.g., Caby et al.,40

1991; Castaing et al., 1994; Trompette, 1997) show that41

the Brasiliano/Pan-African Borborema, Cameroon and42

Nigeria provinces occupied a central position in relation43

to the Amazonian and West Africa cratons, to the west,44

the Sao Francisco/Congo craton, to the south, and the45

Saharan metacraton (Abdelsalam et al., 2002), to the east46

(Fig. 1). In the lack of paleomagnetic data, understand-47

ing how and when this configuration was reached rely on48

geological and geochronological grounds. Knowledge49

of the tectonothermal history of the late Neoproterozoic50

belts is thus essential to evaluate possible correlations51

between adjacent (within individual provinces) and dis-52

tant (transcontinental) units and, therefore, to provide53

insights into the dynamics of amalgamation of western54

Gondwana.55

The Precambrian crustal evolution of the Borborema56

Province has been much debated in recent years. Resolv-57

ing some critical pending issues is necessary to elabo-58

rate continental reconstructions for the Neoproterozoic.59

In the central domain, comprised between the Patos60

and Pernambuco shear zone systems (Fig. 1), the most61

controversial issues are (1) the existence of a contrac-62

tional event in the early Neoproterozoic (Cariris Vel-63

hos orogeny, ∼1 Ga; Brito Neves et al., 1995), and64

(2) whether or not terranes accretion took place dur-65

ing this proposed orogeny. The suggestion of an early66

Neoproterozoic orogeny resulted from the discovery of67

1000–900 Ma-old intermediate to felsic metavolcanic68

rocks and orthogneisses in the Alto Pajeu belt (Fig. 1;69

Brito Neves et al., 1995; Van Schmus et al., 1995;70

Kozuch et al., 1997; Brito Neves et al., 2000, 2001a;71

Kozuch, 2003). Peraluminous orthogneisses intercalated72

in the supracrustal sequence were interpreted as syncol-73

lisional granites. Santos and Medeiros (1999) proposed74

that the Alto Pajeu belt is one of four tectonostrati-75

graphic terranes that amalgamated during the Cariris76

Velhos and Brasiliano orogenies to constitute the cen-77

tral domain. Several authors (Mariano et al., 2001;78

Guimaraes and Brito Neves, 2004; Neves, 2003 and ref-79

erences therein) have, however, questioned the existence80

of the Cariris Velhos orogeny and the terrane accre-81

tion model, suggesting, instead, continuity between the82

proposed terranes since the Paleoproterozoic Transama-83

zonian orogeny. Therefore, in this paper, the following84

non-genetic terms will be used to describe supracrustal85

successions and orthogneisses occurring from west to86

east in the central domain: Cachoeirinha belt, Alto87

Pajeu belt, Alto Moxoto belt and East Pernambuco belt 88

(Fig. 1). 89

To improve knowledge and address the controversial 90

points above, zircon grains from samples from the East 91

Pernambuco belt were dated by laser ablation inductively 92

coupled plasma-mass spectrometry (LA-ICP-MS). The 93

aim of this study is threefold: (1) constrain the timing 94

of magmatic and metamorphic events and of deposition 95

of supracrustal sequences, (2) compare its geological 96

evolution with other regions in northeastern Brazil and 97

with the Pan-African belts of Nigeria and Cameroon, and 98

(3) assess how these domains and surrounding cratons 99

pulled together to make up western Gondwana. 100

2. Geological setting 101

2.1. Regional geology 102

The Borborema Province is characterized by a com- 103

plex network of large transcurrent shear zones (Vauchez 104

et al., 1995; Fig. 1). In the central domain, a linked system 105

of E–W- to ENE–WSW-striking dextral and NNE–SSW- 106

to NE–SW-striking sinistral shear zones is spatially 107

associated with abundant granitic and syenitic plutons 108

(Fig. 1B; Vauchez and Egydio-Silva, 1992; Guimaraes 109

and Da Silva Filho, 1998; Ferreira et al., 1998; Neves and 110

Mariano, 1999; Neves et al., 2000; Silva and Mariano, 111

2000). A former shallow-dipping regional foliation is 112

preserved in orthogneisses and metasediments outcrop- 113

ping between the strike and slip-related steeply dipping 114

to vertical mylonitic zones. The metamorphic grade 115

under which this foliation was developed differs between 116

the Cachoeirinha belt and the Alto Pajeu, Alto Moxoto 117

and East Pernambuco belts. The Cachoeirinha belt con- 118

sists of greenschist facies metapelites, metagreywackes 119

and bimodal metavolcanics (Bittar and Campos Neto, 120

2000; Kozuch, 2003; Medeiros, 2004) deformed at rel- 121

atively high pressures (6–9 kbar; Sial, 1993; Caby and 122

Sial, 1997). Its low metamorphic grade stands in contrast 123

with that of the other three belts, which were regionally 124

heated above 500 ◦C under low- to medium-pressures 125

metamorphic conditions (Vauchez and Egydio-Silva, 126

1992; Bittar and Campos Neto, 2000; Leite et al., 2000a; 127

Neves et al., 2000). 128

Orthogneiss complexes underlie large areas of the 129

Alto Pajeu, Alto Moxoto and East Pernambuco belts. 130

They yielded U–Pb and Pb–Pb evaporation ages mostly 131

varying from 2.2 to 2.0 Ga (Santos, 1995; Van Schmus 132

et al., 1995; Leite et al., 2000b; Brito Neves et al., 133

2001b; Melo et al., 2002; Kozuch, 2003; Neves et al., 134

2004; Santos et al., 2004a), and Sm–Nd data indicate the 135

existence of Archean protoliths for some of these Pale- 136

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx 3

Fig. 1. (A) South America–Africa fit showing cratons and Neoproterozoic provinces of western Gondwana, and sketch highlighting main shear zonesin Borborema Province. (B) Schematic geological map of eastern Borborema Province showing location of the studied area in the East Pernambucobelt (EPB) of central domain. Dashed lines highlight boundaries between the central and northern domains, and between the Cachoeirinha (CB),Alto Pajeu (APB) and Alto Moxoto (AMB) belts. PaSZ, Patos Shear Zone system; EPSZ, East Pernambuco Shear Zone system; WPSZ, WestPernambuco Shear Zone system.

