116
SPACE FRAMES --STATIC ANALYSIS

SPACE FRAMES --STATIC ANALYSIS - MacSphere

Embed Size (px)

Citation preview

SPACE FRAMES --STATIC ANALYSIS

VIBRATION ANALYSIS AND DESIGN OPTINISATION

STUDIES OF SPACE FRAMES

I - STATIC ANALYSIS

BY

S. K. TIWARI

A Thesis

Submitted To The Faculty of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree ·

Master of Engineering ~

McMaster University

May, 1968

~~STER OF ENGINEERING (1968) (Mechanical Engineering)

McMASTER UNIVERSITY Hamilton~ Ontario.

TITLE: Vibration Analysis and Design Optimisation Studies

of Space .Frames - Static Analysis

AUTHOR: Sanat Kumar Tiwari, B.Sc. (Banaras Hindu University)

B.E. ·(Hons.) (Saugor University)

SUPERVISOR: Professor J. N. Siddall

NUf·1BER OF PAGES: vii 9 · 108

SCOPE AND CONTENT:

An oblique four bar structural model with fixed member ends,

being the most general building block for space frames, is analysed

for establishing its influence coefficients, using the Finite

Element i'~atrix ~1ethod.

Experimental techniques for measurement of the flexibility

influence c.oeffi ci ents of the mode 1 are described.

-Experimental results have been compared against analytical

ones ..

ii

ACKNOWLEDGEMENTS

It is a pleasure to the author to be able to record his

gratitude to Professor J. N. Siddall and Dr. M. A. Dokainish for

their interest, guidance and many valuable suggestions.

The author feels indebted to the Department of Mechanical

Engineering and the Canadian Armament Research & Development

Establishment for the opportunity to participate in the project.

Further~ the author wishes to express his appreciation to all

who directly or indirectly offered help at various stages.

Finally, the assistance of Mrs. Anne Woodrow in typing the

manuscript ts thankfully acknowledgedo

iii

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS v

ABSTRACT vi

INTRODUCTION 1

THE PHYSICAL MODEL 12

THEORETICAL ANALYSIS 12

The Mathematic Model 14

Analysis 15

EXPERIMENTAL ANALYSIS 25

RESULTS AND CONCLUSIONS 35

FIGURES 43

APPENDICES

I. Computer Programmes 58

II., Analytical Flexibility Matrix 71

III .. Experimental Flexibility Matrix 85

IV. Percentage Error r~ati rx 99

iv

LIST OF ILLUSTRATIONS

FLO~~ CHART (Computer Programme)

HISTOGRAMS (Results)

FIGURES

21

37

43

1 Overall Picture of the Set Up 44

2 Details of Displacement Transducer 45

3 Details of Ball Joint for Loading Frame 45

4 Overall Picture of Angular Measurement Arrangement 46

· 5 Detail of Telescope 46

6 Installation of Devise to Eliminate Rotation 47 Error in Linear Displacement·

7 Devise to Eliminate Rotation Error in Linear 47 Displacement Measurements

8 Discretised Mathematical Model 48

8a Model Dimensions and Material Properties 49

9 Top Plate and the Composite Element 50

10 Error in Angular r~easurement 51

11 Sign Conventions 52

11 a Tenns in Matrix R 53

12 Resolution of Linear Displacement 54

v

ABSTRACT

This research p~ogramme has the general objective of

establishing analytical techniques for analysis of indeterminate

spatical frames and shells under dynamic loading, and the design

optimisation of these structures under the constraints of dynamic

loading. Although techniques developed should have wide

applicability, emp0asis will be placed, for experimental and .

illustrative purposes, on structural configurations common to

machine structures.

Recent success of the finite element matrix method and

progress in the field of nonlinear optimisation provide a rational

basis for the synthesis of space frames, with emphasis on configur­

ations common to mechanical engineering structures.

For the initial stage of the project a highly redundant oblique

four bar space frame was selected to investi~ate into the nature of

·:.Problems involved in the optimisation of generalised space frames

subject to dynamic constraints.

The present work relates to the st~tic analysis of the frame

including a theoretical analysis based Qn the finite element approach

and experimental determination of the influence coefficients.

vi

The average percentage error ·;n actual measurement varies

approximately from four percent for larger flexibility influence

coefficients to about ten percent for smalller ones.

Related studies will examine the dynamic analysis of the

structure, and the optimisation prob1eme

vii

INTRODUCTION

This research programme has the general objective of establishing

analytical techniques for analysis of indeterminate spatial frames

and shells under dynamic loading, and the design optimisation of

these structures under the constraints of dynamic loading. Although

techniques developed should have wide applicability, emphasis will

be placed, for experimental and illustrative purposes, on structural

configurations common to machine structures.

This present work relates to the first stage of this programme

in which the problem. is explored by examining a simple discrete

element space frame with generalized characteristics. More

specifically, this thesis is concerned with the static analysis

of the structure, including a theoretical and experimental

determination of influence coefficients and stress-load transfer

matrices. Related studies· will examine the dynamic analysis of

the structure, and.the optimisation problem. The following

discussion reviews· the overall problem.

1

2

Design systhesis essentially is an evolutionary spiral process

involving a complex feed back interrelating the fields of creativity,

past experience and tools of analysis. The role of the designer

is to optimise the value of a synthesis on the basis of some

criteria through a balanced exploitation of the evergrowing

information from all the three fields. The basic techniques and

the criteria of evaluation themselves need refinement from time to

time in the light of achievements in the foregoing areas.

The process has been marked with a rather slow progress in the

field of mechanical engineering structures, mainly due to their

inherent nature. These have not received the intensive

investigation that civil and aerospace engineering configurations

have. Analysis of mechanical engineering structures has perhaps

1 agged behind because they are. much more di ffi cult to categorise

than in the· other fields where a few highly typical configurations

can be recognised~ modelled and studied .. in a concentrated way. In

addition, the analytical tools available until lately have had

their own limitations.

1 ,2 These methods can be broadly classified into two divisions,

(1) Methods based on exact solution of the differential equations

describing the structure.

Apart from the difficulties in se-tting up and solving the

equations subject often to awkward boundary conditions, in case of

3

. complex structures the basic assumptions proved too restrictive

for accurate solution.

(2) Approximate methods involving mathematical approximations

can be subclassified into -

(a) Those based on finite difference procedures. These

are unsatisfactory in their formulation of boundary

conditions and convergence characteristics, and

(b) Those which approximate the stress or displacement

distribution by a series of analytical expressions and

hence are unsuited for complex structures.

The classical ·analytical tools are thus incapable of providing

an integrated approach even for structures of moderate complexity.

Hence it i~ not surprising that the practical design of mechanical

engineering structures has relied more on past practical experience

supported by rough analytical checks wherever possible, rather than

on the analytical tools.

The need for a tool well suited to complex configurations was

most acute in the aircraft industry where the designer had to work

within extremely narrow margins of practical expediency3. The

extensive efforts over years by numerous and often isolated workers

culminated in the finite element approach which is a major break­

through from the past.

4

Based on structural as against mathematical approximation, the

method essentially seeks to idealise the structure into an assembly

of a finite number of discrete elements connected at a finite

number of points, and then proceeds to solve for the system response

on an exact mathematical basis. It is the finite connectivity

which permits a complex continuous structure to be analysed by a

system of algebraic equations and forms the basis of the technique.

Although earlier work was restricted to the field of aeronautical

engineering, recently results of applications to nonaeronautical

problems 4' 5' 6 and extensions to three dimensional discrete elements7

have been reported.

It is realised that, although the finite element technique

is still developing, it provides a unified approach to the analysis

of any type of structural assembly, from any field and with any

combination of one, two or three dimensional elements of different

characteristics4• It thus provides a reliable analytical tool

which is a prerequisite for design systhesis.

A rather limited amount of work appears to have been done on

the general problem of elastic vibration of structures and the

problem of optimisation under vibrational constraints, although

techniques for calculating the natural modes and frequencies of

lumped mass spatial structures are fairly well established for

essentially beam like aircraft structures, and to a lesser extent

5

the rectangular frames of civil engineering. The significance

of rotary inertia in spatial frames does not appear to have

been studied. Archer8' 9 has provided two useful new papers

in this field and has related it to the finite element stiffness 10 matrix technique. Hurty has developed a method for analysing

complex structural systems that can be divided into interconnected

components.

The concept of optimum design has registered a drastic change

since the advent of high speed digital computers. Ear 1 i e r, the

magnitude of computation involved acted as a deterent and a feasible

solution w~s.accepted in lieu of the optimum. With computers

·-·to handle the arit~metic, systematic design synthesis has become

a reality.

Very many general techniques of optimisation appear in the

literature that might be applied to structural optimisation. Most

promising are the Direct Search Method first suggested by Hooke

and Jeeves and further deve 1 oped by Flood and Leon 11 , the r~ethod 12 of Successive Linear Approximation due to Griffith and Stewart ,

and the. Random Method of Di~kinson 13 •

Minimisation of weight, weight stiffness ratio, cost, volume

for a homogeneous structure, etc. have been suggested as criteria

for optimisation of structures, but mjnimisation of _weight appears

to have been accepted as the most satisfactory one even though the

G

minimum weight design is not always the minimum cost design.

The optimisation of a statically determinate truss subjected

to single loading is a problem in analysis rather than synthsise

For strength design, member cross sections are proportioned to

develop maximum allowable stress for the required failure mode.

For optimum stiffness design based on minimisation of weight

per unit stiffness, stiffness being defined as the reciprocal of

strain energy~ the members should carry stresses proportional

to the square root of the product of the modulus of elasticity and

specific 111eight. The constant of proportionality i's based on

stiffness requirements 14

For a. given determinate truss under multiple load condition

the problem essentially remains the same. All the member cross

sections carry the maximum allowable stress, based on strength

or stiffness design, at least under one load condition. The

optimum design has come to be recognised'as a fully stressed

design.

In the case of indeterminate trusses~ for a given configuration,

applied loading and allowable stress, the cross sectional area

of the members and hence the weight of the structure are functions

of forces in the redundant memberso Sved15 has shown analytically

that under single load conditions the minimum weight structure is

always determinate.

7

Using the Lagrange multiplier·technique~ L~ C. Schmidt16

has

shown that under alternative loads numerous fully stressed designs

of an indeterminate truss existo Due to the prohibitive nature

of computations involved in arriving at the minimum weight he has

suggested two complementary relaxation methods to arrive at a

fully stressed design.

The beginning of the present decade marked a radical departure

in the approach to structural optimisation. It came to be accepted

as a problem in mathematical programming with Schmit17 as the

pioneer. Utilising the joint force and displacement formulation

of structural analysis as first proposed by Klein 18 , he has optimised

a fixed configuration three bar truss subject to three alternate

1 oads. He treated it as a problem in nonlinear programming by

adopting a modified steepest descent method designated as the method

of alternate steps. On encountering an inequality constraint:. v1hich

must be convex, the ~earch moves along a constant weight plane in the

feasible region until the constraint is again contactedo It then

steps back halfway, and then continues.to move along the steepest

slope .. On the basis of numerical results he concludes that in

terms of design parameter space the minimum we.ight design need not

be a fully stressed design lying at the apex of constraint hyper­

planes ..

8

19:.20 . Subsequently 1n collaberation with Mallett and Kicher

he extended the above to the problem of selecting a suitable

configuration and material for the three bar truss& Various

optimum designs were compiled by changing the material or config-

uration~ one at a time in discrete steps. The best of all these

design was chosen.

Dorn et a1 21 have proposed a linear programming method which

selects the optimum combination of configuration and member cross

section from a wide classes of admissible trusses defined by a given

number of admissible joints connected in all possible ways by linear

members. The optimisation is based on a modified simplex method

capable of handling large number of equationsQ The results provide

an interesting study in the behaviour of optima due to change in load

and the height-span ratio of the truss. The configuration remains

the same for the load for a certain change in height-span ratio~~

ahd then alters~ as c< continues to change. Thus a continuous

spectrum is provided from which the value of a< giving the absolute

minimum weight truss and the configuration itself could be selectedG

Best22 has optimised a cantilever box beam by the steepest

descent'method .. It has one unique featureQ The partical

derivatives of stress and deflections with respect to the design

parameters are calculated by the finite· difference approximation

using the stiffness 'matrix~ which must be inverted to obtain the

9

deflections. To avoid the time ·consuming process of inversion

at every step he adopts an interative scheme to obtain the deflections.

Only the incremental stiffness matrix for a given change in design

parameter is calculated which, in conjunction with the previously

inverted stiffness matrix, rapidly converges to the required dis-

placements on iterationso This feature is said to substantially

reduce the calculation time. Constraints on stresses and deflections

are handled by a version of tbe reduced gradient method. His

solution is a maximum stress solution~ and thus forced to be on a

boundary.

The presentation of the structural synthesis as an unconstrained

minimisation problem by Schmit and Fox23 is uniqueQ It is based on

the method of solving linear simultaneous equations by minimising

the sum of squares of the residuals to zero. This expression is

set up for·the equality co~straints defining the stresses~ To this

is added penalty terms for violated inequality constraintsg which are

.all simple upper and lower bounds. The actual quantity to be

optimised~ the weight~ is treated as an inequality constraint~

requiring that the weight be less than an arbitrarily defined draw

down \\Ieight$ The problem is now an unconstrained optimisation

problem solved by a gradient method. It is repeated using progress-

ively lower draw-down weights until the optimisation function cannot

be made zero. This indicates that the draw-down w~ight is lower

than the inherent minimum weight. 'rhe method thus actually requires

10

a series of optimisations. It does not seem too applicable

to complex probiems; as the constraints must be expressed explicitly

in order to set up the residualsQ

equality constraints are ruled outQ

The implicit matrix form of

Razani 24 has proposed an unconventional approach using an iterative

technique ·in which areas are changed by successive increments from

an initial feasible solution so that each member is fully stressed

in at least one of the several possible load conditions. This

gives a feasible solution forced to be on a boundarya The true

minimum. may not be on a boundary if the stress is indeterminate.

The gradient projection technique has been successfully adopted 25

by Brown and Alfredo to optimise a portal frame and a two storey

single bay frame. The search begins at a feasible starting.point

until constraints are encountered& At this point the constraint

hypersurfaces are approximated by hyperplanes and gradient of the

objective function is projected on the line of intersection of these

planes. After a move along the indicated direction a correction

is indicated due to the nonlinearity of the constraint hypersurfaceso

The authors have proposed the use of only one design parameter for a

member as variable vJhi le the rest of the parameters for the same member

are expressed as functions of the selected one. As moment of

inertia of the members has a predominant effect on the behaviour of

the structure~ other. parameters are expressed as functions of moment

of inertia. Inspite of this simplification the procedure seems

11

too invloved for complex structures.

Young and Christiansen 14 have provided the first known optimal

structural design technique using vibrational constraints using

an iterative technique. Adjustment of the member area to achieve

a fully stressed design simultaneously with the required resonant

frequency characteristic is the main feature. An application to

pin jointed space .truss is includedo

12

THE PHYSICAL MODEL

For the first stage of the project it was decided to examine

a simple but highly redundant space frame with generalised

characteristics. An oblique four bar frame without symmetry and

~vith fixed member ends illustrated in Figure 1 ~"as selected. The

obliquity of the bars ensured assymmetry of static and dynamic

response. The four bars are welded at the base to a half inch

thick aluminum alloy plate at a~24 inch square spacing. The top

ends of the bars are brought close together and welded to another

half an inch thick aluminum plate at a square spacing of 2.5 inches.

It is extremely important for the accuracy of the results that

deflection of the bars at the ends fixed to the base plate are small

as compared to the relative displacement between points on the

structure due to applied load. To ensure this the base plate is

bolted firmly around each leg of the structure between 1.25 inches

thick steel plates. The point at which the external loads are

applied is located at the centre of the top plate.

THEORETICAL ANALYSIS

The decision was made to first examine the problem using

the finite element - matrix approach.

by this method is well established.

Static analysis of structures

During the earlier stages of

development the literature v1as in the form of a number of short

individual publications marked by variety of notations and seemingly

13

different approaches to the same basic technique, often applied

to specific situationsQ The most oft quoted work as the first

comprehensive presentation of the subject is by Argyris and Kelsey26

.

Results of a more recent survey of the finite element method with a

vie\-J to unifying the techniques and classifying the approaches to

derivation of element properties has been presented by Gallagher

2 7 b k b z . k . . 30 . t . 1 1 et al . The very recent oo y 1en 1ew1cz 1s par 1cu ar y

comprehensive and useful.

The finite element analysis of a general structure consists of

three distinct phases4 -

(1) Structural idealisation wherein the original structure

is represented as an assembly of discrete elements,

(2) Evaluation of element properties,

(3) Analysis of the discretised structure.

Phase 1 introduces into the anlaysis the first of the approx-

imations. Judgement is required to provide a discretisation capable

of reasonably accurate results but in general is not a difficult

prob 1 em.

The success of the method and its extension to new areas depend

almost entirely on the second phase. It is therefore not surprising

that the derivation of element properties of various shapes has

received such wide attention. TvJo .levels of approximations are

involved in the development of these properties - assumptions about

14

the essential element behaviour and secondly representation of

distributed stress and displacements in terms of nodal forces and

displacements 27.

The third phase like any other method of structural analysis

seeks to satisfy the conditions of equilibrium, compatibility and

force displacement relationship~ simultaneously. Depending on

\'lhether compatibility or equilibrium equations are utilised first,

the methods can be classified into the equilibrium or displacement

method and the compatibility or force method. The procedural

details of these methods are readily available in a number of excellent

1. . 28~29,30.

recent pub 1cat1ons •

The Mathematical Model:

The analytical procedure uses two mathematical models - static ..

and dynamic. The later is usually an extension of the static

model. The accuracy of analytical dynamic response depends on the

number of nodes selected for formulation of the mass matrix. The

amount of experimental work involved in determination of the influence

coefficients, however, increases in proportion to the number of nodes.

As a compromise each member was discretised into three equal lenghts.

For the static model the top plate was treated as rigid due to

its relatively small size and comparatively l~rge thickness. It \-Jas

ide ali sed into four rigid bars each jo"i n·i ng the centre of the top

plate to the point of intersection of a member axis with the plate.

15

The combination of the rigid element and the corresponding flexible

member element was treated as an integral finite element, and the

element property was formulated as such.

The static mathematical model thus consisted of t~tJelve discrete

elements. The arrangement of the elements in the physical

model is shown in Figure 8 •

Analysis:

The analysis was subject to the usual limitations of small

displacements and linearity of stress-strain and force-displacement

relationshipso The weight of the structural elements was neglected

as being small compared to their load capacity. In evaluating the

element characteristie:.matrix the deflection due to shear was neglected

The dfsplacement method was adopted as it is simple and

strai ghtfonvard to programme.

The basic assumptions used in this method are -

(1) Boundary displacements of adjacent elements are mutually

compatiblell

(2) Stresses in the elements due to the boundary displacements are

equilibrated by a set of forces at the element boundary in

the direction of the displacements, and

(3) Element forces are related tb the corresponding element

displacements by an element stiffness matrix expressed by

16

the matrix equatione

{ pi} :. [kil{Si} ( 1 )

where { Pl·} is the element boundary forces vector,

[ ki] is the element stiffness matrix,

{ b£} is the element boundary displacement vector~ ..

refers to the element number l

For all the elements treated as unconnected Equation (1) can be

vJri tten as { P} = [k] \S"} (2)

\·Jhere t P) r P£_}

= t ~.J PVII

and n is the total number of

elements in the structure

Also

[ ~] =

and { s}

S·t: 1 d-j .

b,J When elements are connected together to form a structure

Equations (l) can combined into a singl~ relationship. .. _-.:..

{ F} (3)

\vhere {F} is the structDral joint forces vector

tj~] is the structural assembly stiffness matrix

17

and is the structural joint displacement vector.

Element boundaries have the same displacements as the structural

joints to which they are connected if both are referred to a common

coordinate system. This can be expressed by

(4)

where [ ~ ] is the displacement transformation matrix. It consists

of zero and one as elements. If the displacements are referred to

different coordinate systems the relation (4) still holds but

e 1 ements of rna tri x [f.'] contain e 1 ements of the coordinate trans-

formation matrix. The work done in loading the structure by the

applied loads{F} must be equal to the internal energy. Therefore

from Equation (2) and (3)

But

Therefore

or

2 {SiH P}

2 { oT}[ ~~J{S}

~ { bT\ l ~] [~] {u} 2

{u.T}[~T]

~ { ll}[~T]f ~] [£3]{ u}

[ ~-r][ V<.] [fl { u.1

(5)

(6)

(7)

18

Comparing Equations (3) and (7) we see that

[ K] (8)

[ ~] is a sparsely populated matri xQ The matrix product

indicated by Equation (8) 11 therefore,·can be a very time consuming

step particularly for large structures. However, the structural

stiffness matrix [~] can be generated· directly by assembling the

element stiffness matrices already transformed into the structural

coordinate system. This method has come to be known as the 3:~33

Direct Stiffness Method

The assumption of rigidity of the plate and the selection of the

displacement method precluded the choice of more than one node on

the top plate. If more than one node is selected the flexibility

matrix will hav~ dependent displacement rows. Hence its inverse, 28

the stiffness matrix, does not exist Imposition of a one node

condition dictated the use of integral elements made up of flexible

and rigid components. The combination shown in Figure (8) was

achieved by the transformation of the stiffness matrix of the flexible

component BC by the equilibrium matrix of the rigid component CD

according to the expressions given beleN 3J~ 32 ...

[~ul - [K,,Jec - BD

' -\ T

[l~t2.] BD - [K12) .. [ Hco] (9) ec.

[ l/\22) BD - [1-\:o] [,, K '-2 j sc [ i1 ~~ f

19

where

BD is the composite element,

[ H c 0 ] i s the eq u i 1 i b ri urn rna t ri x of CD

·K K etc. are 6 x 6 submatrices of the element stiffnesses ~~.? B a.

in system coordinates.

The following computer programmes were used in the analysis.

Subroutine TRANF:

With position coordinates of member ends and components of a

unit vector along the member Y axis as the input, the subroutine

calculates the coordinate transformation matrix and checks it for

orthogonality. If this condition is not satisfied execution is

terminated after printing out an error message.

Subrountine STIFCO:

Area of cross section and moment of inertia are read in along

with the elastic modulii~ Depending upon the value of an index,

the output is a stiffness matrix in membe~·.coordinates or in system

coordinates, or is the stiffness matrix of a composite element.

Subroutine TRANQL:

This subroutine transforms the stiffness matrix by the equilibrium

matrix to provide the stiffness matrix of the composite element. In

20

case of shortage of storage space it can be used to provide the

12 x 12 stiffness matrix of a free element from the 6 x 6 stiffness

matrix of the same element when fixed at one end.

Subroutine ASSEMGL:

Once the stiffness matrix of all the elements has been worked

out the subroutine can assemble the structural stiffness matrix.

Main Programme:

The main programme utilises the subroutines to obtain the

structural stiffness matrix, inverts it to supply the flexibility

matrix, and checks the validity of inversion

The subroutine approach provides the more flexible and more

general progra~mes.

