22
Chapter 6 Square Roots and Cube Roots Square Roots and Cube Roots 6.0 Introduction Let us make square shapes using unit squares. Observe the number of unit squares used. A unit square is a square whose side is 1 unit S.No. Figure Length of the side in units No.of unit squares used 1 1 1 2 2 4 3 3 9 Similarly make next two squares. Can you guess how many total unit squares are required for making a square whose side is 6 units? From the above observations we could make square shapes with 1, 4, 9, 16, 25 … unit squares. The numbers 1, 4, 9, 16, 25, … can be expressed as 1=1×1=1 2 4=2×2=2 2 9=3×3=3 2 16 = 4 × 4 = 4 2 25 = …… × …… = …….. 36 = ……. × …… = …….. Observe the pattern of factors in each case ……………………………….. ………………………………... m=n×n= n 2 where m, n are integers. You might have observed in the given pattern that the numbers are expressed as the product of two equal factors. Such numbers are called perfect squares. Observe the following perfect square numbers Ex: (i) 9 = 3 3 (ii) 49 = 7 7 (iii) 1.44 = 1.2 1.2 (iv) 2.25 = 1.5 1.5 (v) (vi) In case (i) and (ii) we have noticed the perfect square numbers 9 and 49 are integers. The general form of such perfect square numbers is m = n n (where m and n are integers). In case (iii), (iv) and (v), (vi) the perfect square numbers are not integers. Hence, they are not square numbers. If an integer ‘m’ is expressed as n 2 where n is an integer then ‘m’ is a square number or ‘m’ is a square of ‘n’. Perfect square : A rational number that is equal to the square of another rational number. Square number : An integer that is a square of another integer. Thus “All square numbers are perfect squares” but all perfect squares may not be square numbers. Ex: 2.25 is a perfect square number because it can be expressed as 2.25 = (1.5) 2 = 1.5 1.5, it is not square of an integer. Therefore, it is not a square number. Is 42 a square number? We know that 6 2 = 36 and 7 2 = 49, if 42 is a square number it must be the square of an integer. Which should be between 6 and 7. But there is no such integer between 6 and 7. Therefore 42 is not a square number. Observe the perfect squares in the given table 1 2 34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Square Roots and Cube Roots - SelfStudys

Embed Size (px)

Citation preview

Chapter6SquareRootsandCubeRootsSquareRootsandCubeRoots

6.0Introduction

Letusmakesquareshapesusingunitsquares.Observethenumberofunitsquaresused.Aunitsquareisasquarewhosesideis1unit

S.No.FigureLengthofthesideinunitsNo.ofunitsquaresused111224339Similarlymakenexttwosquares.Canyouguesshowmanytotalunitsquaresarerequiredformakingasquarewhosesideis6units?Fromtheaboveobservationswecouldmakesquareshapeswith1,4,9,16,25…unitsquares.Thenumbers1,4,9,16,25,…canbeexpressedas

1=1×1=12

4=2×2=22

9=3×3=32

16=4×4=42

25=……×……=……..36=…….×……=……..Observethepatternoffactorsineachcase………………………………..………………………………...m=n×n=n2wherem,nareintegers.

Youmighthaveobservedinthegivenpatternthatthenumbersareexpressedastheproductoftwoequalfactors.Suchnumbersarecalledperfectsquares.Observethefollowingperfectsquarenumbers

Ex:(i)9=3 3(ii)49=7 7(iii)1.44=1.2 1.2

(iv)2.25=1.5 1.5(v) (vi)In case (i) and (ii)wehave noticed the perfect square numbers 9 and49 are integers.Thegeneral formof suchperfect squarenumbersism=n n(wheremandnareintegers).Incase(iii),(iv)and(v),(vi)theperfectsquarenumbersarenotintegers.Hence,theyarenotsquarenumbers.Ifaninteger‘m’isexpressedasn2wherenisanintegerthen‘m’isasquarenumberor‘m’isasquareof‘n’.Perfectsquare:Arationalnumberthatisequaltothesquareofanotherrationalnumber.Squarenumber:Anintegerthatisasquareofanotherinteger.Thus“Allsquarenumbersareperfectsquares”butallperfectsquaresmaynotbesquarenumbers.Ex:2.25isaperfectsquarenumberbecauseitcanbeexpressedas2.25=(1.5)2=1.5 1.5,itisnotsquareofaninteger.Therefore,itisnotasquarenumber.Is42asquarenumber?Weknowthat62=36and72=49,if42isasquarenumberitmustbethesquareofaninteger.Whichshouldbebetween6and7.Butthereisnosuchintegerbetween6and7.Therefore42isnotasquarenumber.Observetheperfectsquaresinthegiventable

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100

Arethereanyothersquarenumbersthatexistotherthanthenumbersshowninthetable.