oproterozoic orthogneisses (Van Schmus et al., 1995;137

Brito Neves et al., 2001b; Melo et al., 2002). Domi-138

nance of Paleoproterozoic to Archean Sm–Nd model139

ages in granitic and syenitic plutons (Ferreira et al., 1998;140

Mariano et al., 2001; Guimaraes et al., 2004) suggests141

that Paleoproterozoic to Archean basement constitute142

most of the central domain.143

In the Alto Pajeu belt, metavolcanic rocks have U–Pb144

zircon ages mainly comprised between 1000 and 970 Ma145

(Brito Neves et al., 1995; Van Schmus et al., 1995;146

Kozuch et al., 1997; Brito Neves et al., 2000; Kozuch,147

2003). Van Schmus et al. (1995) and Kozuch et al. (1997)148

report U–Pb ages for metavolcanic rocks in the Cachoeir-149

inha belt in the interval 810–720 Ma. Refinement of150

these data due to the presence of inherited zircons and151

new age determinations indicate a younger depositional 152

age (660–620 Ma; Kozuch, 2003; Medeiros, 2004). In 153

these two belts, Sm–Nd ages range from 1.8 to 1.2 Ga 154

(Brito Neves et al., 2001a; Kozuch, 2003; Archanjo and 155

Fetter, 2004). The oldest Nd model ages suggest that 156

Paleoproterozoic or older sources provided important 157

contribution for detritus that filled their precursor sed- 158

imentary basins. In the Cachoeirinha belt, this inference 159

is further supported by the occurrence of zircons with 160

ages up to 3278 Ma in a quartzite sample (Silva et al., 161

1997) and of Paleoproterozoic zircons in a metarhyolite 162

(Kozuch, 2003). The Sertania metasedimentary complex 163

in the Alto Moxoto belt yielded zircon grains with ages 164

around 2.0 Ga (Santos et al., 2004a) and Sm–Nd ages 165

varying from 2.0 to 3.0 Ga (Brito Neves et al., 2001b). 166

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

4 S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx

These data indicate its provenance mainly from Pale-167

oproterozoic and Archean sources, but only places an168

upper bound on the age of deposition. The age of depo-169

sition of supracrustal sequences in the East Pernambuco170

belt is still unknown.171

2.2. Study area172

The study area is located in the northwestern part173

of the East Pernambuco belt (Fig. 1). It comprises174

banded orthogneisses, granitic augen gneisses, metased-175

imentary rocks and igneous intrusions (Fig. 2). Banded176

orthogneisses are characterized by alternating bands of177

dioritic and granitic compositions. Zircon U–Pb dat-178

ing from a monzodioritic orthogneiss and a granitic179

augen gneiss (Taquaritinga orthogneiss) in the southern180

part of the study area yielded ages of 1974 ± 32 and181

1521 ± 6 Ma, respectively (Sa et al., 2002).182

In the geological map of the state of Pernambuco183

(Gomes, 2001), Surubim and Vertentes complexes are184

recognized as two distinct supracrustal units, mainly185

based on the occurrence of metavolcanic rocks in the186

latter. Metavolcanic rocks were not identified by us in187

the study area nor in other localities of the East Pernam-188

buco belt. Metasedimentary rocks are indistinguishable189

in terms of rock association, structure or metamorphic190

grade between the Surubim and Vertentes complexes.191

Furthermore, our mapping shows that basement gneisses192

were misinterpreted as belonging to the Vertentes com-193

plex. Therefore, this complex is not considered here194

as a valid tectonostratigraphic unit. In consequence,195

metasedimentary rocks in the study are attributed to the196

Surubim complex. The main lithotypes are biotite gneiss,197

biotite schist, quartz-feldspar paragneiss, quartzite and198

marble, locally with small lenses of para-amphibolite199

and calc-silicate rock. Sillimanite and garnet are ubiqui-200

tous accessory phases, which together with local migma-201

tization attest high-temperature metamorphism.202

From the structural point of view, the study area203

is characterized by flat-lying gneissic foliation in204

orthogneisses and supracrustal rocks. This early fabric is205

deformed by recumbent to upright folds and transcurrent206

shear zones (Neves et al., 2005). Stretching lineations207

associated with the flat-lying foliation have ESE–WNW208

trend in supracrustal rocks and NE–SW trend in209

banded orthogneiss and Taquaritinga orthogneiss. In the210

metasedimentary sequence, numerous kinematic indica-211

tors showing a top-to-the-west/northwest sense of shear212

denote a well-developed non-coaxial deformation. These213

oblique lineations were interpreted (Neves et al., 2005) as214

the result of extension oblique to the transport direction215

in the deeper orthogneisses during progressive defor-216

mation. A deformed epidote-bearing biotite granodior- 217

ite (Alcantil pluton; Fig. 2) displays a flat-lying mag- 218

matic/gneissic foliation crosscut by subvertical shear 219

bands. This pluton was previously regarded as a Neo- 220

proterozoic intrusion emplaced during the top-to-the- 221

northwest tectonics (Neves et al., 2005). However, data 222

acquired in the present study favor its intrusion during 223

the Paleoproterozoic, followed by solid-state deforma- 224

tion during the Brasiliano orogeny (see below). Two 225

plutons partially outcrop in the southern part of the study 226

area (Fig. 2). The ca. 585 Ma-old, syenitic Toritama plu- 227

ton (Guimaraes and Da Silva Filho, 1998) is interpreted 228

as early kinematic with respect to strike-slip shearing 229

(Neves et al., 2000). The Santa Cruz do Capibaribe plu- 230

ton is a composite intrusion containing gabbronorites 231

and diorites in the core and monzonites at the margins, 232

displaying only local solid-state deformation. 233

3. Studied samples 234

Samples for this study represent the main lithological 235

units and key relations between age and deformation in 236

the study area. Six samples weighting 8–12 kg each were 237

collected from four localities (Fig. 2B). Samples SCC1A 238

and SCC1B are, respectively, mafic and felsic layers 239

of banded orthogneiss. SCC1A is a medium-grained, 240

dark-colored biotite amphibole gneiss with quartz mon- 241

zodioritic composition. SCC1B is a medium-grained, 242

leucocratic granitic gneiss containing less than 10% 243

biotite. The gneissic banding dips 36◦ towards N104◦E 244

and a strong stretching lineation plunging gently to 245

northeast (21◦, N47◦E) is present in both lithologies. 246

Sample SCC9 is a medium to coarse-grained sillimanite 247

biotite paragneiss containing garnet porphyroblasts up 248

to 1 cm in diameter. Sample SCC12 is the leucosome of 249

a migmatitic paragneiss, and SCC2 is a granitic gneiss. 250

Since contact relationships are not exposed, it is not pos- 251

sible to determine whether the granitic gneiss is a sheet 252

intercalated in metasedimentary sequence or whether it 253

underlies it. Quartz ribbons in sample SCC2 attest strong 254

solid-state deformation and define a lineation plunging 255

7◦, N150◦E. Sample SSC5 is from the Alcantil pluton, 256

showing foliation dipping 36◦ towards N24◦E. 257

4. Analytical techniques 258

Zircons were separated using conventional tech- 259

niques. After crushing and sieving of the powdered sam- 260

ples, heavy minerals were concentrated by panning and 261

then by heavy liquids. The heavy mineral concentrates 262

were subsequently processed by magnetic separation 263

using a Frantz separator. Zircon grains were hand picked 264

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx 5

Fig. 2. (A) Simplified geological map of the East Pernambuco belt showing location of studied area. Modified from Neves and Mariano (1999),Neves et al. (2000) and Gomes (2001). (B) Geological map of the studied area (modified from Neves et al., 2005) showing location of samplesanalysed by LA-ICP-MS, and existing TIMS U–Pb ages (Sa et al., 2002).

from the non-magnetic fraction at 1.5 A intensity and 1◦265

or 2◦ side tilt (Samples SCC1A and SCC9), 2◦ side tilt266

(samples SCC1B and SCC2), and 4◦ side tilt (samples267

SCC5 and SCC12). The grains were then mounted on268

adhesive tape, enclosed in epoxy resin with chips of a269

standard material (G91500; Wiedenbeck et al., 1995) 270

and polished to about half of their thickness. Internal 271

structure and morphology were subsequently observed 272

by Scanning Electron Microscopy (SEM) using a JEOL 273

1200 EX II operating at 120 kV. After BSE imaging, car- 274

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

6 S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx

bon coating was removed by using alcohol and the resin275

grain mount was subsequently slightly repolished to get276

rid of any residual carbon which can potentially con-277

tain significant amount of 204Pb (see Hirata and Nesbitt,278

1995). The mount was then cleaned in ultra-pure MQ279

water and dried before its introduction in the ablation280

cell.281

Data were acquired at the University of Montpel-282

lier II using a 1991 vintage VG Plasmaquad II turbo283

ICP-MS coupled with a Geolas (Microlas) automated284

platform housing a 193 nm Compex 102 laser from285

LambdaPhysik. Analyses were conducted using an in-286

house modified ablation cell of ca. 5 cm3 which resulted287

in a shorter washout time and an improved sensitivity288

compared to the initial larger ablation cell (ca. 30 cm3).289

Ablation experiments were conducted in a He atmo-290

sphere to enhance sensitivity and reduce inter-element291

fractionation (Gunther and Heinrich, 1999). Data were292

acquired in the peak jumping mode in a series of five293

repeats of 10 s each, measuring the 202Hg, 204(Pb + Hg),294

206Pb, 207Pb, 208Pb and 238U isotopes similarly to the295

procedure described in Bruguier et al. (2001). Signal was296

acquired after a 10 s period of pre-ablation to allow for297

crater stabilization and to remove surface contamination298

as well as fall-out from previous analyses. The laser was299

fired using an energy density of 20 J cm−2 at a frequency300

of 3 or 4 Hz. The laser spot size was of 52 and 26 �m in301

samples SCC1A, SCC1B and SCC9, and 26 �m in sam-302

ples SCC2, SCC5 and SCC12. Some additional analyses303

using a spot size of 15 �m were further made in the rims304

of zircon grains from sample SCC1A.305

The Pb/Pb and U/Pb isotopic ratios of unknowns were306

calibrated against the G91500 zircon crystal as an exter-307

nal ablation standard, which was measured four times308

each five unknowns using the bracketing technique. Data309

were reduced using a calculation spreadsheet, which310

allows correction for instrumental mass bias and inter-311

element fractionation. Accurate common lead correction312

in zircon is difficult to achieve, mainly because of the313

isobaric interference of 204Hg on 204Pb. The contribu-314

tion of 204Hg on 204Pb was estimated by measuring the315

202Hg and assuming a 204Hg/202Hg natural isotopic com-316

position of 0.2298. This allows to monitor the common317

lead content of the analysed grain, but corrections often318

result in spurious ages. Analyses yielding 204Pb close319

to, or above the limit of detection were then rejected.320

Table 1 thus presents only analyses for which 204Pb was321

below detection limit. For instrumental mass bias, all322

measured standards were averaged to give a mean mass323

bias factor and its associated error. This mass bias fac-324

tor and associated error were then propagated with the325

measured analytical errors of each individual sample.326

Inter-element fractionation for Pb and U are much more 327

sensitive to analytical conditions and a bias factor was 328

thus calculated using the four standard measurements 329

bracketing each five unknowns. These four measure- 330

ments were then averaged to calculate a U–Pb bias factor 331

and its associated error, which were added in quadra- 332

ture to the individual error measured on each 206Pb/238U 333

unknown. This typically resulted in a 2–5% precision 334

(1σ R.S.D.%) after all corrections have been made (see 335

Table 1). Ages quoted below were calculated using the 336

Isoplot program of Ludwig (2000). 337

5. Zircon morphology and internal structure 338

Zircon grains from the mafic and felsic layers of 339

banded orthogneiss have distinct morphologies and 340

internal structures. In sample SCC1A (mafic band), most 341

grains are elongated (aspect ratios varying from 2:1 to 342

4:1), ranging from 150 to 400 �m in length. In spite 343

of rounded terminations, the original euhedral to sub- 344

hedral shape can still be recognized in many grains. 345

Oscillatory zoning, typical of magmatic growth, is com- 346

mon (Fig. 3A) although it is faint and partially obliter- 347

ated in many grains, suggesting local redistribution of 348

elements during metamorphism. Dissolution and repre- 349

cipitation in some grains is indicated by embayments 350

cutting the concentric zoning (Fig. 3B). Overgrowth 351

rims, where present, are usually thin (<20 �m), and 352

some grains exhibit structureless domains (Fig. 3B). All 353

these features are interpreted as representing a mag- 354

matic zircon population affected by a metamorphic 355

event. Inherited cores were not observed in the analyzed 356

grains. 357

In contrast with zircon grains from Sample SCC1A, 358

those from sample SCC1B have aspect ratio normally 359

between 1:1 and 2:1 and are shorter (less than 300 �m 360

long). Their main characteristic is the presence of over- 361

growths with thin oscillatory zoning, suggesting mag- 362

matic growth over preexisting crystals (Fig. 3C). Some 363

crystals have subhedral to euhedral shapes (Fig. 3D) and 364

oscillatory zoning typical of magmatic zircons. 365

In sample SCC2 (granitic orthogneiss) the dominant 366

zircon population consists of clear, subhedral to euhe- 367

dral grains with faint oscillatory or no apparent zoning, 368

sometimes with inherited cores (Fig. 3E and F). 369

The most common population of zircons in the 370

paragneiss sample SCC9 comprises rounded to slightly 371

elongated (aspect ratios up to 2.5:1) grains with clear 372

oscillatory zoning (Fig. 4A). Some grains also have 373

bright, high-U, overgrowth rims (Fig. 4A), preferentially 374

located at the terminations of the crystals and responsi- 375

ble for rounding of the original euhedral shape. A few 376

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx 7

Tabl

e1

LA

-IC

P-M

SU

–Th–

Pbre

sults

for

zirc

ons

from

rock

sof

the

Bor

bore

ma

Prov

ince

(Bra

zil)

Sam

ple

Pb*

(ppm

)U

(ppm

)T

h(p

pm)

Th/

U20

4Pb/

206P

b20

8Pb/

206P

b20

7Pb/

206P

b±1

σ20

7Pb/

235U

±1σ

206P

b/23

8U±1

σρ

App

aren

tA

ges

(Ma)

Dis

c(%

)

206P

b/23

8U±1

σ20

7Pb/

206P

b±1

σ

SCC

1A#1

156

580

110

0.19

3.66

E−0

6–

0.11

920.

0006

4.65

830.

2623

0.28

340.

0159

1.00

1608

7919

458

17.3

#2*

9927

485

0.31

4.87

E−0

6–

0.13

250.

0019

6.84

230.

2023

0.37

450.

0097

0.88

2050

4521

3225

3.8

#3*

9224

168

0.28

4.70

E−0

6–

0.12

680.

0005

6.51

620.

2461

0.37

280.

0140

0.99

2042

6520

547

0.5

#4*

103

274

118

0.43

4.41

E−0

6–

0.12

970.

0005

6.58

330.

1586

0.36

810.

0087

0.99

2020

4120

947

3.5

#5*

8321

561

0.29

6.63

E−0

6–

0.12

590.

0005

6.57

670.

1872

0.37

880.

0107

0.99

2071

5020

426

−1.4

#689

259

700.

276.

55E−0

6–

0.13

020.

0013

6.15

690.

1260

0.34

290.

0062

0.88

1901

3021

0117

9.5

#7*

131

419

158

0.38

4.19

E−0

6–

0.12

680.

0004

6.46

440.

1580

0.36

950.

0089

0.99

2027

4220

546

1.3

#8*

104

271

500.

194.

78E−0

6–

0.12

640.

0010

6.50

180.

2790

0.37

300.

0157

0.98

2044

7320

4914

0.2

#9*

3711

059

0.53

1.51

E−0

5–

0.12

610.

0005

6.14

780.

0812

0.35

360.

0044

0.95

1952

2120

448

4.5

#10

194

723

475

0.66

3.00

E−0

6–

0.12

310.

0009

4.70

080.

0492

0.27

700.

0022

0.75

1576

1120

0112

21.3

#11

216

672

472

0.70

2.67

E−0

6–

0.12

400.

0008

5.78

770.

0604

0.33

840.

0028

0.79

1879

1320

1511

6.8

#12

8728

160

0.21

6.57

E−0

6–

0.12

230.

0005

5.51

010.

2605

0.32

670.

0154

1.00

1822

7419

917

8.5

#13

287

795

639

0.80

2.16

E−0

6–

0.12

690.

0004

5.41

980.

1006

0.30

990.

0057

0.98

1740

2820

566

15.3

#14*

138

394

188

0.48

3.94

E−0

6–

0.13

100.

0007

6.81

170.

1324

0.37

710.

0070

0.96

2063

3321

1110

2.3

#15

137

477

131

0.27

4.37

E−0

6–

0.12

010.

0008

4.85

320.

0830

0.29

310.

0046

0.91

1657

2319

5712

15.3

#16*

8723

010

50.

466.

18E−0

6–

0.13

200.

0010

7.08

090.

0903

0.38

920.

0040

0.80

2119

1921

2413

0.2

#17*

7620

517

80.

879.

50E−0

6–

0.13

220.

0005

6.84

810.

1425

0.37

560.

0077

0.98

2056

3621

287

3.4

#18*

9631

111

40.

365.

23E−0

6–

0.12

530.

0004

6.15

400.

2326

0.35

620.

0134

1.00

1964

6320

336

3.4

#19

135

525

247

0.47

3.91

E−0

6–

0.13

190.

0010

4.63

410.

0921

0.25

490.