The scheme of computations is indicated as follows on the next

page.

b. I

ASEMBL . '

CHECK

I C{H~t~CS~TE ~-=:.;:.. - ~,----·

'E.LE.ME.NT

~ TR~~NQLI

'-~------~---------~b---------~1

1. S_.T.n.~ - O!JT!='UT ~ : - , uc~

22

For optimisation analysis a relationship between external loads

and resultant forces on member ends was required. The external

loads were to act at the apex of the structure. Hence only one

node at the top plate was required. The structure was therefore

idealised into four flexible members integral with a short rigid

element contributed by the top plate. Further the lower ends of

all the four members are fixed to the foundation, hence the structural

assembly matrix was a superimposition of submatrices for each

composite element. The structural stiffness matrix can be

expressed as

~~ -n . • T [ K] - L . [ HiJ [Ti}[ ~~2·1 L Ti}[ Hi']

i =a where [ ~22) is the element stiffness submatrix in member

6 X 6,

( 10)

coordinates

[ T] is the transformation matrix to system coordinate, 6 x 6,

[_ H J i s the eq u i 1 i b ri u m rna t r i x , 6 x 6 . 2 is the member number

If the displacements at the node are given by { u..} load by { f}

then -~

[~~]tF} 6.·~6 6)'\

The member end disp 1 a cements_ .. {d.} ~re given by

{d\}

and· exte rna 1

( ll )

( 12)

where {~]is a transformation matrix defined by expression (4)

23

For the present structure it is a column vector of four 6 x 6 indentity

matrices. Substituting (ll}in(l2) gives

[ (3] [ ~~-~] { F} ( 13) 2.4~6 G.r.G 6)'.~

Due to the special nature of [ (3 J~ for the present case we can

\vri te

{ d~i \ : . [ K .. e] { F} ( 14)

6)(.~ 6)(.G 6,..J

\vhere fdl}is the end displacement of the :/A member in system coordinates.

Transforming these displac~ments to the ends of the flexible component

( 15)

vJhere t d. if\ represents the di sp 1 a cement at the f1 exi b 1 e end of the

it~-J member, connected to the rigid part. Transforming { di-5} to

member coordinates to give { dif~"ryl. we have

t d. if }--m = [ T i 1 { Ji~} (16)

Substituting (14) and (15) into (16) w~ get

( 17)

Forces { Pa:} m at the ·free fl exi b 1 e end of each e 1 ement are given by

{ Pi}m -

Substituting (9) in (10)

..

[ ~~u] { o\if} m ( 18)

24

= 'J. T -a -~

[ k 2 &.] [ T i] ( Hi] ( K] { F} ( 19)

6')(..~ ~~~ 6~6 i&i'b '":;..t

The stresses in the member can be obtained by transforming

{ P2• }.~''~\. by a genera 1 transformation matrix [ R ] ~ Let i Si} be a

column vector of axial stress S~i and transverse shear stresses

S>'-yz and s.~zi ~ v-1here xvz. refer to member coordinates.

Then { s;} - [ R 1 { P·} l m (20).

~ )f..l 3xG 6 )(.a

Substituting ( 19) into (20) gives

= [ R] [ ~ ~ ._] [ "T i 1 [ H J r' [ K-1 ] { "F \ ~i'(G 6'li'tG ~-::tG, 6x~ 6~6 ~-.r.\

(21)

The exact nature of e 1 ements, in [ R] wi 11 depend on the member

cross-section. For a hollow circular cross-section it is given

by the following matrix.

' . l·R~CosS l • R~ S LV\ 9· ~Sine l

A I:z. Iy 0 R9

cos 0 -l-y l;z.

0 -· MA:t Sa-n 6 ~l~.y si'Y\ e ..,. R.@ St't,~ C) 0 (22) I-z · t Iy·t r~

MAz·Cose MAy (o~e RoCose 0 0

J:z• t Iy ·t. IIJ'o.

where the significance and sign convention for the terms in matrix

R are shown in Figures 11 and lla.

25

EXPERIMENTAL ANALYSIS

Both static and dynamic analysis may require the stiffness

or the flexibility matrix of the entire structure~ depending upon

the approach selected for subsequent analysis~ Experimental

compilation of the stiffness matrix would require measurement of

forces or moments at all the coordinates~ for a given displacement

at one of them~ while the displacements at all the rest are of zero

magnitude" It is obvious that direct measurement of the stiffness

coefficients would be extremely inconveniento Hence the only

a1ternative is the determination of the flexibility coefficients.

The experimental procedure generally would be to apply a known

force or a moment at a given coordinate i and measure the corresponding

linear or angular displacements at coordinate j Q The magnitude

of the displacement at j per unit force or moment at z gives the

coefficient zj of the flexibility matrix .. Inversion of the

flexibility matrix thus. obtained cans if desired~ provide the stiffness

matrix. Instrumentation was, therefore~ designed to measure flex­

ibilities.

The loading technique was to transmit sufficient force at a node

to cause displacements of convenient magnitude without appreciably

stiffening the structure. The requirement was fulfilled by two

· parts of a split collar~ held together by countersunk screws, clamped

on to the member over a 3/4 inch length, at the point of load application.

26

A small gap between the split parts· ensured a friction grip between

the member and the collar which had an outer spherical diameter

of 2 inches. A split spherical shell having 2 inches inner and

3 inches outer spherical diameters~ was locked on to the collar so

that its axis was in any position within 30° of the member axis.

It carried two pins screwed at diametrically opposite locations on

the outer surfacee Load was applied to the pins. by the ends of a

· fine steel wire which supports a pulley in a vertical plane. A load

supported by the pulley gives rise to identical tensions equal to

half the applied load~ in each section of the steel wire leaving the

pulley vertically. These tensions were transmitted through an

intermediate system of pulleyss supported by an independent tubular

framework, to the pins in the same or opposite sense according as a

force or a moment was being applied. Theoretically, the arrange-

ment ensured that the two equal tensions· would give rise, at the node,

to a resultant force or a pure moment passing through the inaccessible

member axis. The cross hairs of a levelling instrument were used

as a reference to align the sections of the steel wire in the required

horizontal or vertical directions.

The load application to the pulley was achieved by means of a

pneumatic cylinder working off 100 psi air, through a sprang balance

calibrated at Oo2 lbs per division up to 100 lbs. Alternatively the

load could be applied directly by steel weights supported on a pan

held by the pulley.

27

The objective of the measurment of displacement was to

isolate the required component~ angular or linear, for measurement

while suppressing all the other componentso The points at which

displacements were desired were inaccessible~ The situation is

represented in Figure 12o The fixed point 0 is lying on a member

axis when the structure is unloadede An orthogonal right handed

coordinate system ijk parallel to the structural coordinate system

is eatablished with origin at 0 G is a point on the member axis

coinciding with 0 before displacement. Linear and angular displace­

ments of G are defined respectively by vectors I and A with subscripts

indicating their components along corresponding coordinate direction.

The components are positive along positive coordinates. As point G I

is inaccessible, measurements are to be made at P fixed with respect

to ijk GH is a rigid linke

A plane ABCD always passing through H can be oriented perpendicular

to the desired coordinate axise H coincides with P before displace-

ment. The displacement of H from P to Q is given by~ where

-+ A~ R (23)

where R ( R.i , R~ $ Rk ) is the position vector of

PandA is small.

In terms of scaler components

28

o\i -:::. L . + A··R - At<: Rj ~ .J k

dj = L" J ·~ Ak Ri-At•Rk (24)

dk -:.:. Lk + A··R· 2 J - Aj · Ri

Suppose Li is to· be measured~ The surface ABCD is oriented

perpendicularly to the i axis at P and locked to H. ABCD has a

rigid body motion with GH but it can be ·considered first to move

parallel to itself from P to Q with displacement d and then at Q

take the required orientation A. The displacement transducer axis

is fixed and passes through P along the i axise The moving element

of the transducer derives its displacement from each phase of move-

ment of the surface ABCD, referred to above. The recorded

displacement d1 i can therefore be expressed as the sum

L i, -t A.j R k - A k RJ

+ Ak ( l. j i- A k · R i - A i · R k)

+ A. j ( s.. k +- A4.. ~j - Aj. ~i.)

(25)

It is noted that displacements due to phase II are of higher order

and can be neglected, generally

= (26)

29

It is obvious from Equation (26)that if the transducer axis coincides

with the i axis R ..0 and Rf~ wi 11 be zero and thus the effects of a 11

the other components are suppressed.

This may not always be possible. Care must be taken to

maintain the instrument either in the zi plane or the ilt plane so

that only one error term is effectiveo Further~ if surface ABCD

is not axactly perpendicular to the i axis~ phase I will contribute

two more error terms -tA~0 ~jand -Aj 0 ·dk ~where Aj"and Ak.o are the

components in initial angular displacement. of the perpendicular to

ABCD from i.

By cyclic permutation of the indices~ the expressions for the

other two coordinate directions can be obtained. The problem

of resolution of angular displacements will be discussed along with

the method.of angular measuremente

To achieve the requirements for linear measurements as discussed

above two clamps were designed as shown in Figure 6. The inner

clamp grips the member along a 1/2 inch length while providing an

outer spherical surface having a 2 inch diameter over which the

outer clamp can be fixed in any position~ The outer clamp carries

a ball-and-socket joint which in turn carries an optically flat first

surface mirror~off which the linear displacements were measured. The

mirror thus corresponds to plane ABCD~ The ball-and-socket joint

permitted the morror surface to be aligned perpendicular to the

30

required coordinate~ while the outer clamp allowed the transducer

axis to coincide with the coordinate axis along which measurements

were desirede The mirror was aligned perpendicular to the

coordinate axis by ensuring simultaneously that

(1) Reference lines on the base ot the structure and parallel

to the coordinate axis were in line with their image in

the mirror~ and

(2) A vertical plumb line was parallel to its own image in the

mirror~

The mirror provided an optically flat surf~ce and was used to align

the transducer axis with its image~ thus putting th~ transducer

perpendicular to the mirror and parallel to the desired coordinate

axis.

A capacitance type proximity transducer coupled through an

oscillator and reactance convertor to a cathode ray oscilloscope

was adopted as the linear measuring device. The transducer consists

of a fixed electrode. Any flat conducting surface parallel to

the fixed electrode can act as the moving electrode. Normally,

the moving electrode is fastened to the component whose displacement

is to be measured. In the present application the structure

had both linear as well as angular displacements whereas the proximity

transducer is designed to work when electrodes remain parallel while

31

moving towards or away from each other; When angular displace-

ments are present too high results are registered~

· To eliminate this defect the moving electrode was mounted on

·the transducer itselfo The spindle of the moving electrode was

supported jointly by two 2-1/2 inch x 1/2 inch x 5/1000 inch thick

stainless steel strips, parallel to each other~ which forced the

electrode surfaces to remain parallel during relative motion. This is

illustrated in Figures 6 and 7 o The spindle on the moving

electrode was kept in positive contact with the mirror during dis­

placement by the steel strips~ which exerted a force on the structure

of the order of Oo02 lbs or less as against 0.2 to 0.4 lbs exerted

by an average dial indicator with a least count of 080001 inches.

The errors introduced due to friction were thus minimised.

The tr.ansducer system is based on frequency modulation of a

carrier wave. The capacitance of the electrodes is in parallel

with another fixed capacitance. The combination forms a series

resonant circuit with an inductanceQ The change in distance

between the electrodes~ due to loading of the structure caused a

c~ange in reactance in the resonant circuit which is used to change

the frequency of the signal delivered by the oscillator·. The

signal is amplified and detected to provide a proportional· D.C.

voltage which was metered on the oscilloscope. Unloading the

structure restores the initial. gap between electrodes. The transducer

32

can then be calibrated by the integral micrometer producing a

deflection on the oscilloscope of the same order as that obtained

due to the load~

to be eva1uatedc

The calibration enabled the displacement

The least count of the micrometer was 0~01

wm which could be further subdivided by the oscilloscope.

of 0.5 to 1.5 mm between the electrodes was usede

A initial gap

The resolution of angular displacement into its components was

achieved by a simple optical deviceo As the magnitude of rotations

involved was small~ vectorial resolution was possible. The optically

flat first surface mirror used for linear measurements was also

· used to view the image of an illuminated transparent grid of l/40

inch squares through a levelling telescope equipped·with optical

axis and base spirit levels together with vertical and horizontal

cross hairs. The grid and the telescope were so placed that the

line of sig~t was within 5° of the perpendicular to the mirror at

the point of incidence.

The cross hairs were made to coincide with a pair of lines at

right angles to each other on the grid. · Rotation of the mirror

due to loading of the structure had three components - one about an

axis perpendicular to the mirror and two about axes in its plane. The

first had no effect on the grid image as viewed through the telescope.

The other two caused a displacement of the grid image with respect

to the cross hairs. The vertical and horizontal displacement of

33

the grid was directly proportional to twice the rotation of the

mirror about the horizontal and vertical axes respectively.

Thus viewing the mirror along the i axis provides rotations

along j and k axes and that along j axis those about i and k axes.

Readings with these two settings provided all the three rotations

and values about z provided a checko

An additional optically flat first surface mirror, mounted

close to the objective of the telescope, could be used to view the

grid reflected by both the mirrorsg thereby increasing the optical

arm. The arrangement is shown in Figures 4 & 5 The

telescope "'as further equipped with a lateral displacement type optical

vernier , with a least count of 0.001 inches which could be used to

further subdivide the 1/40 inch grid. The set up could accurately

· 1 o 1 1 o-4 · prov1de measurements with a east count of • x rad1ans up to a

distance of 200 inches between the grid and the telescope along the

line of sight.

The linear displacement of the mirror which shifted the point

of incidence along the line of sight affected the readings as

represented in Figure 10 !l which is se 1 f exp 1 ana tory. The error

~ in the reading recorded for rotation of the mirror about an

axis in its own plane but perpendicular to the plane containing the

line of sight is given by

(27)

34

ignoring the change in the included angle ~ due to mirror rotation.

t·Je can determine d i from the equation (26). The correct reading

without the linear displacement of the mirror is

= 2. .. lL · A"k (28)

Therefore the percentage error

where LL is the distance bet\'/een the mirror and the grid

In the ltJorst case oti and LL'"Ak are of the same order. Hence the

percentage error is determined by 100 sin ct appr~ximately.

It is thus obvious that by increasing the distance between

the mirror and grid and decreasing the angle between the line of

sight and the perpendicular to the mirror, the percentage error can be

decreased. In· the event that errors are still large, the reading can

be repeated after shifting the mirror~ mounted on the telescope,

through 90°.

35

RESULTS AND CONCLUSIOr!S

The analytical influence coefficients, their experimental

values and the percentage error are listed in the Apnendices II-IV

in the form of a 1m,;er triangular matrix~ No attempts have been

made to measure the coefficients if the theoretical influence

coefficients were below the absolute value of 0.25 x 10-5 for

angular ones and OQ5 X 10-5 for the linear oneso

The coefficients are classified into linear and angular

measurements. Each of these are further subdivided into three

groups each according to the order of absolute magnitude of the

analytical coefficientse The results have been presented in

the form of his tog rams for each of the above groups.

Although some of the results are higher, in general the

experimental values are lower than the theoretical ones. The

largest single reason is apparently the error in load application.

For larger values the scatter in the readings is small. The

scatter in error for smaller values of influence coefficients

would indicate that limits of instrumentation have been reached.

The resultant error is dependent upon a number of other

independent factors like error in location of the nodes, deviation

of the instrument axis from the coordinate direction, errors in

taking observations, other personal errors - to name .a few.

Effect of each of these factors vary"about some average value in a

36

random fashion during experimentation~ Hence it is natural to

expect a more or less nol"mal distribution for the resultant error

\vhich is a function of all the independent factorsQ The tendency

is brought out clearly by the histograms.

Considering the order of maqniturles of the displacements

invloved~ it can be concluded that a reasonably accurate technique

fot"' measurement of the ·f"iexibility influence coefficients, both

linear and angular, for a generalised space frame has been established.

Proximity transducer has been successfully adopted for the measurement

of linear displacements in a component having linear displacement

coupled with rotationo Large frictional and application error

inherrent in the use of a dial indicator for measurement of linear

displacements have been eliminated.

---~.~-~~·-·~-·

-

l ! I I I i I I l l c

.. _ ~~--··-··~-­------

------~·--~ ·-----

L_~l .~

~

37

' ! , .

..--;···~' IY

' 1,

~---~j r:t.

l 0

1----i

r;! !

: ;_n t(

I +

UJ ! i I

,__

__

__

_•i I

UJ ~

i :-0

:!. i

t-!

z !

UJ

j_ 0

~~

I I

!J tt 'UJ 0.

,..,. \.J

u z Ul :J _j lJ.. z a: 4 w

z

j\i') I Ct

0

L--t--0 ~-

·-1·-·----~---r

0 ~

i'.fJ

38

Li ;

()

tn

39

~----------------------------------------------~~

tU v

1(/l

z l-

)Jj 2

:> w

_

!

lL u

2

--

u.. rJ..

tL <

( U

i U1

0 2

u \

:J j I

~

'q

~

"!' 0 e r-t 0 -~

~

.. 0 lU ._, 2 ( rt

I 0 ! i_ 'J

lt\J

! I I I

l~ ,54~~

i ri

! w

I I

YJ ·~

~

f (

l \-

.j "Z

i w

l

v t~

<! l'

w

l 0-

1 1 l I~ ... ~

I I

I l l I ·~

.{-t-.') i

I I ! I~

L------------------------~~-------------~------~~------------~~------~~~ 'Z

" ~

('-\ -

I.·~

L..;, ~ --, __ I

->< .... ··0

\ C

'· U

) .

[-~

0 -~·-~..,

--/

"·' [.._

_

~

~~('J

(__) 1 ~-::~

L!_ ><

LL .

UJ 0

0 l;

l '-'-' <!J

u z

7 -4. ~

_j

::::J

\ 40

I I I i I r ! -1

_

j ~ ? i

I I I

a "\["

0 Nl

0 C\!

0 -0 0 -I

0 ('\j I 0 !'-f)

0 "\[

I

[(

c [1 .'\1 LL

w

w

0 ~ ~

z w

u (I(

w

Q...

! I I ! I iS' ~ C

• -

! X:

I UJ

-~

I u

(]c

z •.l)

0

! LLi

! I 0

; :)

L

t-_

j 1.1

!..'1 LL

u -

I

z l)

0 -.... :'* ,. ....

-u_ "!"

-

rr 0

<

li. c

l w

-.I

0 LJ

:._] 0

0)

v z

z <t

4 f{

I I ! I I I

0 --2-

··.,._j

0 M

0 ru 0 0

C)

I

0 (\]

I

{'_~tv~

-0 • ...... i

u: r{ j• I jJ

L.J 1"'1 ·\...;

/

-<', r ~-

L w

u C

( w

Q_

FIGURES

43

z

48

tOLA.N ( NOT TO SCALE )

X

FIGURE 8 DISCRETISED MATHEMATICAL MODEL

I ETC (j) ETC

TP

BP "AY z

0 1/il ..

" .... " G •

" ...

NODE POH~TS

D~SCRETE ELEMENTS

TOP PL.A..TE

BOTTOM PLATt:..

SYSTEM COORD~N/~TE.

A){E:S

49

,, ~---24 1 ~----31·35.. I PLAN

3=5"'6'-" ----~ l ( NOT TO SCALE )

-------:ss·es'-' --"~i

FIGURE 8a MODEL DIMENSIONS AND MATERIAL PROPERTIES

AREA OF CROSS SEC.TQON OfF

'ELEMENTS

MOMENT OF DNEFCnA or.:

'El'E M ENT cR6 SS .'.;\H2C.T~ O'-''

.....

.. .. ..

.. .,o

go" ..

1•0S11

II

O•S24

0 • ~2~ SQ.\N.

41 O· 0'3~~15 ~I"\~ •

4 o·o7&.73. iN .

iD ·;;oo ooo , , i..SS/IN:--

3,950,000

l6S/ H~~ I I

I t

50

""i:""'j'..,-,--::"'

)dq_ J ~\

\.

\ '\@

\

\

PART i~ L ;.0~t~

( NOT TO SCAi-E)

FIGURE 9 · TOP PLATE AND THE C0!'-1POSITE ELEt,1ENT

.,... _ _.___._.

---VT ETC

(2) ETC

" Q •

COMDOStTE ELEMENTS

TOP PLJ~TE BOtH-..JDARY

R~G~D cLE~~ENT

FLE r-~ BlE ELE~\ENT

NODE POiNTS

D~SCRETE ELEMENTS

I l

·I 1 I

-~----}) ~ --- 0

--- - -- 2 --Dz=-

-·­--

FIGURE lO ERROR IN ANGULAR MEASUREMENT

....,-a

~4

·trvu a

M2

M3

C~ ~ETC

Ca C 2

c 2 c3

0) <) "

Q '"' Q

" .. " " .. 0

~VHRF::QR

~N~ f~AL ~o S\TlON

D~SPLACED PcS~TiON

P\S\Pl-ACE'D ANG\ULJ\t< PDSiT~ON tr~rH·luuT LUNEAR

D fi ~ PLAC.E" MEN-~-

Ch~OSS HA~R ~ NTt=RSECT!ON

.0,'~ Gf,n:> CCR~;;.(~5PO N D~NG

TO M 1 ETc

RE.(.ORCED l~~EAR. GR~O

D ~ 'SPLA.C.c M ~NT

, E RR.OR DUE TiJ "t'H E: LH,HEAR

D ~:SPLACt=M Ei'\ T OF T~t=:

\V\1 ~ R. RO R

LH~E"tk.R M ~~ReF~ D~SPLA<-EMEI'\T

ALONG £ A)'\5 II EGUAL.~ Li

51

I !

!