DoThis:1.Findtheperfectsquaresbetween(i)100and150(ii)150and2002.Is56aperfectsquare?Givereasons?

6.1Propertiesofsquarenumbers:Observeandfillthefollowingtable.NumberSquareNumberSquareNumberSquare

111112121441241214422.........3913........2352941614196........57652515225256256.........16..............................74917289....................86418324...........................8119361....................1010020400....................

Observethedigitsintheunitsplaceofthesquarenumbersintheabovetable.Doyouobserveallthesenumbersendwith0,1,4,5,6or9atunitsplace,noneoftheseendwith2,3,7or8atunitsplace.“Thatisthenumbersthathave2,3,7or8intheunitsplacearenotperfectsquares.”Canwesaythatallnumbersendwith0,1,4,5,6or9,atunitplacearesquarenumbers?Thinkaboutit.

TryThese:

1.Guessandgivereasonwhichofthefollowingnumbersareperfectsquares.Verifyfromtheabovetable.(i)84(ii)108(iii)271(iv)240(v)529

Writethesquaresof1,9,11,19,21Haveyounoticedanyrelationshipbetweentheunitsdigitofnumbersandtheirsquares?Itisobservedthatifanumberhas1or9intheunitsplace,thentheunitsdigitinitssquarenumberisonly1.Ifanumberhas4or6intheunitsplace,thentheunitsdigitinitssquareisalways6Similarly,exploretheunitsdigitofsquaresofnumbersendingwith0,2,3,5,7and8.

TryThese:

1.Whichofthefollowinghaveoneinitsunitsplace?(i)1262(ii)1792(iii)2812(iv)3632

2.Whichofthefollowinghave6intheunitsplace?(i)1162(ii)2282(iii)3242(iv)3632

Think,DiscussandWrite:

Vaishnaviclaimsthatthesquareofevennumbersareevenandthatofoddareodd.Doyouagreewithher?Justify.Observeandcompletethetable:NumbersNo.ofdigitsinitssquare

(Minimum)(Maximum)1-91210-99…….4100-9995.......1009-999978ndigit..............

TryThese:

1.Guess,Howmanydigitsarethereinthesquaresof(i)72(ii)103(iii)1000

2.

27liesbetween20and30272liesbetween202and302

Nowfindwhatwouldbe272fromthefollowingperfectsquares.(i)329(ii)525(iii)529(iv)729

6.2.Interestingpatternsinsquare:

1.Observethefollowingpatternandcomplete.

1=121+3=4=221+3+5=9=321+3+5+7=16=42

1=1=12

1+3=4=22

1+3+5=9=32

1+3+5+7=16=42

1+3+5+7+9=25=52

1+3+5+7+9+11=……….=()2

1+3+5+7+9+11+13=……….=()2

Fromthis,wecangeneralizethatthesumoffirst‘n’oddnaturalnumbersisequalto‘n2’.2.Observethefollowingpatternandsupplythemissingnumbers

(11)2=121(101)2=10201(1001)2=1002001(10001)2=…………..(1000001)2=……………

3.Observethepatternandcompleteit12=1112=1211112=1232111112=1234321111112=…………………..1111112=……………………ThesenumbersarecalledpalindromicnumbersornumericalpalindromeApalindromeisaword;phrase,asentenceoranumericalthatreadsthesameforwardorbackward.Ex.NOON,MALAYALAM,MADAM

4.Fromthefollowingpatternfindthemissingnumbers12+22+22=32

22+32+62=72

32+42+122=132

42+52+()2=212

52+()2+302=()2

62+72+()2=()2

Observethesumofthesquares:Doyoufindanyrelationbetweenthebasesofsquares?Howthebaseofthethirdnumberisrelatedtothebaseoffirstandsecondsquarenumbers?Howthebaseoftheresultantsquarenumberisrelatedtothebaseofthethirdsquarenumber?