0047

0.93

1464

2421

2313

31.1

#20*

9728

110

30.

375.

51E−0

6–

0.12

660.

0006

6.25

220.

2710

0.35

820.

0154

0.99

1974

7320

518

3.8

#21

152

754

258

0.34

4.36

E−0

6–

0.12

520.

0004

3.49

460.

0773

0.20

250.

0044

0.99

1189

2420

316

41.5

#22*

155

352

201

0.57

4.70

E−0

60.

170

0.13

150.

0011

7.32

060.

2538

0.40

370.

0136

0.97

2186

6221

1815

−3.2

#23*

169

257

800.

315.

45E−0

60.

118

0.13

170.

0020

7.11

340.

2963

0.39

170.

0151

0.93

2130

7021

2127

−0.4

#24*

269

507

298

0.59

3.20

E−0

60.

178

0.13

150.

0010

6.77

040.

2441

0.37

350.

0132

0.98

2046

6121

1814

3.4

#25

236

587

330

0.56

3.89

E−0

60.

147

0.13

100.

0011

6.46

220.

1260

0.35

790.

0062

0.89

1972

3021

1115

6.6

#26

277

654

408

0.62

2.95

E−0

60.

185

0.13

190.

0011

6.46

480.

0618

0.35

540.

0014

0.42

1960

721

2415

7.7

#27

6113

676

0.56

6.14

E−0

60.

192

0.13

370.

0010

6.82

950.

1082

0.37

050.

0052

0.89

2032

2521

4713

5.4

#28*

106

258

710.

277.

25E−0

60.

076

0.12

570.

0009

6.42

350.

1082

0.37

070.

0057

0.91

2033

2720

3813

0.3

#29*

130

278

108

0.39

6.81

E−0

60.

122

0.13

170.

0014

7.17

600.

1942

0.39

520.

0098

0.91

2147

4521

2119

−1.2

#30*

258

631

281

0.45

3.28

E−0

60.

105

0.12

550.

0009

6.13

520.

2052

0.35

450.

0116

0.98

1956

5520

3613

3.9

#31*

288

489

231

0.47

3.44

E−0

60.

172

0.13

140.

0016

6.74

140.

1936

0.37

210.

0096

0.90

2039

4521

1722

3.7

#32*

147

323

118

0.37

5.18

E−0

60.

103

0.12

590.

0011

6.21

790.

1529

0.35

830.

0083

0.94

1974

3920

4115

3.3

#33

240

717

225

0.31

3.51

E−0

60.

107

0.12

590.

0012

5.98

110.

1053

0.34

460.

0051

0.84

1909

2420

4117

6.5

#34

6124

930

0.12

9.82

E−0

60.

053

0.12

210.

0014

4.56

980.

0872

0.27

150.

0041

0.80

1548

2119

8721

22.1

#35*

207

619

750.

123.

82E−0

60.

054

0.13

250.

0013

6.75

130.

1612

0.37

400.

0081

0.92

2048

3821

3217

3.9

#36*

144

436

209

0.48

5.34

E−0

60.

096

0.12

630.

0007

6.17

880.

1137

0.35

490.

0062

0.96

1958

3020

479

4.3

#37*

101

285

950.

336.

62E−0

60.

098

0.13

140.

0011

6.78

880.

0749

0.37

470.

0028

0.69

2052

1321

1714

3.1

#38

122

340

101

0.30

5.13

E−0

60.

080

0.12

550.

0013

5.79

870.

1460

0.33

520.

0077

0.92

1863

3720

3618

8.5

#39

189

540

142

0.26

3.19

E−0

60.

078

0.12

550.

0019

5.79

080.

1221

0.33

460.

0049

0.69

1861

2320

3627

8.6

#40

184

473

269

0.57

3.73

E−0

60.

158

0.13

130.

0007

6.32

510.

0620

0.34

950.

0028

0.81

1932

1321

1510

8.6

#41*

199

472

351

0.74

3.46

E−0

60.

193

0.13

120.

0017

6.64

350.

0893

0.36

740.

0013

0.26

2017

621

1423

4.6

#42*

135

335

127

0.38

4.43

E−0

60.

117

0.12

510.

0009

6.32

930.

1032

0.36

700.

0054

0.90

2015

2520

3012

0.7

#43*

188

459

208

0.45

3.64

E−0

60.

129

0.13

190.

0017

6.89

900.

1266

0.37

930.

0049

0.71

2073

2321

2423

2.4

#44*

228

566

271

0.48

2.59

E−0

60.

153

0.13

200.

0014

6.77

670.

1754

0.37

690.

0088

0.91

2062

4121

2419

2.9

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

8 S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx

Tabl

e1

(Con

tinu

ed)

Sam

ple

Pb*

(ppm

)U

(ppm

)T

h(p

pm)

Th/

U20

4Pb/

206P

b20

8Pb/

206P

b20

7Pb/

206P

b±1

σ20

7Pb/

235U

±1σ

206P

b/23

8U±1

σρ

App

aren

tA

ges

(Ma)

Dis

c(%

)

206P

b/23

8U±1

σ20

7Pb/

206P

b±1

σ

#45*

230

548

267

0.49

2.87

E−0

60.

156

0.13

170.

0017

6.76

590.

1210

0.37

270.

0046

0.69

2042

2221

2023

3.7

#46*

7316

977

0.46

8.04

E−0

60.

136

0.13

390.

0008

7.18

340.

0931

0.38

920.

0045

0.90

2119

2121

4910

1.4

#47

145

370

162

0.44

3.58

E−0

60.

137

0.13

180.

0015

6.42

890.

0827

0.35

390.

0020

0.45

1953

1021

2120

7.9

#48*

193

468

114

0.24

2.67

E−0

50.

076

0.13

180.

0029

7.16

830.

3275

0.39

440.

0158

0.88

2143

7321

2239

−1.0

#49*

211

625

190

0.30

2.06

E−0

50.

087

0.13

190.

0019

6.95

190.

2354

0.38

230.

0117

0.91

2087

5521

2325

1.7

#50*

111

306

970.

324.

29E−0

50.

092

0.13

130.

0029

7.02

910.

2867

0.38

820.

0133

0.84

2114

6121

1639

0.1

#51

114

313

620.

203.

97E−0

50.

071

0.12

570.

0020

5.97

340.

1163

0.34

470.

0040

0.60

1909

1920

3828

6.3

#52

201

573

178

0.31

2.93

E−0

50.

104

0.12

590.

0026

5.81

830.

1714

0.33

520.

0070

0.71

1864

3420

4137

8.7

#53*

282

725

258

0.36

1.98

E−0

50.

104

0.12

630.

0020

6.22

920.

1175

0.35

770.

0038

0.56

1971

1820

4727

3.7

SCC

1B#1

*11

933

090

0.27

4.95

E−0

6–

0.12

170.

0013

5.89

860.

3450

0.35

150.

0202

0.98

1942

9619

8119

2.0

#2*

123

368

830.

234.

39E−0

6–

0.12

170.

0019

5.77

130.

1889

0.34

390.

0099

0.88

1906

4719

8128

3.8

#3*

8023

114

80.

646.

20E−0

6–

0.12

000.

0010

5.83

750.

1012

0.35

270.

0053

0.87

1948

2519

5715

0.5

#452

136

730.

531.

19E−0

5–

0.12

980.

0005

7.15

660.

3326

0.39

970.

0185

1.00

2168

8520

967

−3.4

#555

563

376

0.67

1.02

E−0

5–

0.06

580.

0013

0.92

310.

0268

0.10

180.

0021

0.72

625

1280

042

21.9

#6*

7922

512

20.

547.

05E−0

6–

0.12

000.

0012

6.03

050.

1294

0.36

450.

0069

0.89

2003

3319

5618

−2.4

#7*

6117

760

0.34

1.04

E−0

5–

0.12

090.

0016

5.86

200.

3088

0.35

170.

0179

0.97

1943

8519

6924

1.3

#8*

145

425

117

0.27

3.34

E−0

6–

0.12

160.

0005

5.69

620.

0993

0.33

970.

0058

0.98

1885

2819

807

4.8

#9*

115

346

117

0.34

5.55

E−0

6–

0.12

040.

0007

5.69

630.

1392

0.34

300.

0081

0.97

1901

3919

6311

3.1

#10*

154

463

135

0.29

3.15

E−0

6–

0.12

190.

0009

5.74

350.

0860

0.34

170.

0044

0.85

1895

2119

8414

4.5

#11*

143

424

225

0.53

4.13

E−0

6–

0.12

040.

0007

5.79

240.

1409

0.34

890.

0083

0.97

1929

3919

6310

1.7

#12*

112

325

860.

266.

10E−0

6–

0.12

130.

0007

5.98

610.

2552

0.35

790.

0151

0.99

1972

7119

7611

0.2

SCC

2#1

*37

106

24.3

80.

235.

14E−0

6–

0.12

130.

0008

6.12

940.

1257

0.36

640.

0072

0.95

2012

3419

7611

−1.8

#2*

3610

927

.31

0.25

5.37

E−0

6–

0.12

150.

0007

5.80

410.

0725

0.34

660.

0038

0.88

1918

1819

7810

3.0

#382

227

48.2

30.

212.

55E−0

6–

0.13

190.

0009

6.78

730.

1094

0.37

330.

0055

0.91

2045

2621

2312

3.7

#410

736

330

.69

0.08

2.12

E−0

6–

0.11

900.

0004

5.03

730.

0602

0.30

700.

0035

0.95

1726

1719

416

11.1

#5*

6619

229

.91

0.16

3.05

E−0

6–

0.12

140.

0007

5.94

310.

1193

0.35

510.

0068

0.96

1959

3219

7710

0.9

#6*

3595

19.3

60.

205.

92E−0

6–

0.12

280.

0017

6.26

700.

0937

0.37

020.

0022

0.40

2030

1019

9724

−1.7

#7*

2881

16.5

90.

208.

61E−0

6–

0.12

170.

0008

5.92

900.

1596

0.35

330.

0092

0.97

1951

4419

8112

1.6

#8*

3610

017

.84

0.18

5.44

E−0

6–

0.12

330.

0007

6.26

430.

0721

0.36

860.

0036

0.85

2023

1720

0411

−0.9

#9*

3698

15.8

50.

165.

46E−0

6–

0.12

360.

0009

6.30

460.

0935

0.37

000.

0048

0.88

2029

2320

0912

−1.0

#10*

3799

43.5

70.

446.

15E−0

6–

0.12

330.

0014

6.28

310.

1439

0.36

960.

0073

0.86

2027

3420

0521

−1.1

#11

5417

547

.22

0.27

4.25

E−0

6–

0.12

650.

0008

5.72

640.

2653

0.32

830.

0151

0.99

1830

7320

5011

10.7

#12*

5114

125

.59

0.18

4.31

E−0

6–

0.12

200.

0008

6.08

190.

1097

0.36

140.

0061

0.94

1989

2919

8611

−0.1

#13

3589

40.1

30.

455.

28E−0

6–

0.13

750.

0006

7.60

260.

0691

0.40

090.

0032

0.89

2173

1521

967

1.0

#14*

5919

339

.36

0.20

4.51

E−0

6–

0.12

280.

0008

6.08

070.

0679

0.35

920.

0035

0.87

1978

1719

9711

1.0

#15*

2883

21.8

20.

269.

70E−0

6–

0.12

220.

0011

6.02

800.

1212

0.35

770.

0065

0.90

1971

3119

8916

0.9

#16*

4914

417

.45

0.12

5.48

E−0

6–

0.12

320.

0012

6.14

140.

3689

0.36

150.

0205

0.94

1989

9620

0318

0.7

#17*

1438

5.61

0.15

1.32

E−0

5–

0.12

330.

0014

6.13

710.

0988

0.36

110.

0036

0.63

1987

1720

0420

0.8

#18*

4111

821

.83

0.19

4.91

E−0

6–

0.12

230.

0003

6.08

170.

1179

0.36

060.