I ~ ~

I I

I I I I

I \

I I I I

I .I I

I •

e . P--~ ~z k .d-.

tl

~~~~,~~z !

FIGURE It SIGN CONVENTIONS

2

p)C. ETC. FORCES. AT MEM8Ei-<. END 2

!N X ETC DH<.E<.TQCN

M~t ETc ......

.... 1 2.

CORRESPONDiNG '"'40ME~T~

A-r €\"\ E~H3~~ END~

D q ~;~ E C -r 5 T R E .5 S E 'S A Lu ~~ G

c Cor~ PI N' AT E A "'E 5

T RAN S V E RS E: S T ~ E. S S E s

52

t

e

MAy

53

FIGURE 11 a TERHS IN f"1ATRIX R

.. Q"'

......

.......

Tt~& c l<(.N E' SS OF THE

t~ o E.. L 0\.~ C V l. a N DR U CAL

ElJE["-1 E~~T

.~ ~~ G L E B 'E ~r ~\ E EN TH E

POS~TqON V E~TOR OF

AN\f PO~NT ~~NO "V A')(tS

~~C MEN T OF AR'k?A GET ~4J 'E EN

THE ~AQ~~S VE"CTOR AND Al'\5

\{ A ~OUT T~~ E Z Ajt.U S

\

54

FIGURE 12 RESOLUTION OF LINEAR DISPLACEMENT

• • '1 0 ?..J!~

GH ......

ABCDH

p " ....

..... Q

R~GHT HANDED COORDaNATE:

S't STEM~ F~~ED BN SPACE

R~GiO LiNK Fi~ED 1"0 THE -OOt: PO~NT &: EQUAL TO R

FLAT SURFACE:, CAN BE lOCKED TO GH

COMPONENTS OF POSIT(ON

V Ec T<)R R OF H \M·R~T" G

A PO~NT F!/<.ED H~ SPACE,

CO~NCU)E NT ~~~~TH H BEFoRE

~ r's D « S PL.. A c E M E. NT

A7·qS PARALLeL To 2 A~\S.

~l

I

I

I J

REFERENCES

1. Przemieniecki ~ J. S.,: ur1atr·ix Structural ~.nalysis of Substtuctures~~~ AIAA JourG~ Vol$ 1:. No. l, Jan .. 1963, pp., 138-1470

2. Argyris~ J. H. 3 S. Kelsey: Modern Fuselage Analysis and Elastic Aircraft, ButtervJorths, 1963.

3. Turner~ t· .. :. J., R~ vJ. Clough, H. C. i·1artin~ Lo ~L Topp~ 11 Stiff'ness and Deflection Analysis of Complex StructureS 11

3 Jour~ of Aerono Sci.~ Vol. 23, No.9, Sept. 1956~ pp. BOb-824.

4. Clough!/ R. 1~ .. : 11 Finite Element :·1ethod in Structural t .. iechanics", Stress Ana lys ·is 9 ~·Ji 1 ey, 1966, pp. 85-119 ..

5. Zienkie~.:vicz~ O.C.: "Finite Element Procedures in the Solution of Plate ano Shell Problems 11

, Stress f\na·lysis 51 ~~i-ley:~ 1966, pp. 120-1440

6. Per·cy. J. H., T.H.HQ Pian 9 S. Klein~ D., R. Navratna: 11 Application of Matrix Disp~acement Method to Linear Elastic Analysis of She 11 s of Rev o 1 uti on 11 ~ A II\A 1J our I) Vo 1 . 3 , No . ll , Nov~ 1965~ pp. 2138-21450

7. Argyris~ J. H.: 11 f-latrix Analysis of Three Dimensional Elastic Media 11 ~ AI/\A Jour. Vol. 3 51 No. 1 ~ Jan. 1965$ pp 45-51 .

. 8. Archer, J.S.: 11 Consistent r'latr·ix Formulation for Structural Analysis Using Finite Element Techniques''~ AIAA Jour. Vol. 3~ No. 10, Oct. 1965, pp. 1~10-1918.

9. Archer:~ J. S.,: "Consistent f'iass r•1atrix for Distributed r,1ass Systems .. :. Jour .. Str" Div. 3 Proc. ,1\SCE, Vol. 89, St. 4, Pt. I~ August l963~ pp. 161-178.

l 0. Hurty, t~ ~ C.: " Dynamic Analysis of Structura 1 Sys terns Using Component Modes~·~ AIAA Jour., Vol. 3, No. 4, April 1965, pp. 678.

ll. Flood, i·1. t~. and A. Leon: "A Generalised Direct Search Code for Optimisation'1

, Mental Health Research Institute, University of f~1ichigan, Preprints 109, and 129~ f'·1ay 1963 and June 1964.

55

12.

56

Griffith, R. E. and R. A. Stewart,: 11 A Nonlinear Programmin~ Technique for the Optimisation of Continuous Process1ng Sys terns 11

, r·1anagement Science, Vo 1. 7, 1961 , pp. 379.

13. Gallagher, P .. J.: 11 t·1op-l, An Optimising Routine for the I.B.~1. 650", Can. G.E. Civilian Atomic Power Dept. Report No. R60CAP35, 1960.

14. Young, Jo W. and H. N. Christiansen: "Synthesis of Space Truss Based on Dynamic Criteria 11

, Jour. Str. Di v. , Proc. ASCE, ST 6, Dec. 1966, pp. 425-441.

15. Sved, G.: 11 The t,1inimum Height of Certain Redundant Structures .. , Austr. Jour. of App. Sci., Vol. 5, 1954, pp. 1-9.

16. Schmidt, L. C.: 11 Fully Stressed Design of Elastic Redundant Trusses Under Alternate Load Systems .. , Austr. Jour. of App. Sci., Vol. 9, 1958, pp. 337-348.

17. Schmit, L.A. Jr.: 11 Structural Design By Systematic Synthesis .. , Proc. ASCE, 2nd Conference on Electr. Comput., Pitts, Pa. , Sept. 8-9, 1960, pp. 105-132.

18. Klein, B.: 11 A Simple Method of ~1atrix Structural Analysis 11,

Jour. Aeron. Sci., Jan. 1957, pp. 39-46.

19. Schmit, L.A. Jr., and R. H. Nallett: "Design Synthesis in Multidimensional Space with Automated Material Selection••, Research Report, Engg. Design Centre, Case Inst. of Tech. Clev., Ohio, Aug. 1962.

20. Schmit, L.A. and T. P. Kicher: "Synthesis. of Haterial and Configuration Selection", Jour. Str. Div., Proc.· ASCE, ST 3, June 1963, pp. 79-10 .

21. Dorn, vJ. S., R. E. Gomory, H. J. Greenberg: "Automatic Design of Optimal Structures'', Jour. de Mecanique, Vol. 3, No. 1, March 1964, pp. 25-52.

22._ Best, G. C.: "Completely Automated Height Minimisation ~1ethod for High Speed Digital Computers••, Jour. Aircraft, Vol. 9, No. 3, May-June 1964, pp. 129-133.

23. Schmit, L.A., R. L. Fox: "An Integrated Approach to Structural Synthesis and Analysis 11

, AIAA Jour., Vol. 3, No. 6, June 1964, pp. 1104-1112.

57

. 24. Razani , R.: 11 Behaviour of Fully Stressed Design of Structures and It's Relationship to i"iinimum ~~eight Design", AIAA Jour., Vol. 3, No. 12, Dec. 1965, pp. 2262-2268.

25. Brown, D. M., H. S. Alfredo,: 11 Structural Optimisation by Non 1 i near Programming 11

, Jour. Str. Di v. Proc. ASCE, ST6, Dec. 1966, pp. 319-340 •.

26. Argyris, J. H., S. Kelsey,: Energy Theorems and Structural Analysis, Butterworths, 1960.

27. Gallagher, R. H., I. Rattinger, J. S. Archer: A Correlation Study of Nethods of Structural Analysis, AGARDograph 69, Pergamon, 1964.

28. Rubinstein, M. F.: Matrix Computer Analysis of Structures, Prentice & Hall, 1966.

29. Robinson, J.: Structural Matrix Analysis for the Engineer, Hi 1 ey, 1966.

30. Zienkiewicz, O.C., Y. K. Cheung: The Finite Element Nethod in Structural and Continuum Mechanics, McGraw-Hill, 1967.

31. Lives1ey, R. K.: ~1atrix t~ethods of Structural Analysis, Pergamon, 1964.

32. Tezcan,, S. S.: 11 Computer Analysis of Plane and Space Structures 11,

Jour. Str. Div. Proc. ASCE, ST2, April 1966, pp.l43-173.

'33. Turner, M.J., H. C. Martin, R. C.· Weikel, "Further Development and Applications of the Stiffness Method, AGARD Meeting, Paris, France, July 1962.

APPENDIX I

COMPUTER PROGRAt1t·1ES

58

NELEM

NJOIN

MI

MJ

SAM

SAMT

STIFF

TRANS

XP

XQ

YM

XL

ALONG

AREA

PINERT

YINERT

ZINERT

EMOD

GMOD

NO

IND

INDEX

NI

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

e••

•••

•••

FORTRAN PARAMETERS

NO. OF ELEMENTS

NO. OF JOINTS

JOINT NO. TO WHICH THE FIRST END OF THE ELEMENT IS CONNECTED

JOINT NO. TO WHICH SECOND END OF THE ELEMENT IS CONNECTED

STRUCTURAL ASSEMBLY MATRIX

TEMPORARY STORAGE FOR SAM FOR INVERSION

ELEMENT STIFFNESS MATRIX

ELEMENT COORDINATE TRAVSFORMATION MATRIX

COORDINATES OF THE FIRST END OF THE ELEMENT

COORDINATES OF THE SECOND END OF THE ELEMENT

COORDINATES OF THE ELEMENT Y AXIS

RELATIVE COORDINATES OF END TWO WITH RESPECT TO END ONE OF AN ELEMENT

ELEMENT LENGTH

AREA OF CROSSSECTION OF A MEMBER

MOMENT OF INRTIA ABOUT THE ELEMENT X AXIS

MOMENT OF INRTIA ABOUT THE ELEMENT Y AXIS

MOMENT OF lNRTIA ABOUT THE ELEMENT l AXIS

MODULUS OF ELASTICITY

MODULUS OF RIGIDITY

TRANSFER OF CONTROL PARAMETER

ADDITIONAL TRANSFER OF CONTROL PARAMETER

CONTROL PARAMETER FOR COORDINATE TEANSFORMATION OF THE ELEMENT STIFFNESS MATRIX

TEMPORARY STORAGE REQUIRED BY THE INVERSION SUBROUTINE

59

$JOB $IBJOB $IBFTC MOD c

· 003102S.K.TIWARI DECK

COMMON STIFF<20tl2tl2)t TRANS<50t3t3lt XP(3), XQ(3)t

60

1 YM(3lt ALONGC5Q), EMODt GMODt NOt INDt SAM( 54t54 ), 2 SAMT( 54t54 ), Mt( 20 ), MJ( 20 ), Nl( 54), MEM

c DIMENSION AA( 54 )

c C READ THE NO. OF ELEMENTS AND NO. OF JOINTS.

c c c

READ (5tl00) NELEMt NJOIN

READ THE NO. OF JOINT TO WHICH FIRST IS CONNECTED READ (5tl00) ( MI(I), I = lf> NELEM )

END OF ELEMENT

c c c

READ THE NO. OF JOINT TO WHICH SECOND END OF ELEMENT IS CONNECTED READ (5tl00) ( MJ ( I ) , I = lt NELEM )

c C READ THE ELASTIC CONSTANTS.

READ (5tl01) EMODt GMOD c C CALCULATE THE COORDINATE TRANSFORMATION AND THE C STIFFNESS MATRIX FOR ALL THE ELEMENTS c

DO 10 MEM = lt NELEM C CALCULATE THE COORDINATE TRANSFORMATION MATRIXo

CALL TRANF<MEM> c C CALCULATE THE ELEMENT STIFFNESS MATRIX IN C SYSTEM COORDINATES

c

CALL STIFCO<MEMt INDEX ) 10 CONTINUE

C START ASSEMBLY. CALL ASEMBL

c C INVERT THE ASSEMBLED STIFFNESS MATRIX FOR C THE STRUCTURE c

CALL INVMAT ( SAMTt NMt NMt l.OE-08t IERRt Nl )

c C CHECK THE ACCURACY OF THE INVERSION c

DO 13 I = lt NM DO 11 J = lt NM

11 AA ( J ) = SAMT< J' I )

DO 13 J = lt> NM X = 0.0 D 0 12 K = 1 ' N~~

12 X = X + SAM< JtK ) * AA( K )

SAMT( J t I ) = X 13 CONTINUE

DO 15 I = lt NM X = 0.0 DO 14 J = lt NM

14 X = X + SAMT( I 'J > IF ( ASS( SAMT< I t I l-1.0 } .LT. Oe1E=03 .AND.

1 ASS( X) eLTf/1 OelE-03 ) GO TO 12 WRITE ( 6' 110 ) It SAMT( I t I ) ' X

15 CONTINUE c C OUTPUT

WRITE ( 6t 115 ) DO 13 I = lt NM WRITE ( 6t 120 ) { SAMT< ItJ ), J = 1t I ) WRITE ( 6t 200 )

13 CONTINUE STOP

100 FORMAT ( 1615 ) 101 FORMAT ( 4F20.8 >

110 FORMAT ( lXt 22HINVERSION UNSUCCESSFUL t//t 1 1Xt 15HROW NUMBER = tl3t /It 9HDIAGONALt 2 12HELEMENT = tEl5e8t /It lXt lOHSUM OF NON , 3 19HDIAGONAL TERMS = , El5e8t // )

115 FORMAT ( lXt 22HTHE FLEXIBILITY MATRIX • II 120 FORMAT ( lXt 6E20.5 > 200 FORMAT ( // )

END

61

$lBFTC TRAN c

SUBROUTINE TRANFCil c

COMMON STIFF(20tl2tl2l' TRANS<50t3t3lt XP(3), XQC3lt

62

1 YMC3)t ALONGC5Q), EMOD' GMODt NOt INDt SAM( 54t54 lt 2 SAMT( 54t54 lt MIC 20 ), MJ< 20 ), Nl( 54), MEM

c READ (5t100) (XP<IL>~ IL=lt3)t CXQ(J), J=lt3),

1 ( YM ( K ) ' K= 1 t 3 ) ' NO 9 I ND IF ( NO .Ea. 7 ) GO TO 22

c C CALCULATION OF THE FIRST ROW OF THE MATRIX.

c

T = 0.0 DO 10 J = 1t3 XQ(J) = XQ(J) - XP(J) TL(J) = TL(J) + XQ(J) IF ( I ND • EQ • 1 ) GO TO 10 T = T + XQ(J)**2

10 CONTINUE IF ( IND .Ea. 1 ) RETURN ALONGCll = SQRTCT) DO 11 J = lt3

11 TRANSCltltJ) = XQ(J) I ALONG(!) IF ( XQ(3).EO.O.O ) GO TO 20

C CALCULATION OF THE SECOND ROW OF THE MATRIX.

c

T = 0.0 DO 12 J = lt3

12 T = T + YMCJ)**2 T = SQRT<T) DO 13 J = 1t3

13 TRANSCit2tJ) = YM(J) IT

C CALCULATION OF THE THIRD ROW OF THE MATRIX.

c

XP(ll = - XQ(3) * YMC2) + XQ(2) * YMC3) XP(2) = - XQ(l) * YMC3) + XQC3) * YM(l) XP(3} = - XQ(2) * YM(l) + XQ(l) * YM(2) T = 0.0 DO 14 J = lt3

14 T = T + XP<Jl**2 T = SQRT(T) DO 15 J = lt3

15 TRANSCit3tJl = XP(J) IT

C CHECK IF THE SUM OF SQUARES OF ELEMENTS IN THE SAME C ROW OR COLUMN IS EQUAL TO UNITY

DO 19 L = lt2

c

DO 19 K = lt3 T = 0.0 DO 18 J = lt3 GO TO ( 16tl7 lt L

16 T = T + TRANS(ItKtJ>**2 GO TO 18

17 T = T + TRANS<ItJtK)**2 18 CONTINUE

IF ( ABS( T-1.0 >.GT.l.OE-03 ) GO TO 21 19 CONTINUE

RETURN

C SECOND AND THIRD ROW OF THE MEMBER IN THE XY PLANE•

c

20 TRANS<It2tl) =- TRANS<Itlt2) TRANS(It2t2} = TRANSCitltl) TRANS<It2t3) = 0.0 TRANS(lt3tl) = 0.0 TRANS(It3t2) = OeO TRANS(lt3t3) = 1.0 RETURN

C THE CHECK HAS FAILEDt STOP.

c

21 WRITE<6t200) I WRITE ( 6t300) ((TRANS( I~ IL~ IM )t IM=lt3 ),

1 IL=lt3 ) STOP

22 DO 23 II = lt 3 DO 23 JJ = 1• 3

23 TRANS ( It Ilt JJ ) =TRANS ( I-1• !It JJ 1 RETURN

100 FORMAT { 8FlO.O/ FlO.Q, 2110 ) 200 FORMAT ( /It lXt 31HCHECK THE COORDINATES OF MEMBERt

1 7H NUMBERt 13 // 300 FORMAT ( 3F20e5 )

END

63

64

$IBFTC STIFF SUBROUTINE STIFCO (MEM >

c COMMON STIFF<20tl2•12)t TRAN5(50t3t3)t XP(3)t XQ(3),

1 YM(3)t ALONG(50)t EMODt GMODt NOt INDt SAM( 54t54 ), 2 SAMT« 54t54 )t Ml( 20 lt MJ( 20 ), Nl( 54 ), MEM

c IF ( NO .Ea. 7 ) GO TO 22

C READ IN THE MEMBER INCIDENCES. READ (5tll AREAt PINERT, YINERTt ZINERTt INDEX

C LET ALL THE ELEMENTS BELOW THE MAIN DIAGONAL BE ZERO.

c

DO 50 I = 2t12 IM = I - 1 DO 50 J = ltiM

50 STIFF<MEMtltJ) = 0.0

C CALCULATE THE VALUES OF THE ELEMENTS.

c

TEMP = EMOD I ALONG<MEM1 STIFFCMEMtltll = AREA* TEMP STIFF<MEMtllt5l = 2. * TEMP * YINERT STIFF<MEMtl2t6) = 2. * TEMP * ZINERT STIFFCMEMt5t5) = 2. * STIFFCMEMtllt5l STIFFCMEMt6t6) = 2. * STIFFCMEMtl2t6) STIFF<MEMt5t3) = - 3~ * STIFF(MEMtllt5) I ALONG(MEMl STIFF<MEMt6t2l = 3. * STIFFCMEMtl2t6) I ALONGCMEMl STIFF<MEMt8t6l = - STIFFCMEMt6t2) STIFF<MEMtl2t8) = STIFFCMEMt8t6) STIFF<MEMt9t5l = - ST!FF<MEMt5t3l STIFFCMEMtllt9) = STIFF(MEMt9t5) STIFF<MEMtllt3l = STIFFCMEMt5t3) STIFFCMEMtl2t2l = STIFF<MEMt6t2) STIFF<MEMt2t2l = 2. * STIFF<MEMt6t2l I ALONG(MEM) STIFF<MEMt3t3l = 2s * STIFFCMEMt9t5) I ALONG<MEMl STIFF<MEMt4t4) = GMOD * PINERT I ALONG(MEM) STIFF(MEMtl0t4) = - STIFF<MEMt4t4l

C FILL IN THE VALUES OF ELEMENTS THAT REPEAT. DO 151 I = lt6

151 STIFF<MEMti+6tl+6) = STIFF<MEMtiti> DO 52 I = lt3

52 STIFF<MEMtl+6ti) =- STIFF<MEM,Itll c C IF K-BAR MATRIX IS NOT REQUIRED' RETURN C TO MAIN PROGRAMME

IF ( INDEX.EQ.O ) GO TO 70 c C TRANSFORM THE THREE BY THREE SUBMATRICES C WITH DIAGONAL ELEMENTS

M = 0 N = 0 DO 59 L = lt3

c C STORE THE DIAGONAL ELEMENTS TEMPORARILY.

DO 54 I = lt3 MI = M + I NI = N + I

54 ST(I) = STIFF(MEMtMitNil c C TRANSFORMATION PROPER.

c

DO 56 I = lt3 MI = M + I DO 56 J = ltl TEMP = o.o DO 55 K = lt 3

55 TEMP= TEMP+ STCK) * TRANSCMEMtK,Jl * TRANSCMEMtKtil NJ = N + J STIFF(MEMtMitNJ) =TEMP

56 CONTINUE GO TO ( 57t58t59 )t L

57 M ::&: 3 N = 3 GO TO 59

58 M = 9 59 CONTINUE

DO 61 L = lt2 IL = L * l LL = IL + 2 DO 61 I = ILtLL DO 61 J = I L' I STIFFCMEMti+6,J+6) - STIFFCMEMtitJl GO TO C 60t61 lt L

60 STIFF(MEMt!+6tJl = - STIFF<MEMt!tJl 61 CONTINUE

M = 6 N = 0 DO 64 L = lt2 DO 62 I = lt2 MI = M + I NI = N + I II = I + 1 DO 62 J = IIt3 MJ = M + J NJ = N + J

62 STIFF<MEMtMitNJl = STIFF(MEMtMJtNI) 'GO TO ( 63t64 ), L

63 M = M + 3 64 N = N + 3

C TRANSFORMATION OF THE SUBMATRICES WITH C TWO NONDIAGONAL ELEMENTS

M = 3 N = 0 DO 68 L = lt2

65

c C STORE THE TWO ELEMENTS TEMPORARILY.

c

DO 65 I = 2t3 MI = M + I NN = N + 5 - I

65 ST(I) = STIFF<MEMtMitNN)

C TRANSFORMATION PROPER. DO 67 I = lt3 NI = N + I MI = M + I DO 67 J = lti TEMP = 0.0 TEM = 0.0 DO 66 K = 2t 3 KK = 5 - K TEMP= TEMP+ ST(K) * TRANS(MEMtKKtJl * TRANS(MEMtKti) IF « I.EQ.J ) GO TO 66 TEM = TEM + ST(KK) * TRANS<MEMtKK,J) * TRANSCMEMtKtl)

66 CONTINUE MJ = M + J NJ = N + J STIFF<MEMtMitNJ> =TEMP I F ( I • EQ • J ) GO T 0 6 7 STIFF<MEMtMJtNI> = TEM

67 CONTINUE M = M + 3 N = N + 3

68 CONTINUE DO 69 I = 4t6 DO 69 J = lt3 STIFF(MEMti+6tJ) = STIFF(MEMtitJ) STIFF<MEMti+6t J+6~ = = STIFFCMEMtitJ)

69 CONTINUE 70 DO 111 JL = ltll

JLP = JL + 1 DO 111 KL = JLPt12

111 STIFF<MEMtJLtKL} = STIFFCMEMtKLtJL) IF ( INDEX .EOe 2 ) CALL TRANQL RETURN

22 DO 23 II = lt 12 DO 23 JJ = 1t 12

23 STIFF ( MEMt lit JJ ) =STIFF ( MEM-lt lit JJ ) RETURN

1 FORMAT 4FlO.Ot 4110 100 FORMAT 8F10.8 ) 601 FORMAT 6E20.5 ) 602 FORMAT I )

END

66

67

$IBFTC TRANQ

c

c

c

SUBROUTINE TRAMQL

COMMON STIFF{20tl2tl2Jt TRANS<50t3t3Jt XPC3lt XQ(3Jt 1 YM{3), ALONG(50)t EMODt GMODt NOt INDt SAM( 54t54 j, 2 SAMT( 54t54 )t MIC 20 ), MJ{ 20 lt Nl< 54), MEM

112 READ C 5tl00 > XLCilt I = lt3 DO 20 L = lt2 pp = -1.0 IP = C L-1 ) * 6 + 1 IQ = L * 6 DO 2 0 I = I P' I Q

F = pp DO 20 J :::: lt3 F = - F JJ = 6 - J SUM = 0.0 DO 19 K =·lt3 IF ( K .EQ. J ) GO TO 19 KJ = JJ - K SUM= SUM+ STIFF ( MEMt It K+6 l *XL( KJ } * F F = - F

19 CONTINUE STIFF C MEMt It J+9 ) = STIFF ( MEMt It J+9 ) + SUM

20 CONTINUE pp = - 1.0 DO 10 I = 1t 6 F = pp DO 10 J = lt 3 F = - F JJ ::: 6 - J SUM = .0.0 DO 9 K = lt> 3 IF ( K .Ea. J > GO TO 9 KJ = JJ - K SUM = SUM + STIFF ( MEMt K+6t !+6 ) * XL ( KJ ) * F F = - F

9 CONTINUE STIFF ( MEM' J+9t I+6 ) = STIFF { MEMt J+9t !+6 ) + SUM

10 CONTINUE DO 21 I = lt 6 DO 21 J = 1t 6

21 STIFF ( MEMt J+6t I } =STIFF ( MEMt It J+6 > RETURN

END

68

$!8FTC ASMBL SUBROUTINE ASEMBL

c COMMON STIFFC20t12tl2)t TRANSC5Q,3,3}t XP<3lt XQ(3)t

1 YMC3), ALONGC5Q), EMODt GMODt NOt INDt SAM( 54t54 )t 2 SAMTC 54t54 )t MIC 20 ), MJC 20 ), NlC 54), ME~1

c C INITIALISE THE STRUCTURAL ASSEMBLY MATRIX.

NM = 6 * NJOIN DO 549 I = lt NM DO 549 J = 1 t I

549 SAMCitJ) = 0.0 c C START ASSEMBLY. c

DO 552 MEM = 1t NELEM c C CALCULATE LOCATION OF ELEMENT STIFFNESS C SUBMATRICES IN SAM

c

53 M = C MICMEM> - 1 ) * 6 N = ( MJCMEM) - 1 ) * 6

C TRANSFER OF ELEMENT STIFFNESS SUBMATRICES TO SAMe c

c

DO 552 K = lt 6 MK = M + K NK = N + K

C TRANSFER SUBMATRIX K22.

c

DO 550 L = lt K NL = N + L

550 SAM( NKtNL ) = SAM( NKtNL + STIFF( MEMtK+6tL+6

C IF FIRST END OF THE ELEMENT IS FIXEDt C TAKE UP THE NEXT ELEMENT

IF C MICMEM> .EQ. 0 l GO TO 552 c C TRANSFER OF SUBMATRIX K11•

DO 551 Ll = 1t K ML = M + LI