5.Findthemissingnumbersusingthegivenpattern

32=9=4+5

52=25=12+1372=49=24+25(+)

112=121=…..+…..152=225=…..+…..(+)

Fromthis,wecanconcludethatthesquareofanyoddnumbersayncanbeexpressedasthesumoftwoconsecutivenumbersas

6.Numbersbetweensuccessivesquarenumbers:Observeandcompletethefollowingtable

SuccessivesquaresNumbersbetweenthesuccessiveRelationsquarenumbers

12=1;22=42,3(2numbersliesbetween1and4)2×Baseoffirstnumber1,(2×1=2)22=4;32=95,6,7,8(4numbersliesbetween2×Baseoffirstnumber2,(2×2=4)

.4and9)32=9;42=1610,11,12,13,14,15(6numberslies)2×Baseoffirstnumber3(2×3=6)

between9and16)42=16;52=25................................................2×Baseoffirstnumber4,(2×4=8)52=25;62=36.................................................................................................................................................................................................................................

Fromtheabovetablehaveyouobservedanyrelationbetweenthesuccessivesquarenumbersandnumbersbetweenthem?Withthehelpoftheabovetable,trytofindthenumberofnonsquarenumbersbetweenn2and(n+1)2.Thereare‘2n’nonsquarenumbersbetweenn2and(n+1)2.

DoThis:

1.Howmanynonperfectsquarenumbersaretherebetween92and102?2.Howmanynonperfectsquarenumbersaretherebetween152and162?

TryThese:

Rehansaysthereare37nonsquarenumbersbetween92and112.Isheright?Giveyourreason.Exercise-6.1

1.Whatwillbetheunitsdigitofthesquareofthefollowingnumbers?(i)39(ii)297(iii)5125(iv)7286(v)8742

2.Whichofthefollowingnumbersareperfectsquares?(i)121(ii)136(iii)256(iv)321(v)600

3.Thefollowingnumbersarenotperfectsquares.Givereasons?(i)257(ii)4592(iii)2433(iv)5050(v)6098

4.Findwhetherthesquareofthefollowingnumbersareevenorodd?(i)431(ii)2826(iii)8204(iv)17779(v)99998

5.Howmanynumbersliebetweenthesquareofthefollowingnumbers(i)25;26(ii)56;57(iii)107;108

6.Withoutadding,findthesumofthefollowingnumbers(i)1+3+5+7+9=(ii)1+3+5+7+9+11+13+15+17=(iii)1+3+5+7+9+11+13+15+17+19+21+23+25=

6.3Pythagoreantriplets:Considerthefollowing

(i)32+42=9+16=25=52

(ii)52+122=25+144=169=132

Thenumbers(3,4,5)and(5,12,13)aresomeexamplesforPythagoreantriplets.Generallya,b,carethepositiveintegers.Ifa2+b2=c2then(a,b,c)aresaidtobepythagoreantriplet.Iftherearenocommonfactorsotherthan‘1’amonga,b,cthenthetriplet(a,b,c)iscalledprimitivetriplet.

DoThis1.CheckwhetherthefollowingnumbersformPythagoreantriplet

(i)2,3,4(ii)6,8,10(iii)9,10,11(iv)8,15,172.TakeaPythagoreantriplet.Writetheirmultiples.CheckwhetherthesemultiplesformaPythagoreantriplet.6.4SquareRoots

Observethefollowingsquaresandcompletethetable.A=4A=9A=16A=25Areaofthesquare(incm2)Sideofthesquare(incm)(A)(S)

4=2×229=3×3316=4×4_____25=5×5_____Thenumberofunitsquaresinarow/columnrepresentsthesideofasquare.