0069

0.99

1985

3319

905

0.3

#19*

130

373

79.5

60.

211.

77E−0

6–

0.12

190.

0005

6.03

120.

0604

0.36

180.

0033

0.90

1990

1519

858

−0.3

#20*

3292

21.6

30.

238.

13E−0

6–

0.12

360.

0007

6.05

030.

2258

0.35

510.

0131

0.99

1959

6220

0810

2.5

#21

5916

224

.23

0.15

3.47

E−0

6–

0.12

820.

0007

6.70

440.

0816

0.37

920.

0041

0.88

2073

1920

7410

0.1

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx 9

SCC

5#1

4713

474

0.55

1.15

E−0

5–

0.12

830.

0006

5.82

960.

2949

0.32

950.

0156

0.94

1836

7520

758

11.5

#262

188

168

0.89

8.33

E−0

6–

0.12

670.

0006

5.92

250.

1740

0.33

890.

0099

0.99

1881

4820

538

8.4

#347

171

129

0.76

1.16

E−0

5–

0.12

190.

0015

4.92

530.

2436

0.29

300.

0132

0.91

1657

6519

8422

16.5

#43

311

0.04

2.44

E−0

4–

0.06

150.

0009

0.84

510.

0713

0.09

960.

0046

0.94

612

2765

830

7.1

#5*

4412

484

0.68

1.14

E−0

5–

0.13

000.

0010

6.59

890.

1624

0.36

800.

0081

0.90

2020

3820

9914

3.7

#6*

4211

578

0.68

1.48

E−0

5–

0.12

950.

0005

6.67

900.

3127

0.37

410.

0173

0.99

2048

8120

916

2.0

#712

034

138

31.

128.

01E−0

6–

0.12

910.

0007

6.28

200.

3132

0.35

290.

0172

0.98

1949

8120

8610

6.6

#869

291

295

1.01

1.32

E−0

5–

0.12

190.

0004

4.34

120.

2316

0.25

830.

0136

0.98

1481

6919

846

25.4

#9*

3391

580.

632.

38E−0

5–

0.12

990.

0005

6.53

890.

1601

0.36

510.

0088

0.99

2006

4220

977

4.3

#10

6220

515

60.

761.

51E−0

5–

0.12

350.

0014

5.30

410.

2700

0.31

160.

0155

0.98

1748

7620

0720

12.9

#11

5532

612

50.

391.

40E−0

5–

0.10

040.

0008

2.53

160.

1016

0.18

290.

0072

0.98

1083

3916

3115

33.6

#12*

6617

399

0.57

1.93

E−0

5–

0.12

990.

0004

6.83

230.

3240

0.38

140.

0179

0.99

2083

8320

976

0.7

#13

3310

364

0.62

2.57

E−0

5–

0.12

940.

0011

6.34

560.

1257

0.35

570.

0065

0.92

1962

3120

9015

6.1

#14*

7018

614

60.

781.

30E−0

5–

0.13

040.

0006

7.09

250.

3184

0.39

450.

0174

0.98

2144

8021

038

−1.9

#15

4613

684

0.62

2.26

E−0

5–

0.12

460.

0015

5.51

760.

1346

0.32

450.

0065

0.83

1812

3220

2321

10.4

#16

5923

198

0.42

1.59

E−0

5–

0.11

960.

0012

4.38

370.

2096

0.26

580.

0124

0.98

1519

6319

5018

22.1

#17

6216

311

80.

721.

11E−0

5–

0.12

780.

0003

6.44

290.

3484

0.36

570.

0196

0.99

2009

9220

684

2.8

#18*

6318

312

50.

681.

45E−0

5–

0.13

000.

0005

6.67

700.

3456

0.37

250.

0188

0.92

2041

8820

986

2.7

#19

2834

820

50.

593.

09E−0

5–

0.07

620.

0024

1.17

060.

2002

0.11

140.

0077

0.98

681

4511

0161

38.2

#20*

5214

912

70.

851.

48E−0

5–

0.13

050.

0010

6.91

600.

1202

0.38

430.

0058

0.81

2096

2721

0513

0.4

#21*

3610

286

0.85

2.31

E−0

5–

0.12

970.

0006

6.77

630.

2768

0.37

900.

0148

0.96

2072

6920

949

1.0

#22

6722

112

10.

551.

21E−0

5–

0.12

430.

0004

5.50

190.

1117

0.32

090.

0065

0.99

1794

3120

206

11.2

SCC

9#1

4522

675

0.33

2.21

E−0

50.

136

0.08

280.

0014

2.15

170.

0465

0.18

850.

0026

0.65

1113

1412

6432

11.9

#253

309

280.

091.

57E−0

50.

096

0.07

890.

0011

1.83

760.

0329

0.16

880.

0024

0.80

1006

1311

7127

14.1

#362

150

110

0.73

1.47

E−0

50.

219

0.11

910.

0002

5.91

870.

2116

0.36

030.

0117

0.91

1984

5519

434

−2.1

#474

556

365

0.66

1.04

E−0

50.

208

0.06

460.

0001

1.10

370.

0340

0.12

380.

0038

1.00

753

2276

35

1.3

#583

566

162

0.29

8.74

E−0

60.

142

0.07

980.

0012

1.55

530.

0482

0.14

140.

0038

0.86

853

2111

9131

28.4

#621

104

780.

743.

12E−0

50.

239

0.07

860.

0011

1.98

760.

0737

0.18

350.

0063

0.92

1086

3411

6128

6.5

#734

9252

0.57

2.21

E−0

50.

198

0.13

220.

0018

5.94

140.

2243

0.32

590.

0115

0.93

1818

5621

2824

14.5

#829

276

429

80.

394.

39E−0

60.

117

0.12

340.

0002

6.21

610.

2047

0.36

530.

0105

0.94

2007

4920

063

−0.1

#929

229

720.

311.

74E−0

50.

089

0.06

580.

0003

1.13

280.

0484

0.12

490.

0053

0.99

759

3079

911

5.0

#10

5613

960

0.44

1.47

E−0

50.

110

0.12

730.

0009

6.71

260.

2754

0.38

260.

0154

0.98

2088

7220

6013

−1.3

#11

1811

587

0.75

3.09

E−0

50.

265

0.06

690.

0004

1.20

970.

0333

0.13

110.

0035

0.98

794

2083

512

4.9

#12

2014

92

0.01

3.40

E−0

50.

261

0.06

780.

0006

1.09

540.

0308

0.11

710.

0032

0.96

714

1886

317

17.3

#13

3826

771

0.27

1.94

E−0

50.

098

0.07

190.

0007

1.38

310.

0179

0.13

940.

0011

0.63

842

698

421

14.5

#14

2722

016

70.

763.

00E−0

50.

225

0.06

770.

0010

1.10

120.

0319

0.11

800.

0032

0.93

719

1885

929

16.3

#15

2216

210

90.

674.

12E−0

50.

203

0.10

860.

0016

1.76

730.

0339

0.11

810.

0015

0.65

719

817

7627

59.5

#16

1613

569

0.51

3.52

E−0

50.

112

0.06

430.

0010

1.02

840.

0266

0.11

590.

0024

0.80

707

1475

233

6.0

#17

6418

159

0.32

1.40

E−0

50.

129

0.12

020.

0004

5.77

760.

2325

0.34

870.

0131

0.93

1928

6219

596

1.6

#18

5826

513

60.

511.

17E−0

50.

160

0.08

030.

0006

2.14

970.

0673

0.19

430.

0059

0.97

1144

3212

0316

4.9

#19

1399

650.

665.

95E−0

50.

203

0.06

470.

0020

1.06

370.

0546

0.11

930.

0048

0.79

727

2876

367

4.8

#20

131

394

670.

175.

95E−0

60.

087

0.11

830.

0003

5.08

700.

1057

0.31

180.

0064

0.99

1750

3119

315

9.4

#21

4334

910

00.

291.

51E−0

50.

123

0.07

180.

0005

1.10

830.

0480

0.11

200.

0048

0.99

684

2898

014

30.2

#22

1375

350.

464.

34E−0

50.

201

0.06

770.

0005

1.32

350.

0516

0.14

180.

0054

0.98

855

3086

017

0.6

#23

1490

390.

433.

41E−0

50.

145

0.07

100.

0010

1.38

020.

0252

0.14

110.

0016

0.62

851

995

629

11.1

#24

2613

145

0.34

2.61

E−0

50.

342

0.12

200.

0010

2.54

330.

0257

0.15

120.

0009

0.62

908

519

8614

54.3

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

10 S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx

Tabl

e1

(Con

tinu

ed)

Sam

ple

Pb*

(ppm

)U

(ppm

)T

h(p

pm)

Th/

U20

4Pb/

206P

b20

8Pb/

206P

b20

7Pb/

206P

b±1

σ20

7Pb/

235U

±1σ

206P

b/23

8U±1

σρ

App

aren

tA

ges

(Ma)

Dis

c(%

)

206P

b/23

8U±1

σ20

7Pb/

206P

b±1

σ

#25

4734

077

0.23

1.43

E−0

50.

139

0.06

690.

0012

1.17

660.

0228

0.12

750.

0009

0.35

774

583

538

7.4

#26

2718

769

0.37

2.23

E−0

50.

174

0.07

800.

0002

1.46

170.

0354

0.13

590.

0033

1.00

821

1911

474

28.4

#27

2820

120

31.

012.

70E−0

50.

353

0.06

170.

0005

0.93

210.

0143

0.10

950.

0014

0.86

670

866

517

−3.3

#28

2214

942

0.28

2.39

E−0

50.

119

0.06

590.

0014

1.29

070.

0294

0.14

200.

0012

0.37

856

780

444

−6.5

#29

2112

272

0.59

3.85

E−0

50.

180

0.07

340.

0007

1.56

320.

0481

0.15

450.

0046

0.96

926

2610

2519

9.6

#30

9172

517

10.

247.

39E−0

60.

088

0.07

030.

0004

1.24

210.

0274

0.12

820.

0027

0.97

778

1693

611

17.0

#31

6330

121

40.

711.

17E−0

50.

238

0.07

800.

0005

2.03

700.

0388

0.18

940.

0034

0.94

1118

1811

4713

2.5

#32

8744

233

30.

759.

36E−0

60.

215

0.07

870.

0004

1.91

940.

0303

0.17

680.

0026

0.93

1049

1411

6611

10.0

#33

1712

870

0.55

3.21

E−0

50.

178

0.07

440.

0016

1.23

130.

0417

0.12

010.

0031

0.77

731

1810

5244

30.5

#34

7416

011

20.

701.

16E−0

50.

203

0.13

870.

0006

7.54

960.

1135

0.39

470.

0057

0.96

2145

2622

117

3.0

#35

3624

011

00.

461.

56E−0

50.

173

0.07

410.

0006

1.43

890.

0325

0.14

080.

0029

0.93

849

1710

4517

18.8

#36

4431

211

20.

361.

90E−0

50.

138

0.06

820.

0005

1.28

660.

0258

0.13

690.

0026

0.93

827

1487

415

5.4

#37

121

176

740.

423.

78E−0

60.

127

0.27

210.

0020

20.9

677

0.70

870.

5589

0.01

840.

9828

6276

3318

1113

.7#3

844

333

156

0.47

1.79

E−0

50.

207

0.06

850.

0009

1.13

440.

0242

0.12

020.

0020

0.76

731

1188

328

17.1

SCC

12#1

*25

242

130.

052.

16E−0

5–

0.06

250.

0008

0.89

130.

0227

0.10

350.

0023

0.87

635

1369

026

7.9

#2*

1213

327

42.

064.

15E−0

5–

0.06

190.

0006

0.83

320.

0305

0.09

760.

0034

0.96

600

2067

122

10.5

#3*

332

260.

801.

42E−0

4–

0.06

090.

0018

0.89

680.

0314

0.10

670.

0020

0.55

654

1263

762

−2.6

#4*

442

601.

441.

35E−0

4–

0.06

010.