551 SAM( MKtML ) = SAM< MKtML ) + STIFF( MEMtKtLI ) c C TRANSFER OF SUBMATRIX Kl2•

DO 570 LJ = lt 6 ML = M + LJ

570 SAM< NKtML ) = SAMC NKtML l + STIFF( MEMtK+6tLJ ) 552 CONTINUE

RETURN END

$ENTRY c c NELEM AND NJOIN c

12 9 c M ~ I c

1 c M J c

1 5 c EMOD AND GMOD c

5

9

2

2 6

10300000.0 3850000.0 c

6 3 7

9 3 7 9 4

THE DATA INCLUDED BETWEEN STARRED LINES IS REPEATED IN THE DO LOOP NUMBER TEN OF THE MAIN PROGRAMME. FOR INDEX EQUAL TO TWO SUBROUTINE TRANQL IS CALLED. IN TRANQL RELATIVE COORDINATES OF END TWO OF THE RIGID ELEMENT WITH RESPECT TO END ONE ARE READ AS XL.

69

4 8

8 9

WHEN NO IS EQUAL TO SEVEN TRANS AND STIFF FOR THE ELEMENT UNDER CONSIDERATION IS EQUAL TO THAT OF THE PREVIOUS ELEMENT$ A LINE WITHOUT A C IN THE FIRST GOLUMN IS A BLANK DATA CARD ************************************************************ XP { IL )t XQ ( J ), YM ( K )~NO AND IND c o.o o.o o.o 5.5 10.7833 15.92 10.7833 -5.5 o.o c AREAt PINERT, YINERT, ZINERT AND INDEX c 0.326 0.07272 0.03635 0.03635 1 ************************************************************ c NO IS SEVEN c

7 *************************************************************

70

o.o o.o o.o 5e5 10.7833 51.92 10.7833 -5.5 o.o 0.326 0.07272 0.03635 Oe03635 2 c XL « I IS READ c 1.25 1.25 ***********************************************************•** 24.0 o.o o.o 22.6666 10.7833 15.92 10.7833 1.3333 o.o Oe326 Oe07272 0.03635 Oe03635 1 *************************************************************

7 ************************************************************* 24.0 o.o o.o 22.6666 10.7833 15.92 10.7833 1.3333 o.o Oe326 0.07272 Oe03635 Oe03635 2 -1.25 1e25 ************************************************************* 24.0 24.0 o.o 22.6666 27.6166 15.92 3.6166 1.3333 o.o 0.326 0.07272 0.03635 0.03635 1 *************************************************************

7 ************************************************************* 24.0 24.0 o.o 22.6666 27.6166 15.92 3.6166 1.3333 o.o Oe326 0.07272 Oe03635 Oe03635 2 -1.25 -1.25 ************************************************************* o.o 3.6166 0.326

24.0 -5.5 0.07272

o.o o.o 0.03635

5.5 27.6166 15.92

Oe03635 1 *************************************************************

7 ************************************************************* o.o 24.0 o.o 5.5 27.6166 15.92 3.6166 -5.5 o.o 0.326 0.07272 0.03635 0.03635 2 1.25 -1.25 ************************************************************* $IBSYS

APPENDIX II

ANALYTICAL FLEXIBILITY MATRIX

71

f~OD E I

0.223~3[-02

-0.5G9:32E-03

().524')7[-05 0el6867[-0L+

C.87321E-C4 0.6246SE-05

-O.Zt8015E-0Lt C.84578E-C5

NODE II

0.28443[-03 0.52565E-C;5 0 • 2 1 s Lt 3 E- C1 2

0.40040E-C4 :...0.96963[-05

O.ll292E-03

-0.38088[-0S 0.6938SE-OC::, 0.lC389C.-C3

-0.3571!+[-Cl(:: 0.82843[-06

-u.35655E-Js 0.13549[-04

0 • 2 t1- f:, 0 6 E - 0 ~~ o.l49:!3E-os o.s5512E-J4

-0.46632[-05 uel1-t52')[-U5

-0.457SlE-C4 -l:.2S3C-3E-C~s

t1•J71 5~E-n?

- C • P. 4 1 5 5 E - C' l;

~~ • 7 ':=:) 2 0 6 E- C .'t-

n.?227GE-()4 UelC15')f-U4

c • 1 J 7 2 6 [- (' 3 .0 • 1 1 2 lt 5 E- 0 4 0 • 1 4 9.3 3 E- 0 2

-11. 07864F-0t.;. -0.5Al 0 0[-0r; -0.99766[-03

-0.1 ?756E-0t+ -C.ll74r:;E-:-05 - 0 • s J 0 t; 3 [- ~ 4

- ( 1 • 1 -:?. 6 r-. t: F- r 1·,

n.2S457E-05 0.65685[-('>5 0 • 2 5 3 6. 7 [- (il+

-o. ~ 1'?1 Je-er;. J.31835F-~J6

-J.ll?::C'[-:i:::

72

0 • 8 7 /; C:: ;:) [ -- •J J

~~.sr::-c::lE-04

- () • 2 5 r; 7 5 E- () It-

.n .14:.:-·~+ 7F-rr::) 0 • ? 6 ') (ll+ [ - () !t

-0 .105')'][-8 ~; 0 • l 0 ~J 4 ':.; E- c; C...

0e677L;(~F-rl+

-().77?::'0[-()C:: 0.6,'3'):)/j-[-~3

Ce07P07[-Qr:. -0 .l228•j[-05 C.53~?7E-Clt

n.lr,--:l_:J<J[-rl7

0.::-- 07/J-[-0 6

C. 7C?n .~E-O::,

f~ODE I I I

C.l68::·~·E-Dl

-0.66001E-Ur;­C.l6350E-03 0.32525[-(!5 O.l3514E-02

O.t+0041E-0l+ -0.96866E-n::,

0.39968E-04 -O.l9338E-04

J.l8260E·-·05

\..! • .39869E-:15 0. 1 7('64[-0 5 0.40205·E-05 G.47705E-05 () • 1 1 1 :- 8 E - 0 ~

-U.4B676E-G5 0.776~;GC:-G6

-C.48587C:-J:) o.l976SF-05 u.Z7956r::-os 0.11935[-06.

O.l9049E-04 -O.l6497E-06

O.l9045E-04 O.ll995E-06 0.68654[-04

-O.t+7451E-06

O.l0829E-G4 0.21227[-0:· O.liJ832E-C14

-0.87937[-06 -0.23116E-0Lt -0.330C3E-DS

O.l6861E-03 -0.65923E-05

0.16856[-03 o.32586E-o:. 0.19979[-03 0.28036E-Cr:) 0 .14114[-;'J;~

8 • l 1 !+ (\ ? F - (\ L~ 1) • ~ 7 1 9 ~) E - C s

-0 .l ')019[-0!+ CJ.49706E-C15

0.13711[-(~'?,

0.1124!1-E-04 O.l9417E-03 0.65657E-O~

O.l2969E-02

-0.21782[-rJ!; - 0 • !.+ 6 :3 2 3 E - n 4 --O.l131Sr-os -0. 2G4t\UF-U3

- 0 • :;_ 2 2 7 7 [ - 0 ~t -0.13097[-()':· - c; • 1 9 6 r 7 F. - n !; -fl.87371E-06 - C • 7 1 2 5 :: E - 8 ~~

-J.21980E-Ot; 0.11156[-(15

-0.30128E-06 OellC36E-G5

-0.29556E-06 0 • 1 ?. 7 f. 1 E - 0 L.j.

- 0 • 1 !1. 5 8 l [ - (I Lt-0 • ? ~~ 2 50 E- 0 5 C.69302E-05 C.2695~~·E-t•5

0. 2600/+E-05 0.5986?-E-n:;

0 • 1 l 3 4 6 E - C !4

0.'::.72SOE-05 -J .1 sos::·E-C4

n.t+()765F-C'5 -0.1'/i'!lOF-04

0 • l 7 0 6 ° F- n 1t

J ·73 " ·. '

_n. 64 7LL(-:.f::,-n;!

-() el ( .. (j?lJ[-QLl

n.zc:,cJl~IE-04

-0 ·1 7151E-:)h

-O.JGr:"-lE-0? 0 el\J.({4?[-()L~

-0.12A60E-03 0 • ? 8 ;::; It 1 E- 0 5

0.1 ??'"· lE-0{+ -0.37Q00F-0t;

~"• 3l80f-,[-()L+

-Oe2?()8r:;E-Q5

Ce98C05E-:J5 -').~2??1~-!)h

n • 1 2 7 h L, =:-o 1..:

- n • 5 e. ,, c; 7 E- 0 A

-0.!t-977PE-n:; -n.11176"C-r;:. Oelt<~77[-05

-0. 11 3 7 7 E.-n 5 · 0.57101.[-05

0 • 6 () If 6 7 [- () t:;

O.?U107[-U5 -0.370'3.?.E-OS n.241JJ~E-n?

-0.25'?~CE-05 0 • 41 (I 0 1 [ -(YI+

- D • f- ~~ h 0 6 E - Ci 4

1 - 0 • 1 6 n 2 1 E-n li ('.25°?7[·-0!+

-n.17JC:.2[-n4 0.2ClJ 77E~-04

- 0 • l ]_ :? 0 S [- 0 L;

-0.71917E-04 - 0 • 2 1 14 o E- C1 4 -0.72009E-C4 -O.l2744E-04

0.11337E-04 -O.l2260E-C)4 -0.7S884E-04

- 0 • 4 C 7 0 1 E - 0 t+ Oe71851E-05

-0.4C68SE-04 Oel8329E-05

-0.70483E-04 O.l9072E-05

-0.46728E-03

U.99959E-~5

c.24092E-n~

C .1 QC106E-·::'4 Oe65469E-06

-0.46920E-05 0.57987E-06

-0.46834E-05 U .15l.783E-04

O.l8479E-04 -0.43410E-06

O.l8474E-04 -0.76806E-07

O.l7261E-n4 -U.l4110E-U6 0.7152~[-04

Cel8885E-05

C.B4192E-C!5 0.95095E-06 0.84204E-05

-0.17355E-05 -O.l0423t-04 -O.l8195E-05 -0.22751E-04

O.lr'351E-04

:·:.21772E-t:?, -0 • 6 7L+09E-05

O.l3711E-03 -0.12603E-04

C.13698E-03 -· 0 • 2 2 C 3 1 E- o 5

O.l5069E-02

-CJ.54075E-04 -0.34013E-06 -0.25315E-04

O.l2634E-05 -0.25232E-Cl4 -0.52632E-05 -0.31499[-03

- 0 • 2 2 1 8 8 E - C1 4 O.l4471E-O:J

-0.79714E-C5 0 e199L~9E-05

-0. 79568E-C;5 0.973SISE-U7

-C) • 76426E-04

0.62911E-06 0.10771F-05 O.l7836E-05 Oe98537E-06 O.l7868E-U5 C.l5970E-05 0.62228E-06 O.l3203E-04

-0.22318E-t)5 0.22642E-C5 O.l60Cl5E-G4 0.21347E-05 o.l5995E-04

-0.35110E-06 O.l6518E-04 0.5638BF-05

74

-o. 1.21. n3 E-n J o.51975E-uC

-0.'?7875[-()4 -0.8l21J3E-·05 -().30779E-04 -u.lt+572E-u4

n. 50~)4'::·E-04 Ue53G93E-U5 0 • 1 3 ~ 0 ') t: - 0 !.~

Oe77636E-05 0.62732E-OG o.72455E-U5 o.2:3773E-o:::

0 • :;_ 1 3 '? () E - 0 ~~ o.682:31E-u6 0.613?6E-05 n.l4968C:-05 0 .14S2 GE-0 S· u.24:)43C-u5 0.19091E-Ot+

-0. 66'lC;J E-O 5 -0.10914E-05

o.2S2l.SE-06 - 0 • 1 2 2 0 1 [- ~) 5

u • '] 2 1 8 L~ E - u 6 -0.4l!·646E-06 - 0 • 2 4 7 6 2 E- U 1~

-0.14470E-n5 0.21235E-0S

~-O.l01139E-04

Ue2UU69E-U5 -0. 1+518SE-O:S

0.2962''./E-05 0 • 4 0 ·-; 5 3 E- 0 5 0 • 3 9 5 ~) J E- 0 !+

NODE V

O.l9tJLt4E-CJ2 o.ll813E- 1~1L;.

C.64309E-03 -0.80310E-U5

CJ.382.61E-C:•3 -O.l092~E-il4

Ce38281E-03 0.22496E-C'4 C.34075E-02

-0.37708E-03 -0.12651[-03 -U.l6255E-03 -0.28810E-04

0.25357E-04 -0.27794E-04

o.25135E-04 -0.50132E-04 -0.67808E-03

-0.42779E-03 C.81375E-C1 4

-D.11063E-03 0.22103E-04

-O.l4694E-03 0.22326E-04

-O.l4680E-03 0.25814E-04

-0.71C84E-03

0.64302E-C·5 -0.21743E-05

0.64421E-05 -0.35763E-06 -0.74596E-05 -0.41248[-06 -0.74469E-05 Ue171L~lE-C5

O.l4476E-04 O.l6U97E-04

-0.3766JE-GJ U.l3370E-03 O.B9S65E-04 n • 560L~2E-04 0.39655E-04 0e4321lr'lE-r.4

-O.l6191E-Cl3 0.41893E-04

0.15215[-02 -C.J.l5252E-C~4

0.31026E-03 -:J. 28l+21E-04

0.30974F-0J -D.49959E-05

0.49134E-03 O.l4025E-U5 ().26102E-C2

-0.39556E-03 - 0 • 3 5 o 11 E- u t, -C.23866F-03 -0.1195UE-U7

-n.23859E-C3 -O.ll312E-04 -0.27367E-03 -0 el52U2E--Ut+

Cl.6758'iE-04 0.587C2E-05 0.22920E-05 Oe16825E-05

0.23124E-05 -0.2U878E-U6 -(). 1112/t-E-n4 -0.33276E-06

0 • 3 7 5 9 9 E- G L~ ,/

75

-(\.-+ 6?0E-03 - 0 • 6 :<-: 2 [ ·- 0 Lj.

-n.92774E-05 -O.l0653E-04

Oe2-2263E-U5 n • 2 4 2 6 3 t. - n '+­

-0.91':·02E-\J4 Ue18,Sl+5E-ULt

- 0 • 3 '? Li 0 7 E - () 3 U • ~~2.362E-U4

-0.21~~92[-()3

- 0 • 1 G 4 4 2 E- U t,_

·-0.7C5".8E-04 -o. 328~-uE-u4 -O.l2JO~·E-03

-u.5u412E-u5

0.75631[-03 u. ?J::_'.'J,S[-u5

o.lS246E-03 Uel6U32[-Uft 0.·~-3-52::,E-U4

o.l363:JE-Ut+ Oell,~t(l7E-03

-u.31"62E-u5 n.J?7'lOE-n2

-0.43/'GP.E-04 Oe77283E-U5

-O.ll~;77E-05 Oel5::~24E-05

-O.l0335E-05 Ue22r:J92E-u5 0.526?-'JE-O~,

Uel7747E-U5 -O.JOSROE-04

-L;e61355E-U4 0 • 6 1 'j 7 7 E:. = fJ 5 0 .l73831:>.CJ4

-O.l6252E=01J -0.8280DE~o:,

-O.l7S58E-05 -0.82712E-05

O.Z2575E-05 ~O • 2 36Ci 7 E-04

0.77235f:.=05

0.65226E=04 c.s9066E-05 O.ll896E-04

-0.22347E~05

=0.2U665E-04 -0.23724[-05 ~0.20667E=04

o.zs684E=05 0.69232E=C:4 C'ellllOE-04

i'l0DE VI

J.64323E-U3 O.ll806E=U4 O.l9355E-02

-0.80369E-05 0.38265[=03

-o .l0929E-:JL~ 0.38285[=03 CJ.22L~85E-04 0 .li.j-~68E=02 0. l4Lt-64E-04 0.33368E-02

0.9C726E-04 -0. 21909E-~J4

o.l4C66E-03 =0.11958E-03 = 0 •· L:. 2 :, 5 6 E - 0 4 =0.44499E-04 =O.L~2769E-04 =0.18076E-C14

CJ.20313E-03 O.LJ,-9254E-n5 0 • 2 7 6 3 4 E = (; 3

- c • l c 3 l 4 E = 1.) Lf­

U.5931CJE=C~)

0 • 1 L~ :::} 3 6 E = (I 4 0. 331L:-?E-05 0. lL:-486E=Cllf ~J.83719~=n7

-O.iC314F~U4 t'). 31956E=08

-0.2?J322E=UL~

o.269J9E=04

-0.3903SE~~U4

O.l63L:-9E--ULJ­O .19628E=(i4. o. 37CJ14f=1:'5 O.l96llE=OL~

-U.82255E=U6 ~· 0 • 1 1 8 7 5 E ~ 0 t:. -0.91076E=U6

·= 0 • 4 2· 5 4 3 E- 0 4 0.21391E=04

-O.l6171E-03 0. 5496:::1E=ULJ­O.l3983E 03 O.l3193E~03

Oe89728E=C4 ().L~3284E-CJL.~

~O.l6182E-03

0.41898E-04 -0.36550E-03

0.39387E=04

Cl.31009E-03 0.25358[~04

o.l3317E=02 0 ell.L862E=0i{-0.43831E~03

-0.64685E=U6 o.30960E=n3 0.40703E~C5

n.70263E~n3

C e 32689E-UL.c 0.22919E=02

76

0 • 2 .~j 2 C· 7 E - U 14-

-u. C34?,7JE~u 5 u.23cosE-u~

= o. Lt-1 :, 7 ,s E -u ~; n • . Y:J2':' lE-n r.;.

u. 53:::n6E-u:l Oe35~~'?l:-E-U5

u.2L:-luuE-u4

u.3.:=:,295E~u5

u .l6Lj-8uE-t.J4 ~,o. 1214 s E-o Lj_

u It 3 7 4L,LLJ- E -u 5 -n.61963E-05 u. '5 317 ~) E ~-u 5 n. 0.:2 :. r~7E-c :. u.49269E~us

o.s7370E-o5 0.4~'}:::~5E-U4

=O.l0972E--03 =Uel2139t:-ut:­

n • 6 t~ (~ 3 3 E - o ,_:~ =U.62U57E-Ul.; 0.82~>? .. /E-05 o • 2 4 2 6 ~~ r:- u 4

=U. 91 C:· 14 t. -u t..f-o ol8(:~4Lir[-04

-0. 24')77E-UJ u.2C.S62E-u4

- n • 2 3 7 L1 1 E ~ o 3 0 • 2 4 4 3 5 E - u L~

~0.2C::L;lUE~0'3

0.2441:,[-05 =O.lU579E-u2

u .15643 E-u"+

u.:36Uf)lE=rJt.'.f =n.S32,J7E~-11J

CJ • 4 t-1- 2 4 u E- l) Lr

-D.8599oE-()5 O.l5689E-04 G.65518t:-04 0.80112E=04 0 • 5 8 7 2 2 E- 0 t.~ 0.28877[-04 0.58824E-04 O.l3919E-04

-0.20521E-04 -0 • 2 41L~4E-O 5

0.87169E-04

-0.23909[-05 C.46689E-07

-0.23797[-05 ~f~.4824 7E-05

0.23929E::.-05 0.78819E-06 0 • 2 4 0 3 9 E- l_~ 5

-0. 4U457E-"07 -0.53680E-05 -0.34605[~()6

-0.53790!:.~05

O.ll970E-C4

O.l7862l-04 0.23411E-05

-0.58028E-04 -0.22914E:.-05 =0.9 1J292E-'J5 -O.l3199E-05 ~0.90l97E-ns

0.28U52E-05 0.40465E-04 o.26503E-o5

~0.2024CJE-04 =0.22061C.-05

O.l2577E-04 0.32164E-05 0.639831::-04

~0.32148E~05

-0.21797E-Cl4 -0.17238E-05 -0.21798E-04

Oe36829E=05 0.28099E-04 o.3619oE-05 0.69215E-\J4 -0.31420[~05

' .... ,,·

-0 •. 22130E-C3 -O.l2652E-04 ;-Oe88551E-03

G.93914E-06 -0.28623E-03

n. 38~)38E-n:) -0.22120[-03

0.57772E-06 -0.49885F-03 - 0 • 1 9 () 04 E - c L,.

-O.l5170E=02

-0.27432E-05 -0.66068E-06

O. 68522E-OL~ -0 • 16 5,7 8 E-D 5 -0.73380E:-05

0.76133E-Ci7 -0. 27206E-OS·

o.24532E-07 ~0.64320E-U5

~0.985nlE-06

0.43354F~U4

-O.l617:,E-UL.;. Ue32221E-U5 0.98100E-05 Oe6744UE-U5

0.9E;OBOF-US u.7176uE-u7

-0 • 161 76E-U.:i· -U • .S851:3E=u7 -0 • 3 6491 E-C:Lr

0.47716E-U5

0.22193E-0L~ 0 • 2 7 2 65 E- U t1-

-0.20593E=U4 8.35872F~Ur:J

0 el 9034E-UL~ O.l7208E-C4 U.l2664E-04

-0.84259E=06 -0.205SCE-0'-I-=0el048r::,E-05 -0.46382F-0L~

0. 618 7,-+E-0 5 0.33687E-04 0.22482E-04

77

o.l522Ltc-03 =0 .17-'+.2:)[-04

o.60769E-03 -0.67295E-O~·

Oe724~;3E-C4

- o • s 4 n 'n 4 E-o 5 0e30799[-(JL~

~ 0 • ~ 2 tJ 5 4 E - 0 4

0 • 34373E-:U~· -0.274LilE-ULr o.1u396E-u2

o.25C26.E-o5 -n.6:·~7~)E-U6

=U·L~67~)2[-U4 -0.21UU7E-u::,

0.2U305E-US -0.70282[-06 -U.2.831U[-U7 -0.91171E-U6

u.58483E-u5 -n. 1::"345::-JE~os ~u.3u~i14E-u4

Ue4G0::JI+E.-u~.

Ue2165JL-u5 -O.ll:)6SE-04

u.l5o\..Jl:lE-u·\ -u.31612F-u5 ue4l'=l':i4E~u3

u.69r'~llE-u:,

u.35ull')E-v=:· 0 .10934E-Uir u.61C;5--'+C.-u5

-0 .16fJ)4E-U!;.

u • 9 4 r) 3 ') E- u 5 U • 3 1_1_ 7 t: u E- u ~,

-U.73S65E-U5 0.17365[-04

-0.47063[-05 o.s71("34E-o5 8 .. 12193[-04 n.:+slr:JE-05 0.21Lt30E-04 o • s s r~ s 4 E - o :,

-0 .16746[:-04 0.44086[-04

1\iODE VII

0 • 3 8 2 7 0 E- 1) 3 -O.l484CE-04

0.38255E-03 o. 72998[-()5 O.l2446E-02 0.62906E-05 0.45305E-03

~O.lC5LJ- 7E-Ot1-0.87114E-03 ~O.l6774E-04

0.87129E-03 o.53664E-ns 0.2181UE-C2

0.90721E-04 -0.21919E-04

0.90457E-04 -o.437n-rE-04 -0.28326E-04 -O.l0901E-03 -:-0. L~284(JE-04 -O.l8090t.-04

0.2U303E-03 0 • 4 9 (I Lj 9 E- 0 5 o.zn329E-03

-O.l6882E-04 -0.75443E-04

C:.93767E-CJ5 0.38537E-05 o.94653E-05 O.l0751E-04 o.l0870c-n3 c.zs~l7E-04 o.45926E-;J4 0.33826!:::-05 o.ZCiiJ55E-04.

-U.22859f::.-05 0.1996 /t:~·04 0.46107E-1.J5 Cel9323E-03

c.25b77E-04 iJel3128E-04

-0.4304-1E-U4 D.ll455E-04

-0.28528E-04 O.l0323E-U3 0.25462[-04 0.39168[-04 o. 56615E-tJ4

-O.lS3n7E-04 -0 • 96UU4E~ULI-~O.J.9980E=U4

0.31023E-U3 0.25358E~U4

0 • 4 3 9 1 5 E -·C 3 n.l4864F-D4 Ciell968E-U2

~0.65-262E-06

C.30973E-C3 ()eLt-0674f:-05 0.70313E-03 0 • 32689E-OL!-0.99360E-03 8.2219:,E-Oij. o.20972E-02

-0.69686E-04 -0.48669E-O:~

=0.10473E-U3 ~0.?62S''?E-O~~

=!J.27522E-(J3 0.85984E-05

-0.69453E-04 Oe21206E=C5

~O.l596.2E=03

-O.S3liGlE-U5 -G.2:?>9U7E-u3 -8.70691E-05 ~0.48735E-U3

·78

-O.l4':)6UE-03 -C1 • 36183E-04

Ue576?1E-UL1--0 • 38735E.-UL,.

u • 1 u 7 L~ 4 E -.u 3 -u.4u362E-u4 -O.l5843E-03 -u.2~·::,zuE-u4

-u.3313uE-u:) -() e46()L~U[-()Ll

u.l3ue6E-v3 -u.49192E-u4

-u.23739E-uJ U.24L~42E-U4

- U • 2 8 l1 8 6 E-u 3 o.ssn31E-u:)

~u.2.7(i5Sl-u3

UelU2::,uE-UL ~o.5Bl36C.-UL!­

o • 3 6 (_) 7 l E- u Ll.

-0.53823[~03

u.442:;6E-u4 ~o.645CJ4E-U3

0.2~36J.7E-O~-

0.42259E-U4 -"O.SS717t:-O~:.

u. 7123.SE-uLJ­=u.5219E:.E-uS

fle 76L~2UE-ut.,

- 0 • ~, 7 1 ·) 3 E- 0 5 0.15349[-0)

- 0 • l 0 1 8 ':} c- (j 4 o.97785E-o4

-u.l3r:J81E-u4 Uel6272E.-u3

-n.1Uc<:: 0 E-U4 Oel3tS4::3E~u::,

-c. 368 7 2E-~--~s -0.5636~E-08

-U.36731E-05 0 • 7 9 r_' 7 3 E = (J 6 o.lSJ360E-05

~0.38692E.-ns

Oel9490E~05

-C.ll526E-06 -D.82576E-n5 -0.4C09CE-n6 =0.82717E-05

o.39545E-n6 D.43573t:-05 O.l035lt.-0L~

O.l2106E-Cl4 0.67678E-06 0 .12Cl99E-C1 4

-0.33C'45E-n6 -0.61428E-04 -0.832JOC:.-06 o.J0727E~:J5

Ue90822E-06 0.27622E-04 0.759021::-06 0.27629E-04

-u. 248 2 o c.-c'6 -0. 4Lt 2 8 2 E = 0 4 -0.83845[-06

0.28Ci69t.-04 0.38862E=Ci5 o.28074f:.-04

-0.18941E-05 -D.l3915E-CI5 =0.40505E-05 -G.l6042E-C4

C.46409E-05 0.63016C.-04 Oe43666E-05 0.630l(Jt:.-f)4

-O.l4136E-05 -0.244481::-04 -0.39590E-05

\,

-0.22645E-C5 -:1.7r:l'.J52F-C1 6 -0.76r)84F-U~,

..... CJ.69~)C::,4E-06 o. S622:!E-ULI­

-8.42994E-06 -0.22365E-ns -0.39771E-07 -o. 54169F-r"'5 ~O.lll?6E-il5

-0 el 7664-E-CLl--0.10107E-O::;,

O. 33894[-Ct:

-0.~)7693E-Il5

O.l3919E-n5 0.29402E-rl5 0 • llr 7 2 8 E - o ~) 0.291+67E-CS

-0.30934E-05 -0.577::,·:;-E-05

c.52313E=06 -0.13066E-04

Oel540Ld:-05 0.66345E-0~)

O.l6213E-05 o.66778E-05 O.ll878E-04

-0.26983E-04 o.:)l934E-05 O.l5709E-04 o. 56459~-c::;, 0.21CG3E-Ut4 0.52257[-05

-0.26967E-U4 -0.26586E-06 -0.6078CE=04

0.77470E-05 0.35443E-U4 CI.8199~)E-05

o.39786E-04 0.88349E-05

79·

'J

- Ue25827E-u::;, ~ D • 6 ,:_r 7 9 3 C- f) 6

u • .'t c' 7 !\.[- l) 5 -II !_, 0 r:: 1 0 E-n C J , , • r ,J - - -> -'

-u.12r~;76E~u!+

-u.27347E-u:J -O.J3CJ21[--U7 -0.99576E-06 U.6U72U[~U5

·-C.l4B33E=05 G.l0773E-04

-O.l3204E-05 -u. 6S936E-u :_:,

-0.1107!)[-06 o.296Ci5C-u6

-O.ll207E-u:, u.4129RE-u6

-O.S9fllE-u~~

Ue64348E-u5 Oe453r:•U[-U6 0 • '] 7 ,4 1 1 E- 0 G

~0.36531E-06

Oel6415E-O~J

-0.24988E-05 O.l7:~76E-U5

- 0 • 5 5 6 3 "+ E-u ~·

u.8421S~E-u5

0.359g~1E-U5

-u.813usr::·-us 0.426'=17[-05

