24
Relazione di Tirocinio Roma, 12 Gennaio 2011 1 SILICA-ALUMINA FOR HYDROCARBON BULK REMOVAL FROM CONTAMINATED WATER Moreno Maretto ,Roberto Bagatin, Alessandra De Folly D’Auris, Angela Carati, Massimiliano Baric, Rita Iazzoni, Rodolfo Vignola, Marco Petrangeli Papini. 1st International Porous Powder Material Symposium and Exhibition Cesme 3rd – 6th September 2013

Silica-Alumina for hydrocarbon bulk removal from contaminated water 1st INTERNATIONAL POROUS POWDER MATERIAL SYMPOSIUM Cesme 3rd-6th September 2013

Embed Size (px)

Citation preview

Relazione di TirocinioRoma, 12 Gennaio 20111

SILICA-ALUMINA FOR HYDROCARBON BULK REMOVAL FROM CONTAMINATED WATER

Moreno Maretto ,Roberto Bagatin, Alessandra De Folly D’Auris, Angela Carati, Massimiliano Baric, Rita Iazzoni,

Rodolfo Vignola, Marco Petrangeli Papini.

1st International Porous