0010

0.87

200.

0214

0.10

530.

0018

0.71

645

1160

537

−6.6

#5*

6881

767

0.08

1.10

E−0

5–

0.06

020.

0004

0.82

690.

0673

0.09

960.

0081

1.00

612

4761

115

−0.2

#6*

2021

830

71.

411.

77E−0

5–

0.06

040.

0012

0.81

450.

0272

0.09

780.

0026

0.81

601

1661

941

2.8

#710

131

513

0.04

5.88

E−0

6–

0.11

900.

0008

5.35

090.

1082

0.32

610.

0062

0.94

1819

3019

4212

6.3

#8*

4748

452

0.11

2.34

E−0

5–

0.06

030.

0006

0.82

470.

0275

0.09

920.

0031

0.95

610

1861

323

0.5

#957

185

180.

101.

22E−0

5–

0.12

250.

0010

5.43

070.

0908

0.32

140.

0047

0.88

1797

2319

9414

9.9

#10

137

441

260.

065.

25E−0

6–

0.12

160.

0010

5.37

390.

0755

0.32

040.

0037

0.81

1792

1819

8015

9.5

#11

125

360

280.

085.

56E−0

6–

0.12

290.

0005

5.79

220.

2003

0.34

180.

0117

0.99

1895

5619

997

5.2

#12

117

313

130.

044.

51E−0

6–

0.12

520.

0011

6.40

450.

0931

0.37

100.

0044

0.81

2034

2120

3215

−0.1

#13*

659

200.

341.

07E−0

4–

0.06

070.

0007

0.85

850.

0278

0.10

260.

0031

0.93

630

1862

825

−0.3

#14

119

355

120.

036.

08E−0

6–

0.12

370.

0006

5.75

740.

0909

0.33

760.

0051

0.96

1875

2420

108

6.7

Err

ors

are

1σan

dre

fer

tola

stdi

gits

.The

righ

than

dco

lum

nis

perc

enta

gedi

scor

danc

eas

sum

ing

rece

ntle

adlo

sses

.For

each

stud

ied

rock

,ana

lyse

sla

belle

d*

wer

ein

clud

edin

the

age

calc

ulat

ion,

whe

reas

othe

rsw

ere

omitt

ed.

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx 11

Fig. 3. SEM images of selected dated zircon grains in orthogneiss samples showing position of the LA-ICP-MS spot and corresponding age (errosquoted at the 1σ level). Sample SCC1A (mafic layer of banded orthogneiss). (A) Oscillatory-zoned zircon with rim overgrowth at the right side.(B) Rounded grain with irregular zoning. Sample SCC1B (felsic layer of banded orthogneiss). (C) Fragment of zircon grain containing largeelliptical core with coarse oscillatory zoning surrounded by overgrowth rim with thin oscillatory zoning. (D). Euhedral zircon grain with thinlyoscillatory-zoned overgrowth at upper and right side. Sample SCC2 (granitic orthogneiss). (E) Fragment of large, homogeneous euhedral grain withoscillatory-zoned core. (F) Grain with broadly elliptical form that yielded the oldest age of all analyzed zircons in orthogneiss samples.

elongated grains preserve subhedral shapes typical of377

magmatic zircon, suggesting transport over short dis-378

tances (Fig. 4B).379

Two zircon populations are observed in sample380

SCC12 (migmatitic paragneiss leucosome). One con-381

tains elongated (aspect ratio up to 4:1), subhedral to382

euhedral zircon grains with faint oscillatory zoning and383

thin or absent overgrowth rims (Fig. 4C). The other con-384

sists of rounded (Fig. 4D) to slightly elongated grains385

with overgrowths that may truncate internal oscillatory386

zoning. Inherited cores are present in some grains of the387

latter population.388

Finally, the deformed granodiorite sample SCC5 from389

the Alcantil pluton contains a homogeneous population390

of small (∼100 �m long), subhedral to anhedral, slightly391

elongated grains.

6. U–Pb zircon data 392

Table 1 shows the results of analytical data for the 393

studied samples. In the following, ages of zircons are 394

expressed in terms of either their 207Pb/206Pb ratios 395

(grains older than 1 Ga) or their 206Pb/238U ratios (grains 396

with Neoproterozoic ages). Errors for single analysis and 397

mean ages are quoted at the 2σ level. 398

6.1. Sample SCC1 (1A and 1B) 399

Analyses of zircons from sample SCC1A (mafic layer 400

of banded orthogneiss) fall into two age groups that 401

define two Pb loss trends in the concordia diagram 402

(Fig. 5a). For each population, analyses showing dis- 403

cordance smaller than 5% can be pooled together to 404

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

12 S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx

Fig. 4. SEM images of selected zircon grains in sample SCC9 (pelitic gneiss). (A) Rounded zircon grain with overgrowth rims at upper left andlower right sides truncating oscillatory-zoned core. (B) Elongated zircon grain with no apparent zoning. SEM images of selected zircon grains insample SSC12 (leucosome from migmatitic paragneiss) showing position of the LA-ICP-MS spot and corresponding age (errors quoted at the 1σ

level). (C) Subhedral grain with thin overgrowth rim. (D) Rounded grain with thin overgrowth rims at the left and right sides.

define 207Pb/206Pb weighted means of 2125 ± 7 and405

2044 ± 5 Ma (Fig. 5b). The clear distinction of these406

two age groups strongly suggests that they correspond407

to two different events. The lack of inherited cores in408

most zircon grains suggests that the group with the older409

age represents igneous crystallization of the protolith.410

This is consistent with well preserved oscillatory zon-411

ing in the grains where ca. 2125 Ma ages were obtained412

(Fig. 3A). Truncation of oscillatory zoning, recrystal-413

lized zones or regions with fading oscillatory zoning414

observed in some grains (Figs. 3A and B) are typi-415

cal of magmatic zircons modified by high-grade meta-416

morphism (e.g. Corfu et al., 2003). The youngest age417

of ca. 2044 Ma is thus interpreted as representing the418

Transamazonian metamorphic event. Because there is419

no discernable difference in the Th/U ratios between zir-420

cons of the two age groups (Table 1), local redistribution421

by recrystallization processes without new metamorphic422

growth is the most likely explanation for the igneous-like423

high Th/U (>0.1; Williams and Claesson, 1987) ratio of424

the zircon domains with ca. 2044 Ma ages. Overgrowth425

rims that clearly represent new zircon growth revealed426

to be too thin to be accurately dated Analyses showing427

high discordance indicate Pb losses that could be related428

either to a young (e.g. Brasiliano) event or to recent,429

zero age, disturbances, or even a combination of both430

(Fig. 5a).431

Analyses of zircons from the leucocratic band SCC1B 432

display a very different distribution when compared with 433

sample SCC1A. Most grains plot close to Concordia 434

(see Fig. 6a) at about 1.98 Ga, and, together with anal- 435

ysis #5 (Table 1), define a discordia line with upper 436

and lower intercepts of 1985 ± 12 and 578 ± 37 Ma 437

(MSWD = 1.2). The upper intercept is well constrained 438

by concordant analyses and ten highly concordant grains 439

give a 207Pb/206Pb weighted mean of 1972 ± 8 Ma 440

(Fig. 6b), in agreement with the upper intercept age. 441

The Th/U ratio of these grains (ranging from 0.2 to 0.7; 442

Table 1) is typical of magmatic zircons (Williams and 443

Claesson, 1987), which suggests that the 1972 Ma age 444

corresponds to crystallization of the zircons. Since these 445

analyses were obtained from large rounded cores sur- 446

rounded by a thin oscillatory zoned rim (see Fig. 3C), it 447

is concluded that the age of 1972 Ma corresponds to that 448

of the source rocks that underwent anatexis to produce 449

the leucocratic band. It is probably noteworthy that this 450

age is similar to the U–Pb age of 1974 Ma obtained by Sa 451

et al. (2002) from an orthogneiss some kilometers to the 452

southeast (Fig. 2), suggesting that the orthogneiss was 453

the main source component for the melt. One grain is 454

concordant at 2096 ± 14 Ma, indicating the source also 455

included a ca. 2.1 Ga old component. One euhedral zir- 456

con grain (see Fig. 3D) yielded a 206Pb/238U apparent age 457

of 625 ± 24 Ma (Fig. 6a). The high Th/U ratio (0.67) of 458

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx 13

Fig. 5. (a) U–Pb concordia diagram for zircons from sample SCC1A(mafic layer of banded orthogneiss). (b) Zoom showing the twoweighted mean ages of Paeloproterozoic zircons.

this grain (Table 2), its euhedral shape and the magmatic459

oscillatory zoning of overgrowths (Fig. 3D) are inter-460

preted as indicating growth from a magma. Therefore,461

this age most likely corresponds to the crystallization of462

the leucocratic band, implying that the mesoscopic struc-463

ture of the banded orthogneiss is a late Neoproterozoic464

feature, resulting from intrusion of syntectonic granitic465

melts in a preexisting protolith.466

6.2. Sample SCC2467

Sixteen near concordant analyses of zircon grains468

from the orthogneiss sample SCC2 yielded a well-469

constrained 207Pb/206Pb weighted mean age of470

1991 ± 5 Ma (Fig. 7). Some of these grains still preserve471

euhedral shapes (Fig. 3E), which together with high472

Th/U ratios (see Table 1) indicates crystallization from473

a magma. The 1991 ± 5 Ma age is thus interpreted as474

Fig. 6. (a) Concordia diagram showing discordia line for zircons fromsample SCC1B (felsic layer of banded orthogneiss). (b) Zoom showingthe 206Pb/207Pb weighted mean age of concordant Paleoproterozoiczircons.

corresponding to crystallization of the granitic pro- 475

tolith. Three other grains yielded older ages indicating 476

inherited source components of 2196 ± 14 (Fig. 3F), 477

2123 ± 24 and 2074 ± 20 Ma. The two latter roughly 478

correspond to the two mean ages obtained in sample 479

SCC1A. These results are interpreted as indicating 480

that the granitic orthogneiss is a late-Transamazonian 481

intrusion containing a small proportion of inherited 482

zircon grains. 483

6.3. Sample SCC9 484

U–Pb data for detrital zircons from paragneiss sam- 485

ple SCC9 exhibit ages ranging from more than 3320 to 486

ca. 665 Ma (Table 1). Data is reported in the concor- 487

dia diagram (Fig. 8a) and in a cumulative probability 488

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

14 S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx

Fig. 7. U–Pb concordia diagram for zircons from sample SCC2(granitic orthogneiss).

plot (Fig. 8b). Most analysis fall on or near the con-489

cordia curve and those with less than 5% discordance490

show age peaks at ca. 2220, 2060–1940, 1200–1150,491

860–760 and 665 ± 34 Ma. Several discordant grains492

have ages between 1100 and 900 Ma and a small peak493

is observed around 1690 Ma. Grains from all age groups494

have high Th/U ratios. Together with the oscillatory zon-495

ing observed in most grains, this indicates provenance of496

grains from igneous protoliths (Williams and Claesson,497

1987), which constrain the deposition of the supracrustal498

sequence to be younger than the youngest grain (ca.499

665 Ma) in the zircon population.500

6.4. Sample SCC12501

On a concordia plot (Fig. 9A), analyses of zircons502

from the leucosome of a paragneiss, except for one (#7;503

Table 1) define a discordia line (MSWD = 1.1) with upper504

and lower intercepts at 2041 ± 15 and 626 ± 15 Ma,505

respectively. Paleoproterozoic ages were obtained from506

rounded zircons grains (Fig. 4D) that have low Th/U507

ratios (0.04–0.1; Table 5), typical of metamorphic zir-508

cons. These grains are interpreted as inherited from509

a protolith metamorphosed at ca. 2040 Ma. This is in510

agreement with analysis #12 (Table 1), which is concor-511

dant at 2032 ± 30 Ma and reinforces the interpretation of512

the data for sample SCC1A that the peak of Transamazo-513

nian metamorphism occurred around this time. Zircons514

with Neoproterozoic ages plot near the concordia and515

have a 206Pb/238U weighted mean age of 632 ± 17 Ma516

(Fig. 9b) overlapping the lower intercept of the discordia517

line. These grains yield both high and low Th/U ratios518

(Table 5) typical of magmatic and metamorphic zircons,519

respectively. The high Th/U ratios of some grains (up520

Fig. 8. (a) U–Pb concordia diagram for zircons from sample SCC9(pelitic gneiss). Inset: zoom at the Neoproterzoic showing the U–Pbage of the youngest grain in the zircon population. Green, concor-dant grains; red, discordant grains. (b) Histogram plot for 206Pb/207Pbages of the analyzed zircons. Green, concordant grains; red, discor-dant grains. (For interpretation of the references to colour in this figurelegend, the reader is referred to the web version of the article.)