Doyoufindanyrelationbetweentheareaofthesquareanditsside?Weknowthattheareaofthesquare=side×side=side2

Iftheareaofasquareis169cm2.Whatcouldbethesideofthesquare?Letusassumethatthelengthofthesidebe‘x’cm.169=x2

Tofindthelengthoftheside,itisnecessarytofindanumberwhosesquareis169.Weknowthat169=132.Thenthelengthoftheside=13cm.Therefore,ifasquarenumberisexpressed,astheproductoftwoequalfactors,thenonethefactorsiscalledthesquarerootofthatsquarenumber.Thus,thesquarerootof169is13.Itcanbeexpressedas =13(symbolusedforsquarerootis ).Thusitistheinverseoperationofsquaring.Example1:32=9thereforesquarerootof9is3( =3)

42=16thereforesquarerootof16is4( =4)52=25thereforesquarerootof25is5( =5)

Ify2=xthensquarerootofxisy

(25isthesquareofboth5and−5.Therefore,thesquarerootof25is5or−5.Butinthischapterweareconfinedtothepositivesquarerootwhichisalsocalledprincipalsquareroot.Itiswrittenas∴ =5.)

Example2:1. =2because22=42. =4because42=163. =15because152=225etc.Completethefollowingtable:

SquareSquareroots12=1 =122=4 =232=9 =342=16 =452=25 =……..62=36 =……..72=…...... =……...82=…….. =………92=…….. =………102=…….. =………

6.5FindingtheSquarerootthroughsubtractionofsuccessiveoddnumbers:

Weknowthat,everysquarenumbercanbeexpressedasasumofsuccessiveoddnaturalnumbersstartingfrom1.

Consider,1+3=4=22

1+3+5=9=32

1+3+5+7=16=42

1+3+5+7+9=25=52

Findingsquarerootisthereverseorderofthispattern.Forexample,find

Step1:49–1=48(Subtractingoffirstoddnumber)Step2:48–3=45(Subtractingof2ndoddnumber)Step3:45–5=40(Subtractingof3rdoddnumber)Step4:40–7=33Step5:33–9=24Step6:24–11=13Step7:13–13=0(Observeweknow1+3+5+7+9+11+13=72=4949–[1+3+5+7+9+11+13]=0Hence49isaperfectsquare.)From49,wehavesubtractedsevensuccessiveoddnumbersstartingfrom1andobtainedzero(0)at7thstep.

Note:Iftheresultofthisprocessisnotzerothenthegivennumberisnotaperfectsquare.DoThis:

(i)Bysubtractionofsuccessiveoddnumbersfindwhetherthefollowingnumbersareperfectsquaresornot?(i)55(ii)90(iii)121Itiseasytofindthesquarerootsofanysquarenumbersbytheabovesubtractionprocess.Butincaseofbiggernumberssuchas625,729..........itistimetakingprocess.So,Letustrytofindsimplewaystoobtainthesquareroots.Therearetwomethodsoffindingthesquarerootofthegivennumbers.Theyare(i)Primefactorizationmethod(ii)Divisionmethod6.6FindingtheSquareRootThroughPrimeFactorisationMethod:Letusfindthesquarerootof484byprimefactorizationmethod.Step1:Resolvethegivennumber484intoprimefactors

weget484=2×2×11×11

Step2:Makepairsofequalfactors,weget484=(2×2)×(11×11)

Step3:ChoosingonefactoroutofeverypairBydoingso,weget

=2×11=22Therefore,thesquarerootof484is22.

Or= (2×11)×(2×11)= (2×11)2

=

NowwewillseesomemoreexamplesExample3:Findthesquarerootof1296byPrimeFactorizationSolution:Resolving1296intoPrimefactors,weget

1296=(2×2)×(2×2)×(3×3)×(3×3)=2×2×3×3

∴ =36Example4:Findthesquarerootof2025Solution:Resolving2025intoPrimefactors,weget

2025=(3×3)×(3×3)×(5×5)=3×3×5

∴ =45Example5:Findthesmallestnumberbywhich720shouldbemultipliedtogetaperfectsquare.Solution:Resolving720intoPrimefactors,weget

720=(2×2)×(2×2)×(3×3)×5

Weseethat2,2,3existinpairs,while5isaloneSo,weshouldmultiplythegivennumberby5togetaperfectsquare.Therefore,theperfectsquaresoobtainedis720×5=3600

Example6:Findthesmallestnumberbywhich6000shouldbedividedtogetaperfectsquareandalsofindthesquarerootoftheresultingnumber.