-u.49203E-u5 0.25079[-0l-t Uell67~d.=-u4

o. 57c~63E-u;) Oel9U82E-U4 Oel0162E-UY·

-U.lf:,417E-u4 O.l0233E-04

-O.lll28E-04 o.sos71E-o4

i'h) lJ E V I I I

0. 382641::.,=()3 =0 .l484oE=C14 0.38249E~D3

0.72938E-05 0.452801::-03 0.62828E~C5

o.l28~9E~nz

"""Cel05S5E=·:l4 o.s7094E-rl3

= 0 • 1 6 7 8 7 E- 0 L1,

0.87108E-03 0.53554E~'J5

Ct.l0291C.~02

0.43444E-05 C).22405E-02

~G.l6224E-03

=0.47785E=04 ~O.l6253E-03

-0 .28822E=C14 o.25423E-04

=0e27811E-0L~

~0.36831E-OL~

-O.ll798E~03

~0.36568E=03

=0.25419E-04 -0.36538[=03 =0.64547E-05

0.56829E-04 =0 • 5L~448E=05 -0.33114(=()4

=0.92913t:=C'l4 O.l6192c~04

-0.92842E=Cl4 0.41547E-05

=0.15997E=03 0.43288E-05

-0.43283E-03 Oe30671E-04

~0.20988E=03

o.l1902E-o4 =0.20995E-03 =0.13551E-06 -0.36069E-03

Oe38703E=07 =0.75779E-03

0.25735E=1J4 r).l3123E-C4

=,O.LJ-2980E=0Lt 8. ll44:n=::=CLf

=0.tt2769E=OiJ­o. 38738E=0L,L

-0. 365l:•E=0Lt O.l069'7E=U3 O. 56836E=OL:­-O.l3316E~04 -!). 95795E=()L~ -C: el9990F-CiL~ ~0.96007E=04

o.7298BE=05

0.49213E=03 =G.l5254E-C1Lt-

0.3lfi40E=C3 -0.28422E=G4

o.309SBE=n3 -C.499C3F-C':>

O.l3779E-02 O.lt+091E=05 Oelll29E-02

-0.23323E=04 0. 70311E=(J3

-0.36490E-04 0.70363E=03

-0.13060E-04 0.24029E=U2

-O.l2208E-03 -0.85561E-U6 =0.57184E-C4

0 • 2 740LtE-05 -o. 56985E-Ot+ ~O.ll983E-04

-0.30140E-03 -0. 3710L1-E-04 =0.27795E=03 o.ll988E-n4

=Oel3163E=03 O.l5584E~04

-0.13l82E=OJ C). 86101E=-C6

-0.53916E~OJ

BU

-Oiill~-~~65E-U3 =0.36181[-04 o.s760L:-C-U·~~

- n • 3 3 7 ·3 ~~l E - r1 4 n. 44LJ- 3 'J E-o 4

=o.c:::~711E-O{;.

= () • 4 3 l :J 'j [-u 3 -0.38'~-2(3[-04

=0• 3:JlL~5E-U~) = 0 • !+ (::, 6 3 8 E - 0 L~

o.l3n76E-o3 ~0.49192E-O<+

UelU16uE~uJ

-0.36168E-04

-0.2722/+E~OJ

o.ll562E-os =Oe21991E-U3 -0 el84~-8E-04 ,~0. 7U651E--U4 -c. 328,40 c-C)6.

=0.30267E-03 o. 1s 3 8 7 E -u L:­

-u.,61739E-u3 =0.26790[-04 = u • t;. 9 8 9 4 E- u 3 -0.463ll~)f-()4

-0.15985[-03 -0.60795E-04

U.ll357E-U3 Oel2182E-Uij. o.Jol27E-n4 0.17530E-04 0.19nB6E-O~,,

Oel6341E-OL~,

0.22221E-U3 o.92~-73E-o5

0.22161E-C14 0.69'~13E-Qlj.

0 • 2 7 5 CHl E -0 4 0 .L:-461 OE-0 5 Oe26319E-04 o.39269E-oz,

U • l ll I' 6 [ = :J 4 1] • l 6 2 7 ~ E ~ J 5 G • l l l ':-; 2 E = C) Lj­

~0.53l36E:=o06

~'J.ss::,l6[=t''5

=n.6Ci863E=Ci6 =08 553-S~)E=O~, =O.r5762~.·E=C6

D. 2 515 8 E _:_~ L~ 0$17256E-O:~ D • 2 5 14 3 E - (1 l+

-0.4332CE=C'6 = 0 e 1 2 L} f3 0 [ = 0 L:

=0.5l052E·~06

=0.12t4-9lJ-E=0L:-O.l:i386E~04

o.ll535E=04 U.4u765E-06 0.1152 9E=(H~

=0.52721E=06 0.,32615[=05

=0.58723E=06 ~ 0 • 6 Lj. 5 5 6 E ~ ClL:

o.z3:·21E=:J::. U.26316E=04 0.635CL+E~D6

=0.299BOE=06 0. 77 324E-O r;:,

=0.35S2.9E=06 =0.~-65:35E-04

0.29262[=05

0.25659E=04 CJ. 2 71Lt,~, E=C 5 0.25663[=04

=0.27~'02E-C•5

=D.l5069E=04 -G.29588E=05

o.33795E=06 O.ll011E=04 0.~7598E-OLJ-

0.38422E=C5 C.57595E-C4-

=0.l6225E-GC:, =0.33977[-04 =O.lS?llE=:Js =0.21650E=04

u .13665E-GL~

:J@ 1 '~1 6 J. ?·E=C:5

c;., 211:-:.1 E=•l ~-:.

0 = l:. 0 It .2 2 E = (} r.:,

0.5L~·,..)92E-1~7

rJ4!1 C)'::":0,P3F~r:t.:-

0 "' l r, L~ 3 1 E - 0 ~::,

- 0 8 2 7 7 :: .{.: c:- = 01':. 0.2B977E=05 o.875B8E-05 0.311L:-5E-C5 n 8 .? 7'? 3 P-E=r '"l G.S00L,.6E=n6 Cle26L;.72[·=04

-Oo29L:22E=05 U.13::~34E=CC::)

O. 5C)251E~O~ 0. 12· ':J~6E=('5

c. 5 (151 7t:=06 =0• ~o5n~r::-~nr:, =0.3/l-?6?!:-C.'r-:, ~-0.66677E~C~·

()o l4~·99E-O:.

0111 114f12E=r'L: •).lt+611E~,c::.

0 "' 1 1 3 q 3 E ~ C· ~­Oe 6716LJ-E=f'i(:.

- 0 • 6 f, 5 9 l1F = (! 5 r).J.2236E~Oli-

=0 ellj-63L:-E=GL:. o.50325E=05 C.2t., .. 724E=::-~1 Lr.

o.sl?·53E=05 0 e~ ? 6.- 7 6 !1. E = C, tf

~o. 56026E~~07

~o. 3805:::,E=OL:­C eLH=)l5BE=n5

=0.32981E=C'4 0. 7L:-072E-nr::, 0.55866E=04 'J • 7 ;, 1 :; :! E ~<~ 5 O. 5 588::F=Clt CJ.?31.?7E~Or.;

==C: 6) ;) l7:3~3F.=CJ4

Cl.319L.,-lE-C'J~,

81

0 '" !;. 11 2 ~ F - C• ~· ,') @ 1 2 (~ 7 :, E - 0 :,.

-Cio1SI~26C:-t!5

~~.l:•')C~3E~o:·

=OmJ?t~71[-(iCi

nIB 2 f-, '), 1 1 E -r) ::1 -010)1 CJr;t;r.;[-nL·-

0 <ill c;r-,L:.R 7E-0 ~· ()Gn~f..rl4F-115

n.,37r::·76[-0!:) -(). 41 P. ~- c::. E -0 ~

n e~ L·. o q r: 3 E-o r;

-n.?7~:::7nE-05

f"\@II:::J:-'1 !~[~0C:,

=Oel ':lr.:,? 0 E=nr.·

-r)® 18322[-0~

0.32320[-!)6 -o,.?r:663L:-us

0 ~»? ') 1 t:() E-n r-.

'J@ 10C:77E-C15 r.e?'-J.l~7F:::-0h

0 ,, r:;, (") ~· () 1.: [- C1 t:;

~ 0 f,} L;. = r: t:: :~ E- 0 ~~ 0 • 1 5 r:. ?· ?· E-U r:.

-n~~5775~':1c-n:::,

0el:~r::16E-r;r:,

0.i:?o.72[-0~.

n.J7Cl1 ,q[-nt.·

0 ~ r.12 7 7 ~' E -1'16 o@\~:711JE-n~,

-0 tt 141., 6S [-\Jl;

n ~ :?o.:?.S50[-0 5 =0. (:,01 r, 1[-0 c:;

0. t.2f<"7E-0 ~, Oe;=\524/C:-C':' 0 • 226C~ lE-OL~ o.22Dl2E-o5 0. r;'77J nE-n 5

=0.32671E-0Lj. n.CJ92~ .. '3E-05

~o. 15r.7,9nE-rJL:-0 e 1 2 ? 2 '} E ·- C' l;.

0 e 19226E-8~-

0<ll~3L.:.l6[-0Lc-

f·~CD E I X

0.27011E-03 -0.78179[~06

0.26985E-03 =0.25379E-06

0.22302E-03 -0.11516[-05

0.22339E-03 Oe29472E=O:) 0.62278E-03

-0.61983[-06 0.62304E-03

-0.91769E-07 v.51768E-03

-0.98965E-06 0.51730[-:Jl o.3l091E-05 0.35COCE-03

=O.l7444E-04 -0.18032[-04 -0.17963[-04 -CJ.l8769E-04 -0.43969E-Or; -0.19032E=04 - 0 • 4 8 ~ 0 5 t: - i~l '3 -O.l7942E-04 -U.40762C.--(J4 =0.64174[~-0t;

-().40245[-04 =0.71541E-05 ~O.l0390E-04

-(). 74174[~~\..)~) -Q.!)'J::J75E~C5

·-0.6~)272[-05

~ 0. 1 3 Lt 3 !+ E- 0 4

~o. 3 3 4 J 1 E- u Lt­

o.lsG04E-n4 0 • 1 0 5 7 1 E = 0 t+ C' • 1 7 9 n 4 E - (1 1}

O.l0911E-(')4 Ce21925E-OL~

-0.33784[-01+ Ue2l607E-04

-0. 77664E-01+ 0.64962E-U5 0.25.:383[-04 o. 6 3 9 6L+ E -c :, 0.25541E-C4 O.l0417E-C•Ll-

-0.77~3l1F-0L}

0.1 009 1JE-Cl+

~. 2 0 p, 13 E -r'i 3 0.2Ll·679E~05

,J.l9523F-O:?, -0.3J3:,4F-0S

O.l()416E-03 - 0 • 1 l-t /1 6 5 [- 0 ~I

C.20710E-03 ~") • 1 1+ 6 9 0 E - C :_, 0.47965E-0J 0. 2 ~~~2PE.-05 'J • 4 5 0 I} 2 E - ~ 3

-0. 3:; lCSF-C::, o.45153E-o::::

-O.l6216E-C'.: 0.48063F-03 0 el29Lf 1~1 E-C :; n.2f:l,86r:1[-n3

82

-0.636~53E-04

-O.l26')3,C:-OLr C.G2J.6':::·E-05

- n • 1 2 9 8 (: E- 0 t+ 1).99?·?<':l[-05

- 0 • 7 3 !..f 2 7E-0 C ~Q.()2159E-O~+

-0 el ':.}4-L,L[-[1 5 -O.lL+R~·lE-n3

-o.:l7223E-os o.22203E-04·

-c.60J C:·6E-o:. Oe25Cl~J[-04

c.6236~E-o:)

~ 0 • 1 L1 (, 4 7 [- 0 3 o.!s4.:::·63E~os

-o.J 2r:.~~1 E-n? o.646Jlt.:-os

-0.12:;2()[--03

= 0 • 4- t'j -::, ::, ~~ [ -· 0 t+

- 0 • 1+ 2 (, 6 7 E - 0 5 - 0 • 5 0 6 2 l E- 0 t:

o. 7DL,.f:,7[-Q5 -0.29:">i3E-o:. ('1.1~474Lf[-(15

-0.:29147E-S3 -0.43Bl6E-05 -8.11 ~:,6CE-O :;

=0.27C82E=0L:. 0.82385t.=J5

~C.2G954E=0Lj.

0.8/.1997[=(1 5· ~0.269SJE~04

Cf)867721::-C~.

=0e26684E-D4 G.76537E=C~5

=Ce62342E~Ot+

0.2S311E=·05 ,~G • 6246'JE=Our

0.31921E=r)5 ~0.6212.0[=0~-

0.33693[=05 ~u. 62 4~-3 E-04

0.23463[=05 =0.38324E=04

C.3:JL:-llE=05 - 0 • 2 3 4 5 1 E ~· 0 5

0.35567E-C5 =0.35582[=0:) =0.25787E=·-J::; =U.35657E-O~)

~G.Z56~·8E=C:l5

=0.208~14[=05

O. 79<'~.0.6E=C5 0.347L~0E=CJ7

c. 79727E=C:, =G.ll782L-U5 ~ 0 • 5 8 C1 0 1 [ = 0 : =0.11858[-CS =0.58152[=05

0.29448[=06 C.L~S593E-06

0.713S:6[=05

== ~) & 3 [', 5 r;, ') E ~ C.· 1+­

--0iii34810E=C~·

-n.e.e55·.'JC=OL:­~u • f.()l:-/Lf[-C6 ~0.332!.:--7E~0Lr­

-().2l7t~~o[~Cl::-)

~Ci • (?, 8 ~ /} ~j E ~ C! l+

~o. 3l-: s s :. c = c: ~~

~0.2U4J2E=C3

- n • 1 8 8 6 6 E-n 5·

n.7aon6E-06 -0. ?0L~F.·5E-0?. -o. 534:)6E-06 -0 • 2CL;.3 7E=03 -O.l9013E-~0~5

- 0 • 1 2 3 8 ~j E ~ ~) 3

!J.?D0?7E-04 'J.15L:-25E=05 C • 3 ~-·S66E=·:~1 1J,

O. 5L:-95:3E-06 U.J5997E~U4

-0.1 ~; 145E~06 O.JOC70E=C1.ti­O • 3 OL,LOOE=06 n.67132E=C't.: Dsl~206t~C5

n • c; o 5 n L:- E- (It:

J.'?277UE=U6 0 • s n t: 7 2 c = \1 ~~­

J. 2L;-672E==C6 0.67C99E"=04

83

0 e 6 t, ; 7 2 E -- 0 !.: ~ 0 • 1 2 ~· 5 ~;- E - ~~ S·

(\ • ::· (-, p (l 9 [- 0 !.: C:1 il27A7SC-n:·

n ') n 1 r., ) c- - n [, ._, 6 ,_ '·-' .L -· ..... c. _, :.J

Oil3.2l.'35[~00

- n • 1 2 t<: 7 E-o :, 0.1313:·E--03 0 • 2 7 ~· L: ~1 E - n ~) O.t;(l(':POE-(1,(~

0.20Cl9E-05 o. 738o;-2C:-Ol:

~ 0 e 3 ='./+ ~~:, 1 [ - G 5 0.6t+C;::::,E-OL:-

- () e 2 1 q ? ~ [- 0 1:.

o.l7~-~~6E-~=·s

= 0 ~~ 2 .t+ :? .r: '7 E - rJ !.~

0 e 2 9 ?. t.1 l E- 0 6 ~O.C.219SE-U::,

0.2·4713[-05 = ·'! • t: o 7 t., ~ E - n L:.

o.2fJ,7t.;E-cr::, ~n.,5L<::·l lE-OL:.

= n • 1 e ~~ 1 1-=; E - 0 ~~~­

G.l-~- 14t::-C'::

-U.20?,JlE-C:4 0.25253t.::·=U5

-G • 2033 7E~UL~ -O.l3S·l2E-U5 ·= U • 4 1 9 ·J 9 E - 0 t1

=O.l3385E-Cr:; ~0.41988[-04

0.24310[-05 -0.46732E~D4 o.29034E-o::~

-0.46726E-04 -0.97300[-06 -0 • 94306[-QLi-~~(J • 96C'36E-Cl6 ~O • 9431 7E-Ctl-

0.28091E-05 - 0 • 3 4 5 2 lt 1.:- G 4 o.llS45E-05

Oe5172r}[-Cll+ 0.52905E-C5 o.sl72oE-04

=0. 3 04,+ 1 E--n r:, -O.l3937E·=()4 -0. 34178E~O~J ~U.l3937E~C4

O.G:;5a4E-05 0 .ll626E-CJ3 Oe62023E-C:;. o.ll625E-::3

-U • 2132 3 E -0:-. ~D. 31 ;,71 E-'}~I­=0.25C:60E-05 ~0.3l372E-04

0.74702E-U5 0.2C912E~04

0.27::?-SSE~C':.

(\ • 1 1 r'J 7 7 [ = (', 5 tJ.•J7270E-05

~n.'>~9:·6F.-')~:

-C.l.::'713F-Ci,. -0. :32217[-CS - 0 • ;:' 4 ;~ l 1 t - () L1.

().1+3}01E-O[: n. 2 J 9?4[-CLJ-0 • 4 6 z~ 8 8 E- 0 5 o • 2 1 9 9 1 E ~ n 1t

0.44CJ5)E-06 ~ 0 • 2 4 2 0 6 E - 0 l-1

0.319~-4E=C:6

-0 • 5 zr:-, 2 7E~OC> O.l0623F-C4

-0. 372G6E-0Lr 0 • P ? Ci 5 1 E - C1 c; C. 26:Y?.:iE~01l n.C!p;lqE_nr::; o.;;:(,30'1E-C~t+

0 • 8 8 ') 2 1 [- CJ 6 - ,J • 3 7 1 8 ;. E- C' 4

0.54lnOE-06 - 0 • 8 3 8 1 9 E - C L;-

0 • 1 l L;- ':':· ~~- E - 0 /\ n • r:. G t._ 1 5 E - n LJ_

o. 5Q4Lj0F._-nL~ :.:./~0337F-I!C·

~ o • c~ :::; e 4 c F ~ c Lr­

J.36';0JE-C~

-0. 59663E-~OC· C'.nt~~~ 5'::[-n"'

84

n • l .~ (, 0 1 E - r-: ''

(1 • ~ 2 tt ::;, 7 E ~ 0 :5

n.4S~lnc-0:.

-u. ~·,·!':'(juc:-u :;, 11.4 ~ 1 2!.~E~(' ~; C:.l716':,E-04 o.:::~17 ~CE-o:

o. 7?· 0 2?[-!ir', - o • 1 '? 1.) :=. :? E - n Lt

0 • 7 C.: n C' 1+ C: - n 5 ~O.J3J12E-O"-l

() • 7 6 (. 0 '0 E- 0 :. o.?.2r::,_...;;E-0!+ 8e7l:?4l[-QS

0.71244E-O:• 0.L~7~~':\E-~~

- 0 • l ~~ ;:~ 7 7 E - C' r: n • c; r; 7 u_ t ... E - 0 r;

·~ • r;c/20,4E-0 ::;, C'.l~~~2~f:E-C)t+

0 • (; I+ l 0 3 [- 0 5 0.16102[-U 0. 1/.J,_ c::.? 2 [ -0 l:

- 0 • ~ :J n r:::, n E-n 11

-n.1F-..??7E-0L, c • J. '? .s c. ~-, [- '>''

0. l ;~. J. 7 ') [ -() ~ -=()e Jr;.~2?()[--(}7

APPENDIX III

EXPERIMENTAL FLEXIBILITY ~~TRIX

85

.. ,

C.J4.S':'C'E=0t+ ,~o c 0 8 6 2 ( E = ;;

C. 3962nE=nt:1-=C.2CllCE-0~­

=0 •

=Ce .....

=IJ.

=' ....... ·.j e

C' ~a 4CC 1 OE='~'5 n.lOllC'F-113

=:J. 42 39"'C:-!!r.;, =0. =C.4981°E=·:ls

0 •. 2221nE·="S OolC4'~r.E=•':)L~

iJ ol7840E=r_:LI­

-O.a ~J.lSJB::~E-r'Lt­

=0. O.h562CE-04

=C'•

:; • 1 "1 nr· E-'~'4

=0. O.lC35 1JE=04

~(J.

= () • 2 2 n 4 ,...... [ ~ r. tf­=0. 3C01 ~·F=C';;

;-....:co E i v

O.l504';E=r'3 =D.55690E-nf:1

:')el6l?'"'E-,...,--:J, ~c: •

~::.lp,c:., r:t-_-0'?,

~o.

=· ., • 1 7 ,; ?· 11 F. = ~~~

ri@j4JJ3nF=~"''-;

n !!I 1 ,~ (') r;:, n F- = n ·::, n • 1 nL~ S nE~~f:L~­n.l ?snn~=:-=CI3 n.686J.0[=ti5 n.1 C·30E= 1i2

~n.2P.J !JF=r·,~­

~n(!)

= n • 4 1 s ,q n r- = n L': =r) 0

~~n.1 J ~:=.nr=rH~ =n. "=n. 1 n2.9C:F=n~f =n.

_t .....

='l.

0 ol ;"2900c_.=()l\

=n. 142 2i'lE=fiL+ =no n.596nnc=nc~

~n.

=n. ,,..., e :? ~) 1 !.:. r. F~- ('· r.,

0 .CJ7Sr1r'IF=rl~,

n 8 t: •) (; 1 n E = n c;

= i'"'l o } ·=-· (-;. '.· (1 F =· rl ~-

= n • 1 7 <'+ l o r=_ ~- n /,, n.J t;61!iF--,1,4

87

= r'l • 1 :.. ' :·. n F -··· r: n,.::::.2~ '":'IJ[~n

=n., lnr·,~:r. 1~-.-,n:

n.l:-1;''-:Jrq=·=n~.

= n ~ 1 1 ~~ r·) r:- - o ·7, ne 37'""'7nE---n:=-

n • 1 7 n .) n F ~ n .::~ - n e ~· 3 1 :-- n ;::: ~ n r-.

rJi\!~ .. 1 1UC"~ur:.

~·n el

n ~ 1. ; 1 n [ ··- r: ": ~- (') ~

n ., r:-, ·' f!!l J. '

~n.L~~-.~:.nE~n

=0. =!lo

=0\l)

n 0 L; . .... : 1 l il E ~. (1 r

=n., = r: • .=; '~·' 6 ::::. n [ - 0 ::::

=~ ·": !)

=n(! nit rn] r]r:r-n

= n !) 5 ·-~ r, n F- n ~ =f"'~ e Jr .. "]4!l[·~f1

I") • ? .:.:. 1 ...... n r -- n ',c

""'-' n @ l. :: ;' l ~·~ :=- ~ ~~~ '-:~

O('J:':':-'.~'"'·1 UF·~O

= n e 1 l · ·~· ..... n F -- n ·1i

- ~~ • b :~ ';1 l n t. - (' 4 ~ c • 1 ;~ r:\ 1 ("\ r = n 4.

Cl • 1 1 7 ~) n E ~ (', i+

~-C~.l227'.~E--t'lL~

-c. 12 rs1 ,-, E -04

-C.4192 11 E-t14 c.s7~~3C'E-05

- C) • 3 7 7 2 11 E- 'J 4 -c. - C' • 7 r 1 1 n t - :~ <'1

-o. ~'1.4373r'f-r'l3

C:. 91.2 8 n E -r-· S -o. -0.43l4,E-nc:. ..... ().

= 0 • 4 C 5 c1 0 E - n ~ Oel5C;zoE-G4

O.l68~0f:.-04

"'""'().

:'":.1676:--:E-";4 n ----. C.l6~1CF·-r~~-

0.6815CE-04

0.71680E-t15 -G.

0.769]0[-115 -C) • - C • 1 C C: 9 n E ~ 1~1 !+

-o. ~-0.2154rq::-n4

0.9186nE-r··5

n • 2 r) l r::, n E - i""' ::;

- ,-) • ;~, ·-:; 2 n (~ f- n ::~ n.1 :?.,"'nnr:::-n~·

· :-·, • J .2 ~. n r F "~ r'- !;.

~~: • j_ 2 ;7' ('o () r:- - (\ ~·

- .-l • ? -+ (:, '".) n F ~J n r:,

~ :~ • t+ -r;; 1 r: ::--- ·= ~--.~ 4 -n. -n.2412nr--n4 -n. "- n • ? r., n J n F - n L:.

-'l.439r-nF-n) -n.2912C'tF-n3

- n • ~? n ~1 ~:, n F- r: l+ r, .. ~ : .

-t'l. 7:~9=s:JF ..... UC::: -n. -0 • 60?L+0r:::-=n~-:-) ~n.

-n. 77390r::-·:'~4

-(1.

-0.

-"'· -'l.

~n.

=(''. =il·

n.l2130E-0L1.

-n. ,..,

..,._·I.

n.lL~S30F-04

= G • n • 1. 5 .2 1 ;·1 ~: ~· _"'\ 1~

~ 'l.

n.l82RClF-n4 n • :; 3 1 !"' n E ·~ c; S

88

=· n • ~ '~ •. ..., n :--: .~ n c --- ,,..., !;

L=->0 ,'; • ·~ ~. 1 ? !,..I l - r) ~

~ (' • '-~ "'· '"', J (I :? - 11 '.:,

- n • l -~ " 1 0 F ~ 11 c.:c.

c. 4'''= 1 (if_-04 n.~.-9.?2nc-nr::.

n.lJP.l r1~--11l, 0.60J3nF-n'~

-0. n • 6 .~ r /+ ,-: F _ n r·,

n.2227C'[-n;.

n • 1 o -:-; ? 1 :=.: ~ n ,., -0.,

u.r)4tJ'lriE=ur..,

-n. - r~ • -n.

n • 1 7 7 n n ~- r) 1.~

~·o (J.

-n. -n. ~(I.

-!J.

- n • c; 1 2 r-, () F - r l :,

~n.

=n.4n<+nn~~-r~,

0 • 26SFJIE-n S c l • '] 6 3 '~ u E ~~ (J S () •--:: 7,".LruF~U!+

f\lODF V

:-, • 1 9 3 n r· E - n .? 0 • 1 \~~ 7 t1- CJ E - D ~­C.61110E-rl:~

~o. 6393C·E-() r::,

.3589r"E-IJ:?, ~-C.99ti-10E-C5

Q. 3613ilE.-n·~.

0 • 2115·'lE-"4 0.33~,9nE-r12

-c. 3593°E-''3 -C:.l35lr'·E-iJJ - ') • 1 4 5 0 ."\ E -IJ 3 ~0.2421 1'E-n4

0. 2 2 54 11 E- 1'~LJ­

-0.2"-329"E-0L_.. c].26S]0F-i!4

- 0 • 4 7 9 0 ~; E - tJ ~~ -o. 6320'"'1 E-n~

- 0 • 3 9 2 1 rl E-.') 3 0.7678CE-C'4

-0.10~~20[-'-,3

C.2072CE-C'4 -C.l361nE-0~

0 • 2 0 1 o :' E - :~: t+ ~-C.l4L4-2flE-f1 ~

O.I~290C:E-04

-C.679l!IE-C13

0.549lr"E-C5 ~" 0. o.7n6lr1 E-ns " ----}.

--0.6742nE-ns -o. -:J. 66 7 5 n E-n 5 =-0. 0el351'~'[-fiL~

0.14~·1 OE-r14

n.l2? 1 llF~0':', () o r:.: 9 2 II() F - n L+

'"'. -'l-97Snf:- 0 4 (). 3 56 70[-f~~-n. J89lf1F=-0LI.

~n.l4E~.znF-n3 n • 4 3 8 3 n c ·= 0 t 1_

0 • 1 :5 6 :=, () F ~ 0 ? - 0 • 1 3 L: 6 0 F - (")/+

n. 34-410E-n:::: -n • .2 t:; 3 J !!F··-r1 4

n.3192nr::-::3 -n. n. l1-- 3 CJ? n F- (', ·?

=0. n.2!)9()1IF-n2

-n.'7~610F=03

-11.3132nE-nL: -0.24-lf{()r.-!3 _,....,_

- n • 2 2 ? ? n F - r' ", -n.lfil30F-'....,tl -CJ.2516C)F-n3 -ll.l22':.,nF"-n4 -iJ olLtr)3ClE-\12

n.6229CE-r,4 n. 539nnr=~n:,

-n. -0. -c. -n. -n.l2DQOE-04 ~n.

n.34.?1C:E-"'4

89

~n.4'inl,...,?-n--:>

~-n. rl(' .·, !+ r:r ~r-'!+ - (l • l 2 r-~ .7 () r-- n .!.;. - n • r:: 8 r:J 7 r; C ._, 0 ~.

(J • 7 f: '! 1 u [- u :~.' n • .?2'"lni-n4

n e 1 7 1 ,J. n r- n ,cf

~. (') • 1 7 '"' :" (\ [ -- (", ~I

= n • 6 7 ·':~ ":: n E-n ~

-·"· ~nn?nE-1'14 ~ r) • l 1 r. C• U r-- - ! l --:>, ~(i8

~'.J.+ll'"'i=-~n::-,

n • 1 'J 7 7 ;--:. E - r; u.. () • ? c: r; [ U [ ~ { ) t.,.

0. • l :;- n ~, n [ - !") t+

o.J.u-::,.-iuF-(1? -n.

IJ. J .2'~,1 UE- 112

~n.41:.-:::-nc-n4

n.7?10ri[~-!,c",

-n. ("'•,

==-, J. - {).

-n. n • t+ :::; r, 5 n c - 1: :~,

I,

~ ~ e 5 5 :'· l r, F = '' '-1-

C.7"~~t:;5rlt:=r""·~

r~) • 1 8 5 1 n F = r1 4 ~·O • =0.72690E=ns =C. ·=(). 7115 11 f=i' ~) -Co =0.2LJ-4lr'E=:-nu,

Oe74590E-r'5

0.59210E~C4 o.sos2nE=r15 D.llll,.-,E=OL~-

=Co 19C1 9CE= 1~1L~

=0e

-C).l9290E=C4 C.249lnE~0&)

0 o6543CE-CIL:­IJ • l C LJ- 3 (~ E _r-, 4

[\lODE VI

8o6132nE-01 C .1160(~E=·:':4 0.21060E=C2

=0 o 8 594nE=I' 5 o. 351+50E~nl

~O.lll9~1E=t!L~

n .:~71 70E=rA n.l995'"'E=nt+ O.l435r:'E~r~:J

C.l316(1 E-n4 0.33CCDE=CJ2

0 • 8 5 2 6 C' E ~ ,-~ t:. ~ !.J • 2 3 6 1 ('· E = r·, li-

Dol632C1[=1~,:~

=O.l·':'73nE-!!3 = c • ':3 R q '":J C" E = () Ll­

=0. 39 8 9 (' E=~'-4 ~c • 3792CE·~'J4 =0 ol652nE=IiLI-Ool93Lt-nE-r:~

~-r!.Jf'L~er~l:':'"~-r·.,:~

nofJ()":l('("\i::"~f'·'

.) • 1 3 7 6 o F = n l1-

~n@

r ol3E\ ltiE=I:.L:­

·-CI 0

-n0

r)r.:,;::pnF=0')

=no -~n fJ 217r::~OF=C4

'io;::':,Jll\E=CI+-

~~e 35960E=(l{f r] • 1 5 7 7 0 F = 0 4 n.l923nE=nl:­~"'' • 3ll,+C'F=n::, r'iol7730F=r'l4

=•'!.

='I • 1 1 6 2 n F = r1 4 r,

=l J. = n • 4 5 S 2 0 F = r~, i{­

n • 2 0() 3 C1E=C:L~

=t1.1552!JF=n3 n. 611 70[=C'·t:­nol51lilf=ilJ O.l2lt20F=03 r; o P. ") 'j 2 o F = n tl· no--:: ::~~d;f1r==nl:

_nolf.S?r'"'r.::=r:~