to 2.06) suggest that the laser beam struck a Th-rich 521

inclusion, whereas the euhedral shape (Fig. 4C) and low 522

Th/U ratio of other grains is typical of zircons grown 523

under high grade conditions. The most precise lower 524

intercept age of 626 ± 15 Ma is therefore interpreted as 525

dating crystallization of the leucosome, and is thus taken 526

as our best estimate for the high-grade metamorphism of 527

the supracrustal sequence during the Brasiliano orogeny. 528

6.5. Sample SCC5 529

Analyses of zircon from the Alcantil pluton (SCC5; 530

Table 1) define a discordia line (Fig. 10a) with upper 531

and lower intercepts of 2103 ± 11 and 619 ± 36 Ma, 532

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx 15

Fig. 9. (a) Concordia diagram showing discordia line for zircons fromsample SCC12 (leucosome of migmatitic paragneiss). (b) Zoom show-ing the 206Pb/238U weighted mean age of concordant Neoproterozoiczircons.

respectively. The lower intercept is constrained by anal-533

ysis #4 (Table 1), which yielded a 206Pb/238U age of534

612 ± 54 Ma and a low Th/U ratio of 0.04, typical of535

growth in the solid state. This indicates that the gran-536

odiorite was metamorphosed at 619 ± 36 Ma, the more537

precise lower intercept of the discordia line. Most grains538

have older, mainly Paleoproterozoic ages, and a batch of539

eight concordant analyses yields a 207Pb/206Pb weighted540

mean age of 2097 ± 5 Ma (Fig. 10b). One grain (#17;541

Table 1) has a low discordance degree, but yields a sig-542

nificantly younger age (2068 ± 8 Ma) suggesting it has543

undergone disturbances, possibly during the ca. 2044 Ma544

Transamazonian event.545

The above results could be interpreted in two ways.546

First, that intrusion occurred during the Brasiliano547

orogeny and that temperature remained high enough548

after emplacement to allow growth of metamorphic zir-549

Fig. 10. (a) Concordia diagram showing discordia line for zircons fromsample SCC5 (Alcantil pluton). (b) Zoom showing the 206Pb/207Pbweighted mean age of concordant Paleoproterozoic zircons.