Solution:Resolving6000intoPrimefactors,weget6000=2×2×2×2×3×5×5×5Wecanseethat,2,2,and5existsinpairswhile3and5donotexistsinpairsSo,wemustdividethegivennumberby3×5=15Thereforeperfectsquareobtained=6000÷15=400400=2×2×2×2×5×5Thesquarerootof400is

==2×2×5=20

Exercise-6.2

1.FindthesquarerootsofthefollowingnumbersbyPrimefactorizationmethod.(i)441(ii)784(iii)4096(iv)70562.Findthesmallestnumberbywhich3645mustbemultipliedtogetaperfectsquare.3.Findthesmallestnumberbywhich2400istobemultipliedtogetaperfectsquareandalsofindthesquarerootoftheresulting

number.4.Findthesmallestnumberbywhich7776istobedividedtogetaperfectsquare.5.1521treesareplantedinagardeninsuchawaythatthereareasmanytreesineachrowastherearerowsinthegarden.Findthe

numberofrowsandnumberoftreesineachrow.6.Aschoolcollected`2601asfeesfromitsstudents.Iffeepaidbyeachstudentandnumberstudentsintheschoolwereequal,

howmanystudentswerethereintheschool?7.Theproductoftwonumbersis1296.Ifonenumberis16timestheother,findthetwonumbers?8.7921soldierssatinanauditoriuminsuchawaythatthereareasmanysoldiersinarowastherearerowsintheauditorium.How

manyrowsarethereintheauditorium?9.Theareaofasquarefieldis5184m2.Findtheareaofarectangularfield,whoseperimeterisequaltotheperimeterofthesquare

fieldandwhoselengthistwiceofitsbreadth.6.7Findingsquarerootbydivisionmethod:Wehavealreadydiscussedthemethodoffindingsquarerootbyprimefactorisationmethod.Forlargenumbers,itbecomeslengthyanddifficult.So,toovercomethisproblemweusedivisionmethod.Letusfindthesquarerootof784bydivisionmethod.Step1:Pairthedigitsofthegivennumber,startingfromunitsplacetotheleft.Placeabaroneachpair.

Step2:Findthelargestnumberwhosesquareislessthanorequaltothefirstpairorsingledigitfromleft(i.e.2).Takethisnumberasthedivisorandthequotient.

Step3:Subtracttheproductofthedivisorandquotient(2×2=4)fromfirstpairorsingledigit(i.e.7–4=3)

Step4:Bringdownthesecondpair(i.e.84)totherightoftheRemainder(i.e.3).Thisbecomesthenewdividend(i.e.384).

Step5:Forthenextpossibledivisordoublethequotient(i.e2×2=4)andwriteaboxonitsright.

Step6:Guessthelargestpossibledigittofilltheboxinsuchawaythattheproductofthenewdivisorandthisdigitisequaltoorlessthanthenewdividend(i.e.48×8=384).

Step7:Bysubtracting,wegettheremainderzero.Thefinalquotient28,isthesquareroot

=28

Think,DiscussandWriteObservethefollowingdivisions,givereasonswhy8inthedivisor48isconsideredintheaboveexample?

Now,wewillseesomemoreexamples.Example7:Findthesquarerootof1296

Solution:Step1

Step2

Step3

Step4

Step5Observe

Example8:Findthesquarerootof8281

Solution:ThereforeObserve

Example9:FindthegreatestfourdigitnumberwhichisaperfectsquareSolution:Greatestfourdigitnumberis9999

Wefindsquarerootof9999bydivisionmethod.

Theremainder198showsthatitislessthan9999by198Thismeansifwesubtract198from9999,wegetaperfectsquare.∴9999–198=9801istherequiredperfectsquare.

Example10:Findtheleastnumberwhichmustbesubtractedfrom4215tomakeitaperfectsquare?Solution:Wefindbydivisionmethodthat

Theremainderis119Thismeans,ifwesubtract119from4215.Wegetaperfectsquare.Hence,therequiredleastnumberis119.

6.8Squarerootsofdecimalsusingdivisionmethod:

LetusbeginwiththeexampleStep1:Placethebarsontheintegralpartofthenumberi.e.17intheusualmanner.Placethebarsoneverypairof

decimalpartfromlefttoright

Step2:Findthelargestnumber(i.e.4)whosesquareislessthanorequaltothefirstpairofintegralpart(i.e.17).Takethisnumber4asadivisorandthefirstpair17asthedividend.Gettheremainderas1.