~~~. 3C?PLf()!-=f:.4

-n. 3 ~i 1 7~'F=r- 1 C. 3 'J6 7'"JF=r\LJ_

('o 12°20F=Il2' n • 1 2 5 n n F = t; L:-

0.41?,_?,11F=n'"', =no n.,3n:,7nr:~l',3

-~- (\ 0

!1 • f. 8 l 1 n E = n '?,

:~. 3il1.20F=nt+ 0.22n1nF~n2

90

n 15

? s ,-, ::-; n r:- __ 0 :,

n,14 (il--11~:­

= c: () 7 L, ,-: r:: :; r-- :" r-,

~ne

= I'"' ., ~: 7 4 2 ('; E - ·'J ~·

n. 42 J -:1, n[-n ~. 0 • .::.:-<;700[-'~ ':· '1e?r.;,f1:-':IF:-0 n •. :'"27?cE~u

n • 1 ~- r~ r! u c ~ r) :, c~()@) 11 7c;(lr_:_~nc::,.

(_) o -~::: r.~: c: U t~ =U r:-,

=n e r::, 2 ·~~ 1 0 F -rl ':· ().,.{:-6<11 OF-rJ:;:.

n~:-::,f?F:IIF-~n~.

u o l~ 5 l o u E - u 5 n (1!1 9 .:; ·J, c:. 0 E ~ n ~

=0. :l'--:J7?0F~rlL = ~~ & 1 1 ( ·~ n U F ~ (l L,

n e 7 n ;· 2 n E-n ~: =()~57 ( l :~,I J E ~ () t, nclO!+.~uE~r1

n.,:;:-t--Jin0[ nL:-

(lolSllU -(J4 C'•o2'+ -1G[~(-1 ::'

n • ? L.:. ·.: 7 ( 1 r: -o

n @') 2 ':< 7 6 ~~ r~- n l~ "= n e ;; ~+ r. l_ n E -~ n ·:, =11.

n Ill 1 2 C: ? n E- n Lr

~c! a 61 ,-, 4 ti F -n <'i-

n.3uf·.sut:~u,.:._

.~nesnn:::rc-n-~

Oet.fl:='::=•[Jf_~(ltl

- :_~; • 7 7 [=: 8 ": F - ... , c.

c • 1 4 4 2 :; f::-~- ('\ 4 0.7922nE-ii4 C.7547C"C:-C4 o.5369nt:-n4 o.264lr'E-n4 0.53r~'2nE-04

0 .1142r'E-r14 -Ci.l812()E-04 -().

0.79130E-n4

- 0 • 2 6 4 1 tr E = f' 5 -o. -n.2701nF-n5 -0.5927:JE-:'t; -0. -o.

-o. -0.5555(1E-C!5 =0. =0.59"3nE-115

C'.lll2C'E-04

n • 1 c; l~ 9 n E - (14

-o. -0.5663nt.-DI+ -o. - c • 7 5 7 5 r E- r) 5 -o. = 0 • p, (J ?, ? " E - ·.·1 r; C1 e251~"[-0t;

o. 372~~nt:-n4 ~n.

-O.l873°E-=n4 =n.

D.l67Jr:t:-n4 C.291)2!:E-C'S 0.62n9 11 E-·:l4-

-0.2R950E-ns -n.zc~sl('·E-n4

-c. -n • 200Jr')[-n4

0. 349 sr··t.-n r:) C'. 2 536n[-n4 C • 3 3 2 L1.

0' F - 1

" r=:

n.652J('E-n4 -o. 334?r::E-ns

-"· :)}Q>;0c-n?. ~n. 1 n~~,2nc -n4 ~ :) •. ~ 2 9 1 0 r:: ~- (\ :.

~().

- . -n.? 1420j:·>-n? -n. -0.4<;}f,f!F=n;',

~n.l78?.nr:~nL+­

-r'.l4730F:·-n2

n.6375nr-nL~

=n• ~r, • 7 8640[ _t·, ~~ =(\·

~n.2695C:F-r"'r,

·~().

-0. 5831\lE-t:!:) -CI •

-" s 168 7nF~nL+ n.zqs::nF-ns n • 8 n 9 7 (l F- r: ~

n.56650E-nr:: r'.106qnr-nrt

-o. ~· .... '.1 r:,77nr~n-~.~ "~n • -~-:. ?, :J,t~.t:;(if=r'lf

:J • L~ 2 7 ~-) 0 F - C rl n. 21150f-(\l+ Oe2491U~-U4

~:--l.~l;:SClE-Ci!t­

n. :?·5?5nF-nr:, n • 1919C!F-!J4 n.l667nF=n4 n.ll340l=-n4

-o. -n. 2CIJ3nF=!il+ ~. (l •

-0. 43'::·4rJF-r-.t.~. 0.5:~n3r;F ~"f)

() • 3 1 E) ? Cl F - r: 4 n.21220F-(·4

91

(). 'J,r~,rr:- ur=-~u?

--o.7'5110c--n"-,~

= ' i • 7 s ::: r:, o E ~ r J ~·

[) • ~-? r:-_.::: () [- (_) U,

~ n • 2 ~~ n 1 n ~ - iL'-~

n.l",::;r:.:.nE-n:-:: -ne?~·:-::1 0f-rlh

-n.

-n. -n. -C: el-:- 36':'r1f-OL~

~ n • 2 4 -:; 4 r: F - r: r.,

-n. =n. -n. -o.

n • ::, 9 '"' 3 U F ~- n S =n.

n. 4 4 ;'), r: f"', E-n r:::.

=\•. -Cl.l()l~:;nL~-c·'·Li

u .14r~ r; uc-u~~

o. 387·--.!Jf.-u~,

'i. 3 ~' =, 1 n !:" -n ~· n • 1 n 1 ? n F - :; LL

r1. 6(J? .. --. ut:-~u s = n • 1 s 7 ~ n E-n I;

r1 • .07'-' r. uF-tl r..

n. J6/+nnF=--n~, =Cl. 64;·.)2,0F:-n ~:~

n.171 ;nE-nij_ ~ r) • 4 3 1_ 7 rJ F ~ '! ~.

u.5132ut.-u~)

ll.l]_fJ~;I)f-IJ"-1 !) • <'r r-_, (.. L; U E- I) r

r 1 • 7 i.J l / u E ~ t.J i1

ri • t:l- I (' l~, n r - 0 '")

- () • 1 ~ :~, C! l) I~ ( \ i, n.:;-1110[--n

1·\0D F \I I l

0.3516r1[-fi3 --C .1182 '1E-:'L+­

D.3"l"r1[-r1-; 'J.8218nE-n5 C.ll480t:-n:? 0.56lCJGt.-nc:,. 0.4°93nf-n3

-0.120311E-()4 o.s111nt.-n3

~·"(J • 1 50 l C E- ~~~­

r;. 7998nE-n..,,

-r: •

0.8132nE-ri4 -0.20110E-n4

C. 8 544Ci E-04 -D.426'30c-04 -Cl.3145nE~n4

-O.l0610E~n?,

~c. 3822nE-nLl­-=C.l5531"';E-nL,.

o.zr·95 11 F-n':l. ~o.

o.l943~'E-n3

~0.1795"E-n4 - () • 6 2 Cl ?. ('I E - () 4

0.7RQ?J'f:-ilc; -o.

O.R512rlE-rH; Cl.ll370E-n4 c.1n39nF-n3 0.2392GE-~"1 4

0.4325"E-nt~

-o. C.lB1.3nE-n4

-o. C' • 2::? 59t·E-t-.!4

-o. 0.18690[-(1 3

n.;:2r~20F~·n4

n • l 1 5 ?JI F =('I l~

~ 11 • 3S92(1F,~r'"'Lf

·'!. '")992()~~:'1 5

-r'.2573Gr-~r4

C'l • ·') 7 6 .2 0 F~ .. = C ~~ :'' • 2 ') 0 n n F -· n 4 n. ?·572CtE~r-·:t+ ().53 3 70[-CJ,.:I-

= n • 1 6 l .3 n E - n tt =()•Gll?OF-0.Lj -11.2213nr::-"~nLt-

n.2905ilF-n'?, G. 2312ClF-n.:t O.Lil830F-r'3 n.l~450F:-i'4

n.l1l?>I!F-r>2 -n.

f' • 2 .Q 1 7 I; F- r·, ?·

~'-~. n.7r'1'5301=-n:; n. 33-2t+0E-04 n.9L+72nE-n3 n.236';:.0E-0LI­r• .1 CJ63nE-('?

=n • r::-\C)9('tOF-fl4

-n. - 0 • () Cj 2 1 f) F - ( \ L~ -r: • -n. 2703f"1F~r~?·

C • 9 n 1 2 0 E- r; c, -n.635G0F-n4 -0.

-r'.14CJC:SOF-r}·). -il.t'"i}J.?::JF-ri'-. ~ '" • ? 7 r; 3 G F ~ n 3 -n. 6ll1-~)nr:-n:) -0.47560[=113

92

--n. 1? 3 5 r; c ~-I'""", ··~ 0 • :; 2 1 7 n F- n :::1-

r-. • 6 l r, .71 !'} C ~ il L~ ~ rt • -:: r- ;-· / C E ~ r; L:

n 8 '~i 2. /;. r::, n r ~- n .:~

~-0.J4(,?,t\F.---0?

-0.221-::;nE-n4

-0.43'--35,...1[-()4 n.1?77UE-r'?

~·,...'· 4;r:~, nF-n.!;-·'

-n.231:;nE-n=., ('I • 2 4 (~ 3 () t - 0 .:4

- C' • 2 S 6 7 u E- (J 3 n • 7 1-:.. n ·J, (11-~- n ~~

-o. '2Sf-,70[-U? n • 1 J r: -~ n E - n ':

- n. c::J 1 l o !) E- r 1 4 0.",7?1 nE.-nLt

- (I • ':• "3 r 1 7 I ' F- f) 3 i1 e {+ ? 0 1; (1 L- () ''+

=r1.61:)70[-r13

( _1 • "=', 0 7 ::; ! I [ ·- U Lt

~ n • ·-) P. 7 ·::. n F -~ n ~-· lle67r:: .• ::Jur-t,~­

-r:. I ) • 7 5 ·~ lt ) E ~ I, ) li

~('\.

~n.

-n.l(ICJ·~()C-[Ii!

( 1 • l -:>, r ' ?, 1_1 [- r l ·::

-0.1 ":'j 0r)f--C/:

r ' • 1 c:. 1 ~). r 1 F ~ r l -; -r..S'J2?Gc-n~.

n. 1-, 74-nE~n:?