con. In this hypothesis, the zircon population would con- 550

sist almost entirely of xenocrystic grains inherited from a 551

homogeneous Paleoproterozoic source. Because this is a 552

rather unusual situation for granitic magmas, the second 553

possibility, that emplacement took place at 2097 ± 5 Ma 554

during the Transamazonian orogeny, is considered more 555

likely. The emplacement age of ca. 2100 Ma is younger 556

but comparable to that of the older age found in the 557

orthogneiss sample SCC1A (ca. 2125 Ma), suggesting 558

that the Alcantil pluton could represent less strained por- 559

tions of basement orthogneisses in the region. 560

7. Discussion 561

7.1. Tectonothermal evolution of the study area 562

This work clearly reveals that two main tectonother- 563

mal events affected the study area, one in the Pale- 564

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

16 S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx

oproterozoic (Transamazonian orogeny) and the other565

at the end of the Neoproterozoic (Brasiliano orogeny).566

The age pattern of sample SCC1A (mafic layer of567

banded orthogneiss) allows placing tight constraints568

on the events associated with the Transamazonian569

orogeny. The lack of inherited cores, as revealed by BSE570

images, suggests that the age cluster of 2125 ± 7 Ma571

corresponds to the crystallization age of the banded572

orthogneiss protolith. Six whole-rock samples of banded573

orthogneiss display geochemical characteristics simi-574

lar to calc-alkaline magmas, suggesting generation in575

a volcanic arc setting (Sa et al., 2002). Considering576

this, the age reported here could correspond to juve-577

nile crustal accretion. The younger age (2044 ± 5 Ma)578

found in sample SCC1A is associated with metamor-579

phic features observed in the analyzed zircon grains580

and is interpreted as dating the peak of Transamazo-581

nian metamorphism, possibly marking a major colli-582

sional event. This is corroborated by the occurrence583

of metamorphic zircons with this age in the paragneiss584

leucosome sample SCC12. The age of 1992 ± 7 Ma of585

sample SCC2 (granitic orthogneiss), and the mean age586

of 1972 ± 8 Ma for xenocrystic zircons from sample587

SCC1B (felsic layer of banded orthogneiss) are inter-588

preted as reflecting a stage of late to post-orogenic589

magmatism.590

The age pattern of the paragneiss sample SCC9591

reveals provenance of its protolith mainly from Paleo-592

proterozoic and mid-Neoproterozoic sources, and con-593

strains the deposition of the supracrustal sequence to594

be younger than 665 Ma (Fig. 8a and b). The Paleo-595

proterozoic ages correspond closely to the Transama-596

zonian event and may represent derivation of detrital597

grains from nearby orthogneisses, although more dis-598

tal sources cannot be excluded. Proximal sources with599

Archean ages that could provide the oldest analyzed600

zircon grain (>3320 Ma) have not yet been directly601

dated in the central domain, but their existence is602

suggested by Sm–Nd model ages of Paleoproterozoic603

orthogneisses (Van Schmus et al., 1995; Brito Neves604

et al., 2001b). However, even the oldest Sm–Nd ages605

are generally younger than 3300 Ma, which favors a606

more distal source. This source may be located either607

within an Archean nucleus identified in the northeast-608

ernmost part of the Borborema Province (Dantas et609

al., 1998, 2004), ∼250 km to the north of the study610

area, or within the Sao Francisco craton. Grains with611

late Paleoproterozoic ages of ca. 1690 Ma may have612

their source in augen gneisses/meta-anorthositic com-613

plexes (Accioly et al., 2000), which occur to the east614

of the study area (Fig. 2A). The abundance of zir-615

con grains with ages in the interval 1200–1150 Ma is616

intriguing, as rocks with these ages have not yet been 617

identified anywhere in the Borborema Province. It is 618

tentatively attributed to late Mesoproterozoic extension 619

and intraplate magmatism preceding the more exten- 620

sive Cariris Velhos rifting event. Felsic volcanic rocks 621

and granites related to the Cariris Velhos event (now 622

metavolcanics and orthogneisses) in the Alto Pajeu belt 623

constitute the most likely source for zircons with ca. 624

950–1050 Ma ages. A source for the abundant zircon 625

grains with mid-Neoproterozoic ages might be related 626

to magmatic episodes preceding and coeval with basin 627

formation. 628

The Neoproterozoic age of one magmatic zircon in 629

the felsic layer of banded orthogneiss (625 ± 24 Ma), 630

the maximum deposition age of the Surubim sequence 631

(665 Ma), the crystallization age of the leucosome from a 632

migmatitic paragneiss (626 ± 15 Ma), and the metamor- 633

phic age of the Alcantil pluton (619 ± 36 Ma) show that 634

high-temperature metamorphism was coeval with forma- 635

tion of a flat-lying foliation in basement and supracrustal 636

rocks. This metamorphism is clearly separated from 637

transcurrent shear zone development because the oldest 638

plutons deformed in the magmatic stage by strike-slip 639

shearing are younger than 592 Ma (Guimaraes and Da 640

Silva Filho, 1998; Neves et al., 2004). Although the 641

importance of the Transamazonian event in the study 642

area is obvious, fieldwork (Neves et al., 2000, 2005) and 643

the geochronological results from this study indicate that 644

the dominant mesoscopic ductile fabric in Paleoprotero- 645

zoic orthogneisses was produced during the Brasiliano 646

orogeny. 647

7.2. Regional correlations 648

7.2.1. Basement gneisses 649

The two age groups in sample SCC1A are similar 650

to those found in samples from the eastern portion of 651

the Sao Francisco craton, where recent SHRIMP U–Pb 652

data indicate magmatic crystallization at 2.2–2.1 Ga and 653

high-grade metamorphism at 2.08–2.05 Ga (Silva et al., 654

2002). In the Borborema Province, most zircon grains 655

that yielded Paleoproterozoic U–Pb ages were analyzed 656

by conventional methods (see Brito Neves et al., 2000, 657

and Neves, 2003, for a review of available data). The 658

spread of ages, mainly from 2.25 to 2.0 Ga, may in part 659

reflect mixed ages resulting from a combination of inher- 660

ited zircon cores, primary igneous zircon crystalliza- 661

tion, and metamorphic recrystallization. Nevertheless, 662

the existing data point out to an important period of crust 663

generation at 2.2–2.1 Ga, followed by deformation and 664

metamorphism, and then by intrusion of late- to post- 665

tectonic plutons. 666

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx 17

7.2.2. Supracrustal sequences667

The maximum deposition age of the Surubim com-668

plex is similar to that of the Cachoeirinha Group in the669

Cachoeirinha belt (Kozuch, 2003; Medeiros, 2004), and670

its zircon age pattern is remarkably similar to that found671

(Van Schmus et al., 2003) in the Serido belt (Fig. 1B).672

Several observations also suggest that the Surubim com-673

plex and the Sertania complex in the Alto Moxoto belt are674

correlated. Both complexes consist of the same rock type675

association, have similar metamorphic grade (although676

migmatization is more frequent in the Sertania complex),677

and display comparable carbon isotope signature in mar-678

bles (Santos et al., 2002). Although eight zircon grains679

from two samples of the Sertania complex had yielded680

U–Pb SHRIMP ages around 2.0 Ga and interpreted as681

indicating Paleoproterozoic sedimentation (Santos et al.,682

2004a), this only represents the maximum age of depo-683

sition.684

The probable connection between supracrustal suc-685

cessions in the East Pernambuco, Alto Moxoto,686

Cachoeirinha and Serido belts are consistent with depo-687

sition in a regionally extensive basin formed dur-688

ing broad-scale lithospheric extension. The small time689

span between deposition and deformation can explain690

the overall high-temperature metamorphism, as high691

thermal gradients resulting from crustal thinning can692

be maintained in the subsequent contractional phase693

(Thompson, 1989; De Yoreo et al., 1991; Thompson et694

al., 2001).695

7.2.3. Tectonothermal events696

Evidence for a metamorphic event in the early Neo-697

proterozoic was not found in this study and in all studies698

conducted so far in the central domain (Van Schmus699

et al., 1995; Leite et al., 2000b; Brito Neves et al.,700

2001a,b; Kozuch, 2003; Medeiros, 2004). Contractional701

deformation of this age during the proposed Cariris702

Velhos orogeny (Brito Neves et al., 1995) has been703

based on the interpretation that the early Neoprotero-704

zoic metaigneous and metasedimentary succession of705

the Alto Pajeu belt represents a subduction arc assem-706

blage intruded by syncollisional granites (Santos and707

Medeiros, 1999; Kozuch, 2003). However, the same708

top-to-the-WNW/NW tectonic transport is found in the709

supracrustal succession and augen gneisses of the Alto710

Pajeu belt (Medeiros, 2004), and in the Surubim com-711

plex (Neves et al., 2005; this study), the Sertania com-712

plex (Santos et al., 2004a), and the Cachoeirinha Group713

(Medeiros, 2004). Identical kinematics in these four714

belts strongly indicates deformation during the Brasil-715

iano orogeny. Furthermore, the geochemical character-716

istics of the metavolcanic and metaplutonic rocks of the717

Alto Pajeu belt are typical of intraplate magmas, not of 718

subduction-related ones (Bittar and Campos Neto, 2000; 719

Bittar et al., 2001; Neves, 2003; Guimaraes and Brito 720

Neves, 2004). These observations seriously cast in doubt 721

the existence of the Cariris Velhos event as an important 722

orogeny. 723

The Neoproterozoic age of deposition of supracrustal 724

sequences and a common flat-lying foliation in basement 725

gneiss and metasedimentary belts is observed throughout 726

the Borborema Province (Caby and Arthaud, 1986; Caby 727

et al., 1995; Neves et al., 2000, 2005). It is no longer 728

possible to claim that the Brasiliano orogeny was only 729

responsible for granite intrusion and strike-slip shearing, 730

as still advocated in several recent studies (Jardim de Sa 731

et al., 1995; Sa et al., 2002; Araujo et al., 2003; Santos et 732

al., 2004b). The present architecture of the Borborema 733

Province is a product of the Brasiliano orogeny, although 734

it is clear the importance of the Transamazonian orogeny 735

as a crust-forming event. 736

7.3. Implications for western Gondwana 737

The results of this study and the recent synthesis 738

by Ferre et al. (2002) and Toteu et al. (2004) on the 739

geodynamic evolution of Nigeria and Cameroon, respec- 740

tively, strengthen the earlier suggestion (Neves, 2003; 741

Neves et al., 2004) that these belts shared a common 742

evolution throughout most of the Proterozoic. Common 743

features include (1) extensive (ca. 2.1 Ga) Paleoprotero- 744

zoic crust, (2) dominance of metasedimentary sequences 745

with Neoproterozoic deposition ages, (3) ubiquitous 746

presence of flat-lying fabrics of late Neoproterozoic 747

age (∼640–600 Ma), and (4) dominance of transcur- 748

rent/transpressional deformation after 600 Ma. The lack 749

of evidence for closure of large oceanic domains in 750

all these regions does not support the interpretation of 751

the Borborema Province as a series of amalgamated 752

terranes (e.g. Santos and Medeiros, 1999; Santos et 753

al., 2004a,b). Destabilization of a preexisting conti- 754

nent formed at the end of the Transamazonian/Eburnean 755

orogeny (the Atlantica supercontinent of Rogers, 1996) 756

provides the simplest explanation to the above find- 757

ings. Several attempts to fragment this supercontinent 758

are recorded by late Paleoproterozoic to Neoprotero- 759

zoic intraplate extensional and magmatic events repre- 760

sented by failed rifts and A-type granites and related 761

rocks. A final period of plate-wide extension occurred 762

in the mid/late Neoproterozoic. This was immediately 763

followed by convergence and contractional deformation 764

marking the beginning of the Brasiliano/Pan-African 765

orogeny, which essentially occurred in an intracontinen- 766

tal setting.