Divideandgettheremainderi.e.1

Step3:Writethenextpair(i.e.64)totherightoftheremaindertoget164,whichbecomesthenewdividend.

Step4:Doublethequotient(2 4=8)andwriteitas8intheboxonitsright.Since64isthedecimalpartso,putadecimalpointinthequotient(i.e.4)

Step5:Guessthedigittofilltheboxinsuchawaythattheproductofthenewdivisorandthedigitisequaltoor

lessthanthenewdividend164.Inthiscasethedigitis2.Divideandgettheremainder.

Step6:Sincetheremainderiszeroandnopairsleft.

Now,letusseesomemoreexamples.Example11:Findthesquarerootof42.25usingdivisionmethod.

Solution:Step1:

Step2:

Step3:

.Example12:FindSolution:

Therefore =9.8

6.9Estimatingsquarerootsofnonperfectsquarenumbers:

Sofarwehavelearntthemethodforfindingthesquarerootsofperfectsquares.Ifthenumbersarenotperfectsquares,thenwewillnotbeabletofindtheexactsquareroots.Inallsuchcasesweatleastneedtoestimatethesquareroot.Letusestimatethevalueof tothenearestwholenumber.300liesbetweentwoperfectsquarenumbers100and400

∴100<300<400102<300<202

i.e.10< <20Butstillwearenotveryclosetothesquarenumber.weknowthat172=289,182=324Therefore289<300<324

17< <18As289ismorecloserto300than324.Theapproximatevalueof is17.

Exercise-6.3

1.Findthesquarerootsofthefollowingnumbersbydivisionmethod.(i)1089(ii)2304(iii)7744(iv)6084(v)9025

2.Findthesquarerootsofthefollowingdecimalnumbers.(i)2.56(ii)18.49(iii)68.89(iv)84.64

3.Findtheleastnumberthatistobesubtractedfrom4000tomakeitperfectsquare4.Findthelengthofthesideofasquarewhoseareais4489sq.cm.5.Agardenerwishestoplant8289plantsintheformofasquareandfoundthattherewere8plantsleft.Howmanyplantswere

plantedineachrow?6.Findtheleastperfectsquarewithfourdigits.7.Findtheleastnumberwhichmustbeaddedto6412tomakeitaperfectsquare?8.Estimatethevalueofthefollowingnumberstothenearestwholenumber

(i) (ii) (iii) CubesandCubeRoots6.10CubicNumbers

Weknowthatacubeisasolidfigurewithsixidenticalsquares.

NowletusmakecubicshapesusingtheseunitcubesS.No.FigureLengthofthesideNo.ofunitcubesused

1 11

2 28

3 327

Canyoumakenextcube?Guesshowmanyunitcubesarerequiredtomakeacubewhosesideis5units?So,werequire1,8,27,64……..unitcubestomakecubicshapes.Thesenumbers1,8,27,64……arecalledcubicnumbersorperfectcubes.

As1=1×1×1=13

8=2×2×2=23

27=3×3×3=33

64=……..×……×……=So,acubenumberisobtainedwhenanumberismultipliedbyitselfforthreetimes.Thatis,cubeofanumber‘x’isx×x×x=x3

Is49acubenumber?No,as49=7×7andthereisnonaturalnumberwhichwhenmultipliedbyitselfthreetimesgives49.Wecanalsoseethat3×3×3=27and4×4×4=64.Thisshowsthat49isnotaperfectcube.

TryThese

1.Is81aperfectcube?2.Is125aperfectcube?

Observeandcompletethefollowingtable.NumberCube113=1×1×1=1223=2×2×2=8333=3×3×3=27443=4×4×4=64553=5×5×5=125663=6×6×6=………773=………………=…………..883=………………=…………..993=………………=…………..10103=………………=…………..

Think,DiscussandWrite

(i)Howmanyperfectcubenumbersarepresentbetween1and100,1and500,1and1000?(ii)Howmanyperfectcubesaretherebetween500and1000?