.-. = ..... 0

=n • L~215 (: ~=,-, r~.

=('\ '. ..•

~~(' • 3 011° E ·=n!.)

=0. ~ . ~~_,. 7 9 61 11 f::..=,n 5

0.4n32°E=r'r::, Co 1015~E=('IL~

ell5~r:--E~'~'4

=C:.;,

0 5 1 1 c~ :.:"3 11 E = ('\ i1.

=n. ~)775°E~n4 =n .. ·.

o. 3177r:E~ns =C.

C. 2 5 ;~ 7 C! E ~ ·~' Lt­

=r. 0.27.:35°E=n4 0

= ... ·•

= r • 4 7 n 3 n E = n '+ =C.

0. 260nr•E=n4 Ue3227\·E~~,nr:;

o.2589nE=n4 =C. =().

~'J.3':·190t:~nr;

~O.l5llnE=nt,~

0.399? 11 E= 11 tJ C) • 6261 r.E=04 2 • 4 5 3 7 ,-, E = " 5 :: • 5 8 8 3 11 E - 'l L:-

=C1.232lnE=' .. '4· ~o. 43[\!::,nE=nt:.,

~ n • ~; ':") "ll (~ ~~- ~ ( -~ r

~r" ®

i"~1. 5374-(IF=":4 ~no

-- () e :5 6 ? ("? 0 E ~ ('1 ~~'

~-n • -- r1 " 1 6 4 5 r: r- = r·4 ~~n e

n e 3 ~~ 1 7 n F = n i~

~n.

:~1 • ? r:. 5 1 0 E = n o::)

n e 3 :) ::::nF= 0 5 ~J) • .? c::(nrl!="=r· r.

= ;, • ~' {~ 4 2 ~: F = n "': ~nlll

~() o 12290E=CL+ =(i.

,..1.6(132DF=n~1

=0c n.6 -:oc,.-.:;n~.:=nr::·, rl.ll?,lOE=nl:

n.snJnOE=n~.

() • 1 4 2 Lt- f) E = () I+ I' • 5 r; ~':- n n F = ....... 1 ~.

n. 1 9 7 n ('1 f:- = r: n • l, 3 ·::J 7 0 F = n r,

~ n • ; t:, 9 'l o F: ~ r""'~ i~ ~n.

- n • 5 :::; 3 c) G ~:: = r L1.

n • "/ 1 /1. 9 n != ~ n ::~ n.32620r=:=n4 tie ;c.(;t:;,~OE=C'r:J

n. 3t:)651Jr-=r.,~~ ·'~.R7l+nnr:-=(lr~

93

()6·\2~ J l)r-=:-~-f\F =['"'\ 119

·= o " 1 1 •·:·) n F ~ o ,·.} ="1.?51 ~-lt~=r:~.

=0. =n~

=ne n o ·-=- .;; 7 r; l: ~ () ~,

=r'l,

~n.

=(:.,

=(). =f) e

~ n· e 6 2 -:-, n n F- n r:, 0 (J (JL;.-::·rl('i-~!l':­

~= r: I»

=1).,

~n.

~ () >It

~n~

=' (J i!

no.3 Jr10F~~n~:

n • 3 J c:-· ,:1. () E ~ n ~~·

"~ u ~ 7 :::~ r:_ ! t) r::·- !_1 ·:,

:!.J::7?C'E='"1::, = () " ·~- 7 i\ ( 1 ~-~ -~ f) r:

() " .::· '":',f) 7 n r~ -- () .:": n " 1 n ~'.:, o r:~ - n 4 01}')~';/0F-05

0 o ·~i~~~ 1 0E-f'l S - ~~ "' 1 e n 1 n E- n ,~~

n ~ 1 C l 2 r_;· E = U :.+ = n " J n ~:, ~-· 0 :=- - n ·'-l

n <! £1. r:. 7 r l::- - n 4

!'\ (iDE \' l I I

0.36nlnE~n:~:)

- C • 1 3 8 2 ~~ E = n L+

C • 3 5 54-r'< E-!~; ·3 0.5887~E-"'-)

C1 .4329r'E-n? C'.5297r'E-n~.

C.1201°F-n? =n.l2r'3i'E"-n4

o.sn15nE-:!3 ~ C' • 1 2 9 5 0 E- 1":1 4

n.s329nE-n3 -r.

C.9'::·?4riE-n1 -c.

~O.l5131iE-f!3

-C.45930E-D4 -O.l492ril::-li3 -Cl.26C·lC:E-I"\4

0.2299 11 t.-n4 ~n. 27CC1"E-n4. -C.32510E-r!Lt - o • 1 1 '::1 3 0 E-n 3 =0.34::l8\IE-Ci3 ,-C.23130E-"'4 -0.39890E-n:::J -0.1 C)450E-'14

n.4s3nnE-n4 -n • 4C::C· 1 ('E-n') -0.3n140E-1J4

-C.8451°E-n4 -o. -~O.RP.l4r)E~n4

-r. ~~0.15'510L-t1?,

-().

~ 0 • 3 0 6 5 n E - r'n

0.2812nE-n4 -C.l8150E-n:1 O.lC9SC~E-n4

-t1.19820E-n-:; -n. -0.3lf'lnE-n1

. , ..... ~-;.

r • .2212nt->-n4 n .11 7":!0E-nl~

~f') • 4G 13 (IE _r)r_l

r"~.lr"'32:'F=:i,4

,= 0 • :3 (';i 2 (/!= ~ r, L~

n. ~;r-,nc:;or:--n4 ~ n • 3 l 7 Cl 0 F = t: It

(': e Cj 8 1 3 0 F ~ '1 LI­

n. ~2n3flF=nL+ - 8 • 1 6 3 5 0 E - r~1 4 =il • (J 7900F-C'·4 - n • 2 2 n 8 ~~, E - r', 4 _(). 0 LI ~ 1 nr-·~\..f

(I. 613 snr-nc,

n.45750E-03 ~u (l • 1 L1 0 1 () [ - Cl 4

n • 2 9111- n E-n 3 =n. ?4?7n[-n'-'+ '~.28120E-r.3

-n. n.1 :;nqn~-~,2

-n. C'.lC!;,6UF~C12

- n • 2 n 1 n n F - n /1

n.66670f~r3

=n.36snnF-n4 n • 6 s 1 (I ('q::- ~cJi 3

~n.1221ni=-nt+

n • .2 2 7 L1- P F - Cl ;;

_,.~.1 L251iE-·n:~,

-n. - n • 5 L~ 1 2 n F - r: t1.

-n. - n • ~' R 9 n n F - n Lt =n .113 3nr-n.::~ ='i.?Pl2nr.-n:; --n • ?·462 OE-C'lLt -n.z:,t.?lOF-03

0 • 1 n n z n F - n t+ ~ n • 1 3 n :2 o E- t_.: -:::

0 • 1 Ltl 2 n E-n lt <- n • 1 3 6 2 n F = 'I 3 =n. =r·. r:·nl ?nr.-0~

94

=n.l?7C:·(J[-u=: - 0 • '~: 4 :::: ? 0 [- (i C:.1

tJ. 4,.;,7,~., ~_,~r-=-t..J4

~n.JA7r:::,n;---n

(\•l+?"r-)nF-n -n.?47Srlr:--r):., - n • l~ n i.~ .-,'"' 7": -- ~'"" ~,

-n.':11f),"IF-t14 - () • ?· l) ::. ;:' (IF- { I :-

-n.~.s3r:0[-1H+

r 1 • 1 :2 u q r. l E- CJ =·, - n • 1+ ? r, r n E - '1 .!.,._

~r;. Z.47t+U[·-u;) -o. ~n. ?n,:..,;.,n[~n::.

- 0 • 1 r:) Q t+ n E - n L,.

~~ r: • 6 :. T ~· :: r- n .::,_ -n. zQ,c::onF-n.~: ~n.:;~'.-:-l_U[-IJ":'.

() • 1 s '-. :,_ () [ - () !:.

=u.r:-;1_luF.-·u?. -0 • \2 ~:; 7 3 n F:- t; - I] • .',c ( ~:::, .::: () ~ - II 3

-0.4L~?Ji()E-fllJ

- t1 • 1 5 1 ? q r~ - n ? --0.5 c:,~~~---~ nr::-~r: 4

n • 1 u ::., r' ( 1 ~ -· IJ ·:,

O.ll2'j0E-Ol~

n.211nnF~n4

-().

O.lt+'"'-r1F-04 I) • :: () L: ) () F-, ) -::-.

0.?211 r.J[-t;::,

0.;:'0:::'-;:'0[-0~

r _J • 6 () ~ :'._ U r- U ~­

n.?S:'r111F-n4 -n •

0 • 2 4 7 ?,(' F- n ,~

C.l04l()[=n4 -o.

0.1068()[-04 ~o.

-0.57751lE-05 -o. -0.5001,-,[-1\~J

-o. 0.24~50E-n4

-o. CJ.2532nE-ntl­

... o. -O.ll63GE-04 -o. -n.ll92r.E-04

O.l3990E-04

O.l064GE-04 -o.

O.l0510E-04 -o.

0.37190E-OS -n. -0.61620E-0L~ -o.

0.24440E-04 -o.

0.25210E-04 -o.

Oe69140E-05 -o. -0.43750E-04

0 • 3 4 1 3 0 E- 0 5 ,_

0.24130E-04 0.28940E-05 o.z2B90E-04

-0.24110E-05 -0.14470[-04 -0.24290E-05 -o.

0.10230E-04 o.5387oE-04 0.34450E-05 0.53920E-04

-o. -0.31170E-04 =0. =O.?O?,:?OE-04

O.l2350E-04

- 0 • 1 14 2 0 F- () '~ O.l69nnr=-ns n.3442Cr=:-ns

n. 35lfHIF.-n5 =n.

n. 56220F-nt+ ··-0. - (1 • 2 5 9 7 () f ~J: 4

0.2501GE=n5 n • 8 ': 1 4 0 E- r.r:s 0.26600E-n5 n.7925flE-n5

-0. ri • ?._51 7nF-GL1

~o.

n.43520E-n5 -r.

0.43810E-C5 -n. -0. 2'+620~-05 -0.31780F-05 -0.67950F-ns -o.

O.l0650E-04 -o.

Oel0830E-n4

-0.59830F-05 O.ll560E-04

-0.14270E-04 0.48300E'-05 0.?3060E-04 0.48900F-05 0. 219401='-0/+

-o. -0. 35380E-()L~

0.43820F-05 -0. 32010E-OLI

0.67120E-05 o.52130F-04 D.81220F-05 0. 514 7nF=nlJ.

-o. -n.L,.P??OE-'"'4

0.77210E-OS

95

:;.::4.-·SCF-iJG n.J.l34nt:-n5

=0. ~o.

~n.

-n. -n.:?6?'Jilf='-'15

n.92711JE-n5

n. 394:1 nF-(1 5 - 'I • 3 7 r::i .? 1'1 E - D 5

n. 3Gn2nE-n =· -n.

n.4.592nE-n5 =n.

-n.l~,t:")?0E-n')

-n. -1"'). -o. -n. =rl·

0.217t:\OE-n4 0 • 576~0E-O':·

~0.38920E-n5

-o. -Oe5l()OOE-05 -o. -n. -o.

Oel63t:;OE-04

-o. o.34oooE-o5

-Oel3310E-04 0.35ROOF-05

-0.57920F-05 o.55550F-05 0.76110E-0!:1 O.?l810E-0L~

-o. 0.89750E-05

-0 • 300CJOE-Ot+ o.r-:,st:"<~OE-0~·

-0.14120E-Gt~

n.111?nE-04 () el7?711E-(Ht O.L.l6J QOF-04

\0

m

><

w

0 0 z

<:j· ,J

L.C

c c

c l

! I

LL

JL

LL

C

CC

c

~:·, f·­

li

('. Li

<r

Lf'.

co

I

i L:J

L J c.

c· (• • ...:J· c

(' r-·

r--1 (•: '\

r-•

.--1

Ll ,

r-1

C•.: .-:

(

..::; c I L.J c (•

,...-' 0

· L

[··

c-u. . ..::;

c·· c

c l

I l

L..L.: L!-,

LiJ C

CC

r·: o_ C

LC

C

0 c

c f ..

u·: r

L \

...j· L

i'l (•',

ll··.,

i= (=

) c· c:. c

I I

J I

I L

L

L:..: L

J

L_ LLI

c: c:> o c

c c.~

r<-~ c-··: r•

r·,• r-: .-...;

o:: !--

c· . ( -.,

[',; L

'\ (' ·:

o:: 0

C·J

L'\

.--:

• •

• •

• •

• •

• • •

• •

• •

• C

CC

CC

CC

:C

CC

CC

CO

OC

I

I I

~ i

~ ~

I ~

....:l-.... J-

t.r ...:.J

L(·~ .... -.t

..... :J" ~-

..... -r-Li-·~

,--L

r\ .. j-

.:; .....-::r

.•• ::J c

c c

c·-c

c c

co

c c

c c

c· c c

l I

J I

I I

J I

l I

~ !

I l

I I

l.l_; lL

lL

lL

l!.J

lL

L . I.L

LL

lL

I..Li LL

LL

W

lL

lL

C

G

C·C

C

OO

CC

CC

CO

OC

C

...-r'·;

rJ c· r·.J

Lr, ..:t

lf'> L

-, ~

r' · rl <:r

01

Ln

tn

c: o::

r• , o-o~

C'1 r--

rr··, c.J

,......, r-;

C>-j cr . ..n

a.::; <

'i (".

L"·

..::.r li-,

'-L

C:

,-; C

f'-.i

o:: ...j

C•

C'J

CO

C

' C

. <' ·

r-i

C

rl

( ('~

0'•

C'..i

!"'-LF·

f'J lC

'. C-.J

C'

-.0 rl

• •

• •

• •

• • •

• • •

• • •

• C

0()0

CC

JC

CC

.)C

C C

C'O

CC

:

I I

I !

('

c I L!J c. (' •,

,.._, ':t f'·~

<'

{~-=-· I

LL' 0 .-1

.--1 lf'l N

r:··: ()

I w

0 C

'\ (<

':

.--1

N

('<\

I;::)

I w

C

• 0

'• L

:': 0 N

(,~,

C~·

w

C')

0J

r-1

C'

L(\

(',

c·· j w

C

: L.('.

(C'!

0 ~

(f'l

()

l.J.J C_) 'l)

t..n N

lf'\

(Cj

()

I w

0 ~~

0 c~

U)

(•",

0 i LLI C

' C

"l (h

r-l ('('~

• •

• •

• • • • •

• • • • • •

••

oo

co

oo

oo

oco

oao

oo

o

! t

~ I

I I

I

c··, u

c c:.

c c

I I

I LL!

LL, IJ_J

CC

C

r-

0 (­

... c C"'

a_ (-..

(";

.---! ... r.

,_j-

0 I L

_'

0 l,.,

(,j

1.2-\

~.J IJ '

cc

j I

L;_: llJ

C

' C

(' .

It l LLJ c

0 ('

..-~ r·

c \.1-:-

..-1 r·

c. c

•. -~

w

c ("-,~

.--· r,

c -~ u'"':

c--~

c c

0 l

I I

~W:.J.J

c, o c)

r· L

i' c

(:_~ ('-: r--

en

e

<'

t·-r .

( ·-. .---!

u-\

r-1

• •

• •

• •

• • •

• •

• • •

• •

c~c

c c

c c

c c

u G

c

C'

C

C

C

C

l I

~ I

('(

c I L

L

0 \.£_'1

u··. G

· r-1

(''\

,.-, c

c: .. I

I lL

LL

0 0

r-l

, L

\\

("' C''1

C

C•J r..

.--1

(C,

lJ ' ,.., ._

.1

r-­\.l)

0'

.-I

I !

! !

l i

~ !

(':

c I lL

C

· ... c. (".-

L!' ,-r

,, ! t;_:

0 ('(\

("-.j

.:j-

c,..: c I LLi c r·,; c~

.....::

c·-~,

c· ~ L c: r·-J r<

..:j­-:j-

('":

( I LL r··

'-(•":

c !'-("•.,

• • •

• • •

• • •

• •

CJ

C

0 0

C;

C:

C'

C

C

C

C'

• ••

c c

(,) •

• •

"=' c ()

1 !

I i

! !

~

~~

..j-..j

..j'

ccco

I

l I

I W

LU

l:.J

W

0 C

C'

('<~, rl rl l'·

a· r-i

r-J o\

IJ)

\.[) (!

ll\ r-lr

i.--1

.--1

,J

,-., ... __ l w

0 0 o::: \.0 .--1

..j ..:1·

I.!.. ..:j-

LC·

L-:

Ll'

Ll\

Ll

<f

CC

'-C

:D

C.C

OC

•O

C

I l

I I

l I

I I

; I

ww

ww

ww

ww

wu

C'~UOOC·C>OOC::C

r..,J c;

r-1

r-t eel r'.l

r;-'-~'~

co 0

IS'· cc.

C'' . ('.J

c"'. c--. co

-.j" r--r­

r--·D

rl

['J

!.>"I

C'• co

U)

i'-<

" rl

('\j r--..j'

'.{) (:'.

·.O

0.)

L(',

rl

• • •

• • •

• •

• •

• •

• • •

• •

ou

oo

oo

oo

oco

co

oo

oo

i

J J

I I

~ a

i !

I I

I I

I A

........ m

I

lL

(_

( L' •

l'._!

c L.

.--'

.-·J

c I u_; c .......

L'

c ! ~

c [;

c r

( .

! L_ c r-c~

(

• •

• •

• •

r__: c

= c

c (

-..::: l L c c

; ('

c r--

.....::·;

c ! ':J.... c r. r-­u c

( u c c (':",

'::r c

ll> (::.. l L_ (_

(·.

..J'

r-~

('

( i LL! c·

' (i r--

'-· c I u c ('

...-.. ~~

• @

• •

4'

cc·ccc~;_ __

(__ ~ 1.'-. c:·

c·· c

(<

(_ 1

-I_L

c ['

c

r• c I ll.J c ('

c c r-'

..;:J <

I c

c: i

l u.J

L· c

(,::-. r--

r ....... '>..C.

v· •

• c

c. c

c ~

r< ( ---~

c c

~ i

LL: u

c c

c c ..

!.{"• \,;:_.

c r-1

rl

u: • •

• •

c (''

• •

C

• •

c c

• •

• •

• c

c c.

0 c

• • •

• c

c c

c-:-· 1

! 1

~

l ..... :;

l:.~ ... -::--

t:, ~j-

L["

<~;-

C:.:· J ~

{=-) c·}

c ~ c~-

t_.

c-:. I

1 ::

! ,J

i I

:_u IJJ

Lw

!.!J 'JJ

:_Li LU

LL!

lLi

( :-c.:

c () c

(_ c

'~:' c ,,.

(•J

[.; (]''

J·-( .•

(',j "·'

f<";

G-(··,

(' __ : c~~

r·.'·,

1.r· ~ 'c

·D

~:r

-j-r•-:

(~

c·..: r-c,J r--

''-' r·-c--J

:--L,..,

• •

• •

• •

• ••

:.~ ::_;

C~~ ~::)

C)

C'

---:: c:

~ :J

J ~

cr

1 I

l ~

~ ~

c· c,

~ l

U

LcJ c

c C

·. (T

. .,._:--t

\,:::,;

'.; _ _;. u-,

L--. u·,

• • •

• •

•:) -::_·;

r;

0 ,_

:j

u a

1 a

~

'-.j

"-.,J

c ·=

tl i

)jj

w

C.

r i

r'J c ..:;t

rl

'-'-, • 0

ccr

~

<t

' c LL

:_u (_

c (-,

c· c··

0

c c-

r : r·.

L'

c i L

. C

:

'-~ LC' r--

L c l LL: c I' ('

Lft

L''·

~.J l,

-:-j­c

c , ..

I I

1 L

J

1..Li I._!

c c

(: r-

r·-l

i'. {=

I r-~

<I

f J

( i L

J c. ~J-

c '-~-

L-

. ..;::

cc

l I

:_,_j W

I_Ll

cc c

'Dr_

C

Li

(: . ..::\

f·.!

• •

• •

~

• •

• •

c~

c· •

• •

• •

• •

• c

c c

c c

c ~ r--:;C

CC

C

CC

J

1 ~

! ~

~ ,:

~ l

~ ij

..:: c

c u

~ L

lJJ c

c r-

o .-c

G

· C

· ('.

r· 0

·

~-J­

c lL.

()

c c-::o ,.-I

,-j-

c ! lL

c c ,.-;

~._j­

C. ~

U.:

~::)

r .J c ..,.,-:t"

't

()

l L.J C

J r--rr~

~.:.--,

~,

~~

~

~-

• ••

c· c-

c_:, •

• •

• •

• ••

c: ,_-::_, c

c c:

c:. c:_,

<~•

IS

,---l L..: C

·

f'.J 0 (·-,

~ ~

l

lC

c· cc

~ J

UJ

W

C.

r_:, L

-. L

'l r--1

(;.

<l

(_

c---~ r-J

u­c I LLi ~=~ ,~J

(J'• r<·:

~.;·­

C· I

w

c .... J ·L

('~

•.C

~.n

C;

lJ.J C

> ({j

r-1

.--1

r--

... t c ~ L

. c ( ('

(•·:_

r--

'·J

\~

LU

c.:• C

·J !_

;-,

L'

'..!-

...:_,

c I Lu c ....0 ...-1

r: rc

• •

• •

• •

cccccc

L.

c. n LLI C> [,J

n: co ...;t

J !

l:"· ~.=·

I w

c r;r_ 1

--

I.[",

u (:)

; L:_j

(~

r,r·, rl

1"­•.C

• •

• •

• •

• •

• • •

• •

·:"J c o

o C

J ~::.·

u c-:;

o n

o C

) o •

• •

• •

c; =' u C

) .-.:J

J u

~ 3

1 i

1 TI

ft 1

G

co 0

"

1:-, l'_-'.

L-.

if lS

..;:

LC ..;:"

L"

L:

C

C

C

C

C

C

C

c-C

c:.

C

! I

I I

l I

i I

I i

W

l..' LL1

IJ.-: lu

L

_ L:_:

L . .:

L1_ L.J

LL~ (

c ('

(~ c

c c

c c

c (_

c ("

: (_-_

(;_· r··•

r-

(' IJ

U

C

C

r-

C

·-1:> '·

,-~ c·

r .:.

c .--

r : L

1"--

("'

r--i L: ',

l! '·, I'

('-l!

\.[ .... -~

(':' ,-1

.... :;

r-1

1·-<:

tr ...:.;

.-' (..,, r·

:--r, r---

• •

• • ('

,-. c

c 1

• •

• •

• •

• 9

cccccccc

I !

... ~

u:-..:-j

u u

. c

c c

c· c:

I i

I I

I L..

LJ

l.J .• W

c

c c

c. c c

c ('·

(\' (

c .-

u c

\' 0

~

r--,~ "'

r--(<

r-"

• •

• •

• c

c c

c c

!

"· ' (.

c LC

IS c

( '..J

L(

...,:: . l..:. ~,

<r

L~ ~

...:. ..:c

ecce

...:}

c j

u_

L···

c;· (

l tc._ c [-'

r-­c

l L

L__

c c

u u· ('"

C:' \.(_

0 \

c I

i I

1 I

I L

_ '-·-·

1 L u

; LL

L'

L1 c · c

c c

c:-eo

c c

u r--

c) c. c

r< c._

·-::1' c'. c::

r---c::

G

c-'

~r·', c _; c· ·,

r--1 \..{>

(;

('( r·

J ('1

r

<J

I L_ c li a: \•

..j"

c i L c L

\' 0~

c

• ( . . . . . . . . . . . " . . . . .

r_:: c

c r·

c ( ;

c· (..

c o

c c

c c

c c • c

i -:t (--~

I L

J

c:: .. j-

·0

(~

,··.j

• •

() <J ~

!