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

18 S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx

7.4. Summary and conclusions767

The main conclusions of this study concerning the768

Precambrian tectonic and geochronological evolution769

of the study area in the East Pernambuco belt can be770

summarized as follows: (1) 2.15–2.10 Ga: generation of771

juvenile crust, (2) 2.05–2.03 Ga: peak Transamazonian772

metamorphism, (3) 1.99–1.97 Ga: intrusion of late773

orogenic magmas, (4) after 665 Ma: deposition of774

supracrustal sequences and (5) 630–610 Ma: develop-775

ment of flat-lying fabrics and Brasiliano high-grade776

metamorphism. Available data from the literature, in777

addition, support the intrusion of anorogenic plutons at778

1.7–1.5 Ga (Accioly et al., 2000; Sa et al., 2002), and the779

development of transcurrent shear zones and abundant780

magmatism at 590–580 Ma (Neves et al., 2000, 2004).781

Most of these features are found in other sectors of the782

Borborema Province (Neves, 2003) and in the Nigeria783

and Cameroon provinces (Ferre et al., 2002; Toteu et784

al., 2004; Njiosseu et al., 2005), suggesting a shared785

evolution during most of the Proterorozoic.786

Uncited reference787

Murphy et al. (2004).788

Acknowledgments789

LA-ICP-MS analyses were conducted as part of post-790

doctoral studies by SPN financed by the Brazilian agency791

Conselho Nacional de Desenvolvimento Cientıfico e Tec-792

nologico (CNPq). Samples were collected during field-793

work funded by the Fundacao de Amparo a Ciencia794

e Tecnologia do Estado de Pernambuco (FACEPE).795

The comments from two anonymous reviewers helped796

improving the manuscript.797

References798

Abdelsalam, M.G., Liegeois, J.-P., Stern, R.J., 2002. The saharan799

metacraton. J. African Earth Sci. 34, 119–136.800

Accioly, A.C.A., McReath, I., Santos, E.J., Guimaraes, I.P., Vannuci,801

R., Bottazzi, R., 2000. The Passira meta-anorthositic complex and802

its tectonic implication, Borborema Province, Brazil. In: Proceed-803

ings of the 31st International Geological Congress, International804

Union of Geological Sciences, Rio de Janeiro.805

Araujo, M.N.C., Silva, F.C.A., Sa, E.F.J., Holcombe, R.J., Vascon-806

celos, P.M., 2003. Microstructural evolution of the Serido Belt,807

NE-Brazil: the effect of two tectonic events on development of c-808

axis preferred orientation in quartz. J. Struct. Geol. 25, 2089–2107.809

Bittar, S.M.B., Campos Neto, M.C., 2000. Amalgamation during the810

Brasiliano orogeny in the Pianco-Alto Brıgida fold belt, Borborema811

province, NE Brazil. In: Proceedings of the 31st International Geo-812

logical Congress, Internacional Union of Geological Sciences, Rio813

de Janeiro.814

Bittar, S.M.B., Guimaraes, I.P., Campos Neto, M.C., Kozuch, M., 815

Lima, E.S., Accioly, A.C.A., 2001. Geoquımica preliminar de 816

metabasitos do complexo Riacho Gravata, domınio tectonico Rio 817

Pajeu, PE-Brasil. Estudos Geol. 11, 53–66. 818

Brito Neves, B.B., Van Schmus, W.R., Santos, E.J., Campos Neto, 819

M.C., Kozuch, M., 1995. O evento Cariris Velhos na Provıncia Bor- 820

borema: integracao de dados, implicacoes e perspectivas. Revista 821

Brasileira de Geociencias 25, 279–296. 822

Brito Neves, B.B., Santos, E.J., Van Schmuss, W.R., 2000. Tectonic 823

history of the Borborema province. In: Cordani, U.G., Milani, E.J., 824

Thomaz Filho, A., Campos, D.A. (Eds.), Tectonic Evolution of 825

South America. Proceedings of the 31st International Geological 826

Congress. Rio de Janeiro, pp. 151–182. 827

Brito Neves, B.B., Campos Neto, M.C., Van Schmus, W.R., San- 828

tos, E.J., 2001a. O “Sistema” Pajeu-Paraiba e o “Macico” Sao 829

Jose do Campestre no leste da Borborema. Revista Brasileira de 830

Geociencias 31, 173–184. 831

Brito Neves, B.B., Campos Neto, M.C., Van Schmus, W.R., Fer- 832

nandes, T.M.G., Souza, S.L., 2001b. O terreno Alto Moxoto no 833

leste da Paraıba (Macico Caldas Brandao). Revista Brasileira de 834

Geociencias 31, 185–194. 835

Bruguier, O., Telouk, P., Cocherie, A., Fouillac, A.M., Albarede, F., 836

2001. Evaluation of Pb–Pb and U–Pb laser ablation ICP-MS zircon 837

dating using matrix-matched calibration samples with a frequency 838

quadrupled (266 nm) Nd-YAG laser. Geostandards Newslett. 25, 839

361–373. 840

Caby, R., Arthaud, M.H., 1986. Major Precambrian nappes of the 841

Brazilian belt, Ceara, northeast Brazil. Geology 14, 871–874. 842

Caby, R., Sial, A.N., 1997. Kyanite–garnet–staurolite thermal aure- 843

oles around some Neoproterozoic epidote-bearing granitoids, NE 844

Brazil. In: Proceedings of the II International Symposium on Gran- 845

ites and Associated Mineralizations, Salvador, p. 183 (abstracts). 846

Caby, R., Sial, A.N., Arthaud, M.H., Vauchez, A., 1991. Crustal evolu- 847

tion and the Brasiliano orogeny in Northeast Brazil. In: Dallmeyer, 848

R.D., Lecorche, J.P. (Eds.), The West African Orogens and Circum- 849

Atlantic Correlatives. Springer, Berlin, pp. 373–397. 850

Caby, R., Arthaud, M.H., Archanjo, C.J., 1995. Lithostratigraphy and 851

petrostructural characterization of supracrustal units in the Brasil- 852

iano Belt of Northeast Brazil: geodynamic implications. J. S. Am. 853

Earth Sci. 8, 235–246. 854

Castaing, C., Feybesse, J.L., Thieblemont, D., Triboulet, C., 855

Chevremont, P., 1994. Paleogeographical reconstructions of the 856

Pan-African/Brasiliano orogen: closure of an oceanic domain or 857

intracontinental convergence between major blocks? Precambrian 858

Res. 69, 327–344. 859

Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of 860

zircon textures. Rev. Mineral. Geochem. 53, 469–500. 861

Dantas, E.L., Hackspacher, P.C., Van Schmus, W.R., Brito Neves, 862

B.B., 1998. Archean accretion in the Sao Jose do Campestre Mas- 863

sif, Borborema Province, Northeast Brazil. Revista Brasileira de 864

Geociencias 28, 221–228. 865

Dantas, E.L., Van Schmus, W.R., Hackspacher, P.C., Fetter, A.H., Brito 866

Neves, B.B., Cordani, U., Nutman, A.P., Williams, I.S., 2004. The 867

3.4–3.5 Ga Sao Jose do Campestre massif, NE Brazil: Remnants 868

of the oldest crust in South America. Precambrian Res. 130, 113– 869

137. 870

De Yoreo, J.J., Lux, D.R., Guidotti, C.V., 1991. Thermal modelling 871

in low-pressure/high-temperature metamorphic belts. Tectono- 872

physics 188, 209–238. 873

Ferre, E., Gleizes, G., Caby, R., 2002. Obliquely convergent tecton- 874

ics and granite emplacement in the Trans-Saharan belt of Eastern 875

Nigeria: a synthesis. Precambrian Res. 114, 199–219. 876

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx 19

Ferreira, V.P., Sial, A.N., Jardim de Sa, E.F., 1998. Geochemical and877

isotopic signatures of Proterozoic granitoids in terranes of the Bor-878

borema structural province, northeastern Brazil. J. S. Am. Earth879

Sci. 11, 439–455.880

Gomes, H.A., 2001. Geologia e Recursos Minerais do Estado de Per-881

nambuco. In: Ministerio de Minas e Energia. Secretaria de Minas882

e Metalurgia. CPRM—Servico Geologico do Brasil, p. 127.883

Guimaraes, I.P., Da Silva Filho, A.F., 1998. Nd- and Sr-isotopic884

and U–Pb geochronologic constraints for the evolution of the885

shoshonitic Brasiliano Bom Jardim and Toritama complexes: evi-886

dence for a Transamazonian enriched mantle under Borborema887

tectonic province. Brazil: Int. Geol. Rev. 40, 500–527.888

Guimaraes, I.P., Brito Neves, B.B., 2004. Geochemistry characteriza-889

tion of part of the Early Neoproterozoic plutonism in the Central890

Structural Domain of the Borborema Province, NE Brazil. In:891

Proceedings of the 32nd International Geological Congress, Inter-892

national Union of Geological Sciences, Firenze.893

Guimaraes, I.P., Da Silva Filho, A.F., Almeida, C.N., Van Schmus,894

W.R., Araujo, J.M.M., Melo, S.C., Melo, E.B., 2004. Brasiliano895

(Pan-African) granite magmatism in the Pajeu-Paraıba belt, North-896

east Brazil: An isotopic and geochronological approach. Precam-897

brian Res. 135, 23–53.898

Gunther, D., Heinrich, C.A., 1999. Comparison of the ablation behav-899

ior of 266 nm Nd:YAG and 193 nm ArF excimer lasers for LA-900

ICP-MS analyses. J. Anal. Atomic Spectr. 14, 1369–1374.901

Hirata, T., Nesbitt, R.W., 1995. U–Pb isotope geochronology of902

zircon—evaluation of the laser probe-inductively coupled plasma-903

mass spectrometry technique. Geochimica et Cosmochimica Acta904

59, 2491–2500.905

Jardim de Sa, E.F., Macedo, M.H.F., Pecault, J.J., Kawashita, K.,906

Souza, Z.S., Bertrand, J.M., 1995. Pre-brasiliano orogenic evo-907

lution in the Serido Belt NE Brazil: Conflicting geochronological908

and structural data. Revista Brasileira de Geociencias 25, 307–314.909

Kozuch, M., 2003. Isotopic and Trace Element Geochemistry of Early910

Neoproterozoic Gneissic and Metavolcanic Rocks in the Cariris911

Velhos Orogen of the Borborema Province, Brazil, and Their Bear-912

ing on Tectonic Setting. PhD Thesis. University of Kansas.913

Kozuch, M., Bittar, S.M.B., Van Schmus, S.M., Brito Neves, B.B.,914

1997. Late Mesoproterozoic and middle Neoproterozoic magma-915

tism in the Zona Transversal of the Borborema Province, Brazil.916

In: SBG-Nucleo Nordeste (Ed.), Proceedings of the 17th Simposio917

de Geologia do Nordeste. Fortaleza, pp. 47–50.918

Leite, P.R.B., Lima, E.S., Mariano, G., 2000a. Geochemical charac-919

terization of granites of distinctly different ages in the Alto Pajeu920

Terrane, Borborema province, Northeast Brazil. Int. Geol. Rev. 42,921

555–564.922

Leite, P.R.B., Bertrand, J.M., Lima, E.S., Leterrier, J., 2000b. Timing923

of granite magmatism in the northern Borborema Province, Brazil:924

a U–Pb study of granitoids from the Alto Pajeu Terrain. J. S. Am.925

Earth Sci. 13, 549–559.926

Ludwig, K.R., 2000. Decay constant errors in U–Pb concordia-927

intercept ages. Chem. Geol. 166, 315–318.928

Mariano, G., Neves, S.P., Da Silva Filho, A., Guimaraes, I.P., 2001.929

Diorites of the high-K calc-alkalic association: Geochemistry and930

Sm–Nd data and implications for the evolution of the Borborema931

Province, Northeast Brazil. Int. Geol. Rev. 43, 921–929.932

Medeiros, V.C., 2004. Evolucao Geodinamica e Condicionamento933

Estrutural dos Terrenos Pianco-Alto Brıgida e Alto Pajeu, Domınio934

da Zona Transversal, NE do Brasil. PhD Thesis. Universidade Fed-935

eral do Rio Grande do Norte.936

Melo, O.O., Guimaraes, I.P., Fetter, A., Beurlen, H., 2002. Idades U/Pb937

em zircao e idades modelo (Sm/Nd) de ortognaisses e enclaves938

metamorficos da area de Barro Vermelho-PE, terreno Alto Moxoto, 939

Provıncia Borborema, Nordeste do Brasil. Revista Brasileira de 940

Geociencias 32, 197–204. 941

Murphy, J.B., Pisarevsky, S.A., Nance, R.D., Keppie, J.D., 2004. 942

Neoproterozoic—early Paleozoic evolution of peri-Gondwanan 943

terranes: Implications for Laurentia-Gondwana connections. Int. 944

J. Earth Sci. 93, 659–682. 945

Neves, S.P., 2003. Proterozoic history of the Borborema Province (NE 946

Brazil): correlations with neighboring cratons and Pan-African 947

belts, and implications for the evolution of western Gondwana. 948

Tectonics 22, 1031, doi:10.1029/2001TC001352. 949

Neves, S.P., Mariano, G., 1999. Assessing the tectonic significance 950

of a large-scale transcurrent shear zone system: the Pernam- 951

buco lineament, northeastern Brazil. J. Struct. Geol. 21, 1369– 952

1383. 953

Neves, S.P., Vauchez, A., Feraud, G., 2000. Tectono-thermal evolution, 954

magma emplacement, and shear zone development in the Caruaru 955

area (Borborema Province NE Brazil). Precambrian Res. 99, 1–32. 956

Neves, S.P., Melo, S.C., Moura, C.A.V., Mariano, G., Silva, J.M.R., 957

2004. Zircon Pb–Pb geochronology of the Caruaru area, north- 958

eastern Brazil: temporal constraints on the Proterozoic evolution 959

of Borborema Province. Int. Geol. Rev. 46, 52–63. 960

Neves, S.P., Silva, J.M.R., Mariano, G., 2005. Oblique lineations in 961

orthogneisses and supracrustal rocks: vertical partitioning of strain 962

in a hot crust (eastern Borborema Province, NE Brazil). J. Struct. 963

Geol. 27, 1513–1527. 964

Njiosseu, E.L.T., Nzenti, J.P., Njanko, T., Kapajika, B., Nedelec, A., 965

2005. New U–Pb zircon ages from Tonga (Cameroon): coexist- 966

ing Eburnean-Transamazonian (2.1 Ga) and Pan-African (0.6 Ga) 967

imprints. Comptes Rendus Geosci. 337, 551–562. 968

Rogers, J.J.W., 1996. A history of continents in the past three billion 969

years. J. Geol. 104, 91–107. 970

Sa, J.M., Bertrand, J.M., Leterrier, J., Macedo, M.H.F., 2002. Geo- 971

chemistry and geochronology of pre-Brasiliano rocks from the 972

Transversal Zone, Borborema Province, Northeast Brazil. J. S. Am. 973

Earth Sci. 14, 851–866. 974

Santos, E.J., 1995. O complexo granıtico de Lagoa das Pedras: 975

Acrescao e colisao na regiao de Floresta (PE), Provıncia Bor- 976

borema. PhD Thesis. Universidade de Sao Paulo. 977

Santos, E.J., Medeiros, V.C., 1999. Constraints from granitic plutonism 978

on Proterozoic crustal growth of the Transverse Zone, Borborema 979

Province, NE Brazil. Revista Brasileira de Geociencias 29, 73–84. 980

Santos, E.J., Nutman, A.P., Brito Neves, B.B., 2004a. Idades SHRIMP 981

U–Pb do Complexo Sertania: implicacoes sobre a evolucao 982

tectonica da zona transversal, Provıncia Borborema. Geologia 983

USP: Serie Cientıfica 4, 1–12. 984

Santos, E.J., Brito Neves, B.B., Van Schmus, W.R., 2004b. Tectonic 985

events preceding the Brasiliano cycle in the Borborema province, 986

NE Brazil: implications for Rodinia reconstructions. In: Proceed- 987

ings of the 32nd International Geological Congress, International 988

Union of Geological Sciences, Firenze. 989

Santos, V.H., Ferreira, V.P., Sial, A.N., Babinski, M., Pimentel, M.M., 990

2002. C, Pb and Sr isotopic chemostratigraphy in Proterozoic 991

carbonate sequences in the eastern Transversal Domain of the Bor- 992

borema Province, northeastern Brazil. In: Proceedings of the 41st 993

Congresso Brasileiro de Geologia, Joao Pessoa, p. 507 (abstracts). 994

Sial, A.N., 1993. Contrasting metaluminous magmatic epidote-bearing 995

suites from two Precambrian fold belts in Northeast Brazil. Anais 996

da Academia Brasileira de Ciencias 65, 141–162. 997

Silva, J.M.R., Mariano, G., 2000. Geometry and kinematics of the 998

Afogados da Ingazeira shear zone, Northeast Brazil. Int. Geol. Rev. 999

42, 86–95. 1000

UN

CO

RR

EC

TED

PR

OO

F

PRECAM 2699 1–20

20 S.P. Neves et al. / Precambrian Research xxx (2006) xxx–xxx

Silva, L.C., McNaughton, N.J., Vasconcelos, A.L., Gomes, J.C.R.,1001

Fletcher, I.R., 1997. U–Pb SHRIMP ages in southern state of Ceara,1002

Borborema Province, Brazil: Archean TTG accretion and Pro-1003

terozoic crustal reworking. In: Proceedings of the II International1004

Simposium on Granites and Associated Minealizations, Salvador,1005

pp. 280–281.1006

Silva, L.C., Armstrong, R., Delgado, I.M., Pimentel, M.M., Arcanjo,1007

J.B., Melo, R.C., Teixeira, L.R., Jost, H., Cardoso Filho, J.M.,1008

Pereira, L.H.M., 2002. Reavaliacao da evolucao geologica em ter-1009

renos pre-cambrianos brasileiros com base em novos dados U–Pb1010

SHRIMP Parte I: Limite centro-oriental do craton Sao Francisco1011

na Bahia. Revista Brasileira de Geociencias 32, 501–512.1012

Thompson, P.H., 1989. Moderate overthickening of thinned sialic crust1013

and the origin of granitic magmatism and regional metamorphism1014

in low-P-high-T terranes. Geology 17, 520–523.1015

Thompson, A.B., Schulmann, K., Jezek, J., Tolar, V., 2001. Thermally1016

softened continental extensional zones (arcs and rifts) as precursors1017

to thickened orogenic belts. Tectonophysics 332, 115–141.1018

Toteu, S.F., Penaye, J., Djomani, Y.P., 2004. Geodynamic evolution1019

of the Pan-African belt in central Africa with special reference to1020

Cameroon. Can. J. Earth Sci. 41, 73–85.1021

Trompette, R., 1997. Neoproterozoic (∼600 Ma) aggregation of west-1022

ern Gondwana: a tentative scenario. Precambrian Res. 82, 101–1023

112.

Van Schmus, W.R., Brito Neves, B.B., Hackspacher, P., Babinski, M., 1024

1995. U/Pb and Sm/Nd geochronologic studies of the eastern Bor- 1025

borema Province, northeastern Brazil: initial conclusions. J. S. Am. 1026

Earth Sci. 8, 267–288. 1027

Van Schmus, W.R., Brito Neves, B.B., Williams, I.S., Hackspacher, 1028

P.C., Fetter, A.H., Dantas, E.L., Babinsky, M., 2003. The Serido 1029

Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional 1030

basin in West Gondwana: Insights from SHRIMP U–Pb detrital 1031

zircon ages and Sm–Nd crustal residence (TDM) ages. Precambrian 1032

Res. 127, 287–327. 1033

Vauchez, A., Egydio-Silva, M., 1992. Termination of a continental- 1034

scale strike-slip fault in partially melted crust: the West Pernam- 1035

buco shear zone, northeast Brazil. Geology 20, 1007–1010. 1036

Vauchez, A., Neves, S.P., Caby, R., Corsini, M., Egydio-Silva, M., 1037

Arthaud, M.H., Amaro, V., 1995. The Borborema shear zone sys- 1038

tem, NE Brazil. J. S. Am. Earth Sci. 8, 247–266. 1039

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, 1040

F., von Quadt, A., Ruddick, J.C., Spiegel, W., 1995. Three natu- 1041

ral zircon standards for U–Th–Pb, Lu–Hf, trace element and REE 1042

analyses. Geostandards Newslett. 19, 1–23. 1043

Williams, I.S., Claesson, S., 1987. Isotopic evidence for the Precam- 1044

brian provenance and Caledonian metamorphism of high-grade 1045

paragneiss from the Seve Nappes, Scandinavian Caledonides. Con- 1046

tribribut. Mineral. Petrol. 97, 205–217. 1047