Followingarethecubesofnumbersfrom11to20NumberCube

111331121728132197142744153375164096174913185832Doyoufindanythinginterestinginthesumofthedigitsinthecubesof17and18?196859208000

Fromthetable,wecanseethatcubeofanevennumberisalwaysanevennumber.Doyouthinkthesameistrueforoddnumbersalso?Wecanalsoobservethat,ifanumberhas1intheunitsplace,thenitscubeendswith1.Similarly,whatcanyousayabouttheunitsdigitofthecubeofanumberhaving0,4,5,6or9astheunitsdigit?

TryThese:

1.Findthedigitinunitsplaceofeachofthefollowingnumbers.(i)753(ii)1233(iii)1573(iv)1983(v)2063

6.11Someinterestingpatterns:1.AddingconsecutiveoddnumbersObservethefollowingpatterns.

1=1=13

3+5=8=23

7+9+11=27=33

13+15+17+19=……=…….Canyouguesshowmanynextconsecutiveoddnumberswillbeneededtoobtainthesumas53?2.Considerthefollowingpattern

23−13=1+2×1×3=733−23=1+3×2×3=1943−33=1+4×3×3=3753−43=……………..=..............

Usingtheabovepatternfindthevaluesofthefollowing(i)103−93(ii)153−143(iii)263−253

3.Observethefollowingpatternandcompleteit13=12

13+23=(1+2)2=(3)2

13+23+33=(1+2+3)2=()2

13+23+33+43=(_____)2

………………….=(1+2+3+....+10)2

Hencewecangeneralizethat,Thesumofthecubesoffirst‘n’naturalnumbersisequaltothesquareoftheirsum.i.e.13+23+33+………+n3=(1+2+3+....+n)2.

6.12CubesandtheirPrimeFactors:

Considerthenumbers64and216Resolving64and216intoprimefactors64=2×2×2×2×2×2216=2×2×2×3×3×3Inboththesecaseseachfactorappearsthreetimes.Thatistheprimefactorscanbegroupedintriples.Thus,ifanumbercanbeexpressedasaproductofthreeequalfactorsthenitissaidtobeaperfectcubeorcubicnumber.Is540aperfectcube?

Resolving540intoprimefactors,weget540=2×2×3×3×3×5Here,2and5donotappearingroupsofthree.Hence540isnotaperfectcube.

DoThese

1.Whichofthefollowingareperfectcubes?

(i)243(ii)400(iii)500(iv)512(v)729Example13:Whatisasmallestnumberbywhich2560istobemultipliedsothattheproductisaperfectcube?

Solution:Resolving2560intoprimefactors,weget2560=2×2×2×2×2×2×2×2×2×5ThePrimefactor5doesnotappearinagroupofthree.So,2560isnotaperfectcube.Hence,thesmallestnumberbywhichitistobemultipliedtomakeitaperfectcubeis5×5=25

Example14:Whatisthesmallestnumberbywhich1600istobedivided.sothatthequotientisaperfectcube?Solution:

Resolving1600intoprimefactors,weget1600=2×2×2×2×2×2×5×5Theprimefactor5doesnotappearinagroupofthreefactors.So,1600isnotaperfectcube.Hence,thesmallestnumberwhichistobedividedtomakeitaperfectcubeis5×5=25

Exercise-6.4

1.Findthecubesofthefollowingnumbers(i)8(ii)16(iii)21(iv)30

2.Testwhetherthegivennumbersareperfectcubesornot.(i)243(ii)516(iii)729(iv)8000(v)2700

3.Findthesmallestnumberbywhich8788mustbemultipliedtoobtainaperfectcube?4.Whatsmallestnumbershould7803bemultipliedwithsothattheproductbecomesaperfectcube?5.Findthesmallestnumberbywhich8640mustbedividedsothatthequotientisaperfectcube?6.Ravimade a cuboid of plasticine of dimensions 12cm, 8cm and 3cm.Howmanyminimumnumber of such cuboidswill be

neededtoformacube?7.Findthesmallestprimenumberdividingthesum311+513.6.13CuberootsWeknowthat,werequire8unitcubestoformacubeofside2units(23=8)similarly,weneed27unitcubestoformacubeofside3units(33=27)Suppose,acubeisformedwith64unitcubes.Thenwhatcouldbethesideofthecube?Letusassume,thelengthofthesidetobe‘x’

∴so064=x3Tofindthesideofacube,itisnecessarytofindanumberwhosecubeis64.Therefore,findingthenumberwhosecubeisknowniscalledfindingthecuberoot.Itistheinverseoperationofcubing.As,43=64then4iscalledcuberootof64Wewrite .Thesymbol denotescuberoot.Hence,anumber‘x’isthecuberootofanothernumbery,ify=x3thenx= .