! I

~ !

! ~

:l

<i (~~)

L1J (_

)

c··.

r,J

":­c U...J c '-i",;

c:· (._

·

-t .. -.. ~~-,..,

j llJ C:; \,J

--:t ('j

\"--i ,,-...

,:r

I w

c (:""

"-J ~

-...t

..... '-.!

l L

· '~

C\~

r~

Lf'! <.:f

.,,.,::T

c l L

d

c­("•J

u· (·=

• •

• •

• • • •

• •

• • ,:.:_; c..

C

C

t.)

C · c:.,

c:) ()

C)

0 !

I l

! l

I i

1 U

,~ L

' <

t co

c:-1

I l

LJ

LL.! U

:::_. o

c·· C

": CO

C•.J

.--. rl

(.~.

r-1

.--1 ()

u rr:

r--:-, •

• •

• o

oo

c I

L!

li •-:

c c

I I

l L __

L. L .. !

c· c·

c c

c L

' C

~

~

L

f

L

L' ·,

l, '· .,;

J L·-

.. ~-;-... J-

... ~~·-""]-

,;' <

....:j

c c

c:.' c c

c ,-

c c

(_ c

c c

l I

l I

I l

I ~

I I

l 1

w..... L'...'

:..1.J L

LJ.J

l~

L L.J

l · ;;__:

_u !..i.J

LLI C

C C

:C

Ct

CC

C

CC

(

C

c '-l.

( I.:

li (

... --: r.

c Ll

<

( r-

L',

c l'-

( (

("· ( -. ,.

LC:

1.

C

u·,

..;:

,. l\ .

l'"

r--t

f r-

(J

f' \,(

....r_, ..;"-

r .. :

l' ·,

\,_,~ .. c~~

r·-.--.

~~

r-1

r--: (

r,

• •

• •

• •

• •

• •

• c

ecce c)c

cc c

c

~ fi

I

• •

• •

• •

c c

c (

c c

l I

.... ~.

c u... c c c '-\

,--:,-L

... :J u

· ..::­

(_ (. c

c c

,_: .. j

_.... ~

.. _j-'!

u-·. ...:~

G

lS L

1 I

I ~

~ l:.

LL ll

u. l..L

C:

e_, c c

c ..... ~

r ~

<'··, " .. '

<J (:\

r· c·,,

'.:-L

(1

'D

......-' tC

.--.

( ·. (-~,

e r .. c

r .. ; •

• •

• •

C

C ·

C

C::

1

c c

(_ c

(_. c

c (_

c c.

(_ I

l i

1 l

~ I

1] I

I !

llJ L

. L

lL

, lL

L•.~

'.JJ LL-IJ.J

LL ~..1..'

c C

.· c:

() 0

c c

c-c

c c

(",) (' . ('"

c'

r-1

(' ' ,......,

(" ; ,..-1

lS.

L\ .

.---· .-.

C.

r-· .. ('\ r-·

G

C

r·-! C

C

u

cr. (

'-'-C

' 1"'-

C" 1 c c

r c

('', !'"--

r-

t:. rl

L\". ("-·,

(I

('' i

<

c •

• •

• •

• • •

• • •

• •

c c

c: c

'-~ (.

0 c

c (

c c

c i

I 1

I I

<t

L· -j

t.:·· <r u'.

...j t<

·. c· tJ

r <

t ...:r

Lf'

.:.-:s .;.::_:;

c:-: ,r __ ..

C:

C)

r_-:; C

· C

c_~;

·.:: ,-~

C

C

C

C

I I

I I

~ ,

J l

I I

I i

I I

l W

lL

:..U

LLl LLJ

L:J W

LLI

LL ~L

L L

J I .J u

J l:_;

0 C

• 0

C

C>

• _.. C

C

C

(_-:;

C:• C

) C

• C

) C

<

-l r-,; c-:,

c>. \"<"'1

<•1 cc

C';

rl

c-J r_r.

r -,, <"' ·

L'-\

( ·

, .. _ C

' L~·

C

U'•

r-1 r·-

Li.", ! J

.,j-f'-

.--1 ·T

C:

L" (()

<t

{<'

L(\

f•J C

) ('J

c::: r-1

f'-

C.

c-r--

..j' -.;j'

·..::J (,j

.-1

c·-1 r-1

L

(· r-l

Lf.

rl

(,_J f'.l

•D

r-1

• •

• •

• •

• • •

• • •

• • •

• •

• :.:)

D (~

D

0 :,::)

C

(.., C

'· =:.:

0 0

CJ

0 C..1

0 C

c·,

J I

l i

I !

l I

l

APPENDIX IV

PERCENTAGE ERROR MATRIX

99

1\lODE I

-4.S13

-1J.33

-9.14

-16.04

3.42

-·1.86

NODE I I

-7.15 Yel8

-l· . ..Je)6 55.1S

5/.28

8.J8 -S.C32

- -r. 20 -3.'99

-b.29 -7.b5

-5.~)b

-4.71

-14.87

le34 -1.43

-12.33 -2.76

- i e _)L.)

"t. 0 2

-5.43 -10.91

7.63

-, f"'l ~~.

-I e 00

'I e '71

1 .. , -.LeDL

-1/1.86 1.61

-t:·· 16

• ~~· 6

1-+.73

100

--~ ,. r-=~ i~ • r~-'i :-,

-z.oo

1.61

-6.43 ~fj.6 1)

MILLS MEMORIAL LIBRARY McMASTER UNIVERSITY

NODE I I I

-5.19 -7.GCJ -4.69

-13. 9 -u.87

-9.39

-12.~jl

.=.52 -~U.55

-6.35 -5.'J7 -4.42

-b. '13 -~4. 4 5 -L~ • 6 5

1\JCJ DE I\/

-5.46 -4.37 -7.30 -1.37

-11.23 -o.~+7

3.64 -8.08

~u.l8

-•j. 41

-5.55 -8.33 -7.24

-8.88 -10.36 -2.17

-6.53 -7.15 -4.68

-14.00

-1<+.07 2.98

-8.'31

-7.45 -j.73

-1 (_I e 94 -o.l6

-o.;;;:;

-11.9.:0:.

=-1 8. llf

-9.25 -8.on -1!.65

-17.44 -d.97 -o.37

-l5.BG

-::J.l:;; 6.93

-7.iJ-l -u.77 4:3.28

6.S9 ~7.21

-1.52

-16. l ::·

-12.11

- .12 ·= • 76

,.., n • 1.• ()

·-l2. t>~l­--lr:·.C:~4

-l:).OC!

-12.18 :...().32 11. ;:; :)

101

,, ~ =I • (,I

- -. • (I')

,.., --:1 :'.., L l... ct .L

-5.50 ·- ll. 3 2

t . ..., ,.~"'.

..:.• • c:_ ·;:~

-1.30

102

j • 0 ~1 l • Lt ,, ~ l • 2-o ~ ·-

(..,1 • 6 ~. -2. • 56

-7 • .!..'7 --+. l 2 ~l l • ~ (1 ~ ' ' • 55 '- '-

,. ·~ ?3 ---- () 1:38 - lo :J :1 - lO • ·)2 -~...~ • • • -6 • ll2 - I • 55 ~t). :3 2

-1 2 • 31 -5 • 9'1 ~4 • 1 3 -8 • 77 -u •';}6 -1 J. • 61 -8 • ,_j 6 -12 • 98

-lj • 33 l • 26 - 7 • 29 -6 • 0 3

-3 • 98 -ln. 60 -9 • 28 -Lr • 35 -4. 72 ~9 • 74 -8 • l j

-14. b6 -8 • 64 -7 • 34 -9 • 10 '-"L'O j 1~ -.:+.9 1 -10 60 ~-~ ~-· ..

• • =v • ":t<t.i

~::::> • j2 10 • 67 -1 l • j_ L+ -1 l • 2 s r::: -..) • 63 ~-:-. :):_,

1\~(J lJ E \j

-2 • 74 -'-) • 06 -b. 28 =9 • (' C' _J 1...) -c • 0 (j 4 • ,+5 -4. 97 -0 • 41 39 • sn -zn • 40 = 1 l • .:::. :) - ( • 14 -6 20 -Y-.44 - / 1 ,.., -8. 9 7 -') J?

~ ..... , () ::. • • 0 • - .... ) •

-~ • 62 -8 • 47 =· 6. 96 -j • s 8 ~· . 62 -(~) • 2 1 -1 • 42

-'+. 72 L 86 ~_). 58 6 77 -1 1 ··~ c -~· ('I • • • I ..) • ~' .._

-lC • 80 10 • "-;J 1 -c.r. 42 -1 5 • S' 7 -10 • 0 ~-~i ·=t) • 03 -1 1 1 1 3 ():;, 72 ~l 6. ) (J .-. 59 • • -.:; • .. .. (j •

5 • 47 -1 .J • 61 -5. 81 -4.45 -6. eo -~~) • 77

-8 • 34 ~ • 64 -o. 49 _,.._ 6 ,-· - 12 5 Lt • ';. •

-6 • 72 1 • 32 ~- 'I • L~ :) -t;. .26 - l • 03 - 7 • 38 -o. d7 -d • 3 l -9 • 5 7 = 10 • LJ. ~' = .l 1 • OG

-1 • 77 -8 • (i6 -9. 39 ·~ l 1 • 29 "~ 1 9 • 42 -4. '+ 7 -4.49 =· t:.. • 26

103

~14·61 -7.84 -13.25 -8.18 -6·71 9.61

-9.62 =10.37 8.68 -8.72 -6.67 -9.01 3.95 -9.86

-9.85 le6l -11.24 18.67 2.68 - 1+. 3 7

-6.48 5.01 12.23 100.00 100.00 100.00 .-12.21 -4.67 -10.00 7.23 -13.98 -7.04 -7.65 -2.27

3.40 -6.74 -5.68 -3 .• 49 -6.05

-9.22 -8.00 -13.72 - 9.26 -3.54 -LJ. • 13 -6.61 -2.03 -2.95 -15.87 ~9.49

-:I .62 -9.5') -15.42 -13.29 _, -6.66 -2.15 -12.03 =.13. 16 =8.28 -5.1.+9 -6.23 14.33 =6.12 -6.36 ~G. 58

f\lQlJE VI

-4.67 -4.03 ~'7.06 --·1. 7 ~~ 11.? 0 -9.0.2 8.81 S.C6 b.31 6.93 -:;).~3~~) -:3.l~J

-7.36 -9.82 26.26 2.39 -10.7[) I'. 17 -2. '91 2.09 E: [;: r, - .. _) :;_, -11.27 ~4.91 -3.?0 -1.50 -3.78 -1.47 =9.02 -9. ~~ 4 ~5.99

-1.10

-6.G2 -L~ • 51 -~1. 77 I .76 -ll.9':i -2.7t;, I

16.02 -2.98 -4.41 -10.27 -~!=i.SO

-8.38 -5.71 -:,. 82 -10.36 -1 7 •/+ 1 -11.34 -1.26 s. 1'} -8.61 ~1Lr.45

-4.79 -3.06 -7.D6 =7.86 -=-~. 45 -5.41 -3.97

-9.44 -0.81 2.86 =8.09 -20. :~.o -10.01 2U.91 4.92 =4U.34 -::). 79 ll.Gl -8.57 1.28 -6.71 -8 • 5LI- -6.73 -9.87 -3.16 e.s3 -17.95 -2.P.~-

-11.70 -9.Lt7 -2.98 -6.18 -7.77 -9.22 -2.90

1 u • ,~+ G 13.:_.J

3.48 9.74

-l.)eL8 -2.41

-16.11 -10.95 -7.95 ·-7. Lj. 6

52..d6 -Le06 -5. '?0 -8.1] ~9. 7:_1

-::..79

1\1uuE VI I

-8.13 -21.32

" .. .., .·· -I • I 0

-9.66 -o.89

·-~ c: ... 0. _,._)·-'··)

-1~).36

-5.~;5

11.03 -10.78

3.1'::!

-15.82 -lO.G7

-:J.o-3 =9.CC 13.14

-l2.U7 -6. ')6

•• 17 -\.) • C) Ll.

-9.34

4.30 4.17.46

8 • ';H)

-2.51 -8.33

3. 1 ']

-1 c.!+ 5 -1.21 -6.}"2.

-5. 5!1-

-11.11 -9.57 -9.81 ·-1.81 -5.73 -~, • U9

-G.36 -L~.1~>

-7.00 -9. 0::.

0.31 -It • 6 7 -6 •/l r:'

-14.04 -~).27

-1.79 -8.57 -6.3L.~

-5.76 - ,, • I+ J

;:'. !17

~ 7. /+ '·;

(-. __...l, -OeLU

n ~

-ceO.;_

-'""05.06 ~l·~J.07

~" 7. 3 5

-7.70 -l_ .• D':? -c~ •. 27 =.'f • 6 2 -6.11

~-1'::,.18

(,. 77 -t..=~7

-7.66 -6.19 -2 •. ~0

-:.42· -6.~1 8

-7.18 -1le 0 5 -1 • I+'? -!+• qc:;:

=· 5. () l:. -;.10 -:;. 67

-7.02 -~).65

''J or.: • \._..1 .....

-7.]0

~8.22

-9.95

_r::, .1 0 -8.]7

(:. !; 6

=')0.~.5

1?. 58 =10.A8

1 ~-. 0 6 -lO.S2

"~ 2. 1' 6

~=2. 6 7 -14· J. r::,

5.76 -r,.?f,

7 r::1 =I e-' .L

-16.CC

~1"..~1

-8 • f.., L~

-1.73 -3.13

-6.21

~12.17

-12.77 _r=·.4?

-11 •. ?.9 10.7A

1. 6 ') 6.S0

-?.OCJ -13.07

IULJ.

~5."E3

~<~. 16

-1n •. 2r;· -9.?2

-ll.C:'] =qe\!7

L.23 ~r.:,. 01 ~7.C5

1 e r') L~.

-1''.6:?. 16 e 'C'

7.27 -1/·.~:q

105

lL+ • ..:) l 14 7 5 n 7 !j. = ,~ 7? • u • •

-5 • lr 3 - 7 • 6U -:2 ? • 1 t~ - 7 • •:j 2 -7 • 80

-3 59 5 " 1 = ·I 4 7 • • L • - 7

. .., 3 -6 8 "7 -7 lj 3 • L • I •

- 7 • /;. 7 -5 • 0'! r; • 7r1 ~l • 0 LJ.

-4 • 24 :, . • '+4 - ~) • ':_) Ll -1 31 • 24

,- •j<) l r.: '] '"'\ ;,_ 46 .--. ']c;; -(J ...,

3 -:) • _, • --' r..·. • -.} • • , ...

_) • 39 -~ • -, Q I '-·

-J • 5 1 -5 • Q4

-1 • 0 1 -SJ • 76 6

..., 1 -·It 2 '1 -4 7 F • ~ • _, •

-7 :;. 7 -3 3 1 2 ?I -1 6 9 6 -·~ ~ •) -? 6(j • • • cl • • ::) •

~ 7 78 _() ') ~~ -~9 ~-', 5 - 1 0 7 --, -6 • 07 • • J -~ • • -6 • 6U ·- l 1 • 27 -1 3 • 1 ? - 1 &) • 8 f~ ~Jj • n l

-- 5 :3 1 -3 62 -r! 5 '"\ -1 3 9 Q -7 1 () • • • t.:~ • '-' ... -0 • 61+ - ::._, • 9 ') -/:. • l+ r-:. 3· • 9 0 -7 • 72 -!~ • .2l~. -6 • 63 - 7 ') 3 - /~

'} 1 7 q{) -h 8 r~. e. 8 • L •

-~. 06 1 40 9'+ 8 74 -1 (17 - ., n:<. • ~ u • - _) • • • ., •

I~OJE 'I T I I ':; 1

-5 89 - l·~-(\ r. -1 'I /, c._ - r:~ () .2 - ]_ 0 • l 6 -?. • 76 • • \._J _. t • '-tl,l •

~ 7 08 ~6 63 -1 ,,

5 7 -1 9 ~,

9 -9 t..)l f-, ~~. 1 2 • • -. • • L • • -4 • :3 9 ~1 1 • 3 t-1 -··- • ~-\ .3 -1 ~;) • 6 C] -9 • 41 - 3 • 67 -b 6C =·l I 9~- -c : 0 1 3 C} 7 _;:~ ~) ;:~1 - l q 9r1 • "- • • v • • • -7 97 --3 L+ E -7 9;~ - .,

t::_ • • • L • ~~ {_.' h - 1 0 • -., I "3 3 • 7t.)

-4 • 38 -8 • 24 -7 • 511- J. 0 • L~6 - 1 l • 37 - 7 45 -1 " 7 -7 () 0 = 1 ~1 9 ~ 7 (- l • • c) • ..._~ (_.t • • .)

-5 • ? 1

-6 • 74 -7 • 0!+ -~) • 1 2 -~ • P. 0 -B • 1 f,

-8 'J (~. -6 1 ..,

~b ~,

3 _ .. :.-1 7 6 - l L{~ ") r:, 7 ~) t=, • t...U • L. • L. • • c:.. • --9 • 5 l -9 • 26 --1 8 79 - .,

• 9 2 -Lf 0 1 l. • ~ 1 1 73 r 00 -G Lt- 7 1 1 ? 6 2 7 •

_..., • • l • •

-5 4 4 - r:-. l 1 - 7. r; {-.\

~·9 0 1 - 13 ,. .., - ,., QfJ • J • -- ~-~ • • (.... - • 9 • 1 7 -5 • 1 8 ~E~ • 16 L 1 • 9 0 (_I .;:. ~!+ ,o 2 u • '...._: --' •

-1 r· C) 4 - -, " .... r:: c~ .~. ~<.: 6 s '} ,- 5 1 ~~~3 7J, ~ • ..L • '- ~:. ---' • _) ~· • -=-r:-_:, • •

-8 • 98 '-=" =~ • ~~ 6

-s. •Jt::J -3. l': ,:_~

-13. 5 (~ -~.60

-ll+eU.) -J.Z3

-b.b!5

-£+. :) 7 LJ-eU2

-9.70 -3 • .::.1 u. -lo

0

- U. 8 1 -4.59

-7.76 -8 • c!i-1

--+.:..:.5

-10.::;8 -5.78

-s .• 96 ~10.31

-6.47 -6.38 -o.26 -b • 1 L1-

=~ "'r._ -· • _.~ •..._1

-6.70 -')._;(/

L~ • 9 9 3.3Z

-7.G~

- .. ).21 -}f.J .• J""' -12.97

u.96 -(_). ~ 3 -8.5(1 - ') •. 26 -"+.92

1Le2o -1.,.39 ~12.F~a

le9l ,. '"' -c • CJU

-4.92> -10.16

-2. ~~ 9 -6.96

-7.03 ., (') !

-.::..::>i.}

-6.69 -7.SO -6.3·1

- {. 7r--

~2~.(J~J

3 • t.~ E;

-1 ~~ • ..., ,-.

-11.5~

-7.98

-·7.9(J -').48

-1,~1. l 7

-9.D7

'1 .~ I J..Oe04

6.61 -1'1.?,3 ~-17.()1

=7.0S -lr·.:.h

-- r:,. f,_ r.:

.. o... • i ~+

i., r~ --;._,..·;.-

-l::~.Sc1

-1!:. 50

0-7. 5 .:2

~4 • Ct ~ -I.~.-,?

-~~.C-1

0 ') ("'' -' . _, ..

_r:;.77

106

~ ., ""'f'\ - J.. I • / .

-~-.,""1

--~ .-l

• • .! L

-(). J!.;

--:,.e:l ,1_:... ~~· 9

-ll.:?.r: - }().AL}

~ '1. ·'":11 ~·. -~ ....

-:~.? 9 -7.?7

-l1.4 1''

-:?.1~

-1 c~. \._l ..L

-(~.1[3

-h .• :::.n

NODE I

-lue67 -6.9i;;

-4.36 -7.83 -5.:.~:7

-J. lt:,\ 1.53

-.3.31 -8.77

-8.68 6.94

-9.72 4.88

-13.07 -14.19

-1.82

-4.25 -2.55

-10.33 -10.36 ~14.46

-9.5') -1J.4LJ. =12.()5 -lo.28

-14.69 -3.98

-21.61 -lC.78 -15.83 -12.68

·--

-

- l • 2 6 1 t·:: • 7 7 1 l • 2 6 -6 • 0 5 -6 • 9 7 -6 • T7 1 0 • l 8 -'-} • 6 s

-6.U2 ~~, .• i.) (!

-"5.49 -5.02 -5.43 -(.,. L+ 7 -7.38 -d.Ol -6.36

-8.41 -lC.43 -2.86 -4.37 -7.71 -6.39 -7.06 -4.58 -5.68

1_). ~-4

-11.66 3.13

-4 .1·-J -6. 3 c3

-2.71 -2.35 -7.7 1';

-

- • l:J 7 = -:._1 • 3 3 = 0 • 0 ~J ~q • 87 :._; ::I -, l • c..

= • _:.) ()

l l • j 6 -() • L 6

-!). 3 2 ~~).57

-6. ·:~ l -t:'l .04 -6.95 -I'+. 6 7 -7.17

-lG.98 ·-1· 2 3 =:;.3!+ -~l.37

-6 • ~)L+ -6.05 -CJe30

-lU.J4 -11.02

~6.68

-c). o 5 -~l.l~·l

·-3.')3 -7.4S -~. /5

-7.46 ~3.31

-10.66 -l4.dl -ll.2S -2.~5

11.12 -8.63 -7.12

-13.43 -1(';•13 -14.47

-12.64 9.71

·~

~

-

1 -. L.

l 1 -:I

~ i

= :) 1 0 ..L

- ? - ::i

~

L.

• () i3

• 1 r)

1 ....-.

• C.·

• c;.2 .-:- .....

• ~ I ')

• ~T .. -~ 2 • ~·

• 4··:;

107

- 'i , i J. i • _.,

-· " ~ ~ ~} • ,_ .!..

~ 0 l • .L

r: -. 1 _, • L

·--=-- l u I,-.,

• ~() - l l • .::T4

-11.4~-

- I • (;-~ 2 - I l ,-, • r::l

1 u • 3 3 -9 • 60 j

-7 -, 4 -·0 3 w • L • u

-16 • c; 3 4 • 50 -4 82 -d r, 2 • • ._,

-2 • 1 ? -j • 'J ·"'' .5

-9 • [, 3 -9 3 7 ../ • -3 • 38 _.;

• 6 II -'

- lG • I 3

-5 • 82 -2 • L+ 1 -15 • 9 1 -4 • 9 6 - 7 • 2 3 -1 () • 5 2 -8 • 30 -:? • 5 5 -3 • 5 8 -6 • "79 - i • l d - tJ·::j I • - 7 • 14 -3 • 8 C)

-6 • 19 -L+ • j 6 -6 • 6 1 ·;

-L 9 • 5 2

- I :..\ •. • ~

- l Cl • liJ-

- '-+ 'j '-- • - ~~ • :J ') -

3 -:) • i_

1 ~~ • d .. (

.. , 3, ,;, -r:.. • -2 • 6 3 _•:::. • "-;- C,i

-G • 64 -5 • 9 3 -c.:o • 7 l -~) • 63 -u • 1 ~~,~

- ..., .J' r <.... • 00

-1 l • 07 -c~ • 9 7

lleUU

-1~,.()'::)

-lledLt -1().76

-, ' "'"! -: • '--+ .~

=~ • 8 :.:~ -3. 7 '~

0.67

,_, 1 I ~ ....... Lf

-2.=.'(1 .3 • = -~,

-5.45 -9.08

,... '"""~-:r

.:.~' • t_ i

-4.66

108

""'"\ _, ,-, ~~.:)()

-7.:~:1 -:J. ·?:3 --'-+.2'+

;- r- .. -.-,.. ~) • =~~ .) --7.~5

3.17 -:.s~2

--11.161