(1unitcube)(2unitcube)(3unitcube)(4unitcube)

Completethefollowingtable:CubesCuberoots13=1 =123=8 =233=27 =343=64 =453=125 =563=…... =673=……. =783=…… =8……=...................=...........……=.......................=.........6.14FindingcuberootthroughPrimeFactorizationmethod:Letusfindthecuberootof1728byprimefactorizationmethod.

Step1:Resolvethegivennumber1728intoprimefactors.1728=2×2×2×2×2×2×3×3×3

Step2:Makegroupsofthreeequalfactors:1728=(2×2×2)×(2×2×2)×(3×3×3)

Step3:Chooseonefactorfromeachgroupandmultiplybydoingso,weget=2×2×3=12

∴ =2×2×3=12LetusseesomemoreexamplesExample15:Findthecuberootof4096?Solution:

Resolving4096intoPrimeFactors,weget4096=(2×2×2)×(2×2×2)×(2×2×2)×(2×2×2)

=2×2×2×2=16∴ =16

6.15Estimatingthecuberootofanumber

Ifweknowthat,thegivennumberisacubenumberthentofinditscuberootthefollowingmethodcanbeused.Letusfindthecuberootof9261throughestimation.Step1:Startmakinggroupsofthreedigitsstartingfromtheunitplace.

i.e.9261secondfirstgroupgroup

Step2:Firstgroupi.e.261willgiveustheunitsdigitofthecuberoot.As261endswith1,itscuberootalsoendswith1.So,theunitsplaceofthecuberootwillbe1.

Step3:Now,takesecondgroupi.e.9.Weknowthat23<9<33.Asthesmallestnumberis2,itbecomesthetensplaceoftherequiredcuberoot

Exercise-6.5

1.Findthecuberootofthefollowingnumbersbyprimefactorizationmethod.(i)343(ii)729(iii)1331(iv)2744

2.Findthecuberootofthefollowingnumbersthroughestimation?(i)512(ii)2197(iii)3375(iv)5832

3.Statetrueorfalse?(i)Cubeofanevennumberisanoddnumber(ii.)Aperfectcubemayendwithtwozeros(iii)Ifanumberendswith5,thenitscubeendswith5(iv)Cubeofanumberendingwithzerohasthreezerosatitsright(v)Thecubeofasingledigitnumbermaybeasingledigitnumber.

(vi)Thereisnoperfectcubewhichendswith8(vii)Thecubeofatwodigitnumbermaybeathreedigitnumber.

4.Findthetwodigitnumberwhichisasquarenumberandalsoacubicnumber.

Whatwehavediscussed

•Estimatingnumberofdigitsinsquareofanumber.•Squarenumberswrittenindifferentpatterns.•a,b,carepositiveintegersandifa2+b2=c2then(a,b,c)aresaidtobePythagoreantriplets.•Findingthesquarerootsbyprimefactorisationanddivisionmethod.•Squarerootistheinverseoperationofsquaring.•Estimatingsquarerootsofnonperfectsquarenumbers.•Ifanumberismultipliedthreetimesbyitselfiscalledcubenumber.•Findingcuberootbyprimefactorisationmethod.•Estimatingcuberootsofanumber.•Thesquareofintegerisaintegerandasquarenumber,whereassquareofrationalnumberisaperfectsquare.

EternaltriangleTheformulaethatwillgiveintegralsidesofaright-angledtrianglehavebeenknownsincethetimeofDiophantusandtheearlyGreeks.TheyareonelegX=m2−n2

secondlegY=2mnHypotenuseZ=m2+n2

Thenumbersmandnareintegerswhichmaybearbitarilyselectus.ExamplemnX=m2−n2Y=2mnZ=m2+n2

2134532512135221202943724254115827

T

=2×11=2224842242

1112111111212962648232421623813273933152025540538132739331

272023602180290345315551240022002100250525551260002300021500275033755125525551

Observe

Observe

Y=2mnX=m2−n2

Z=m2+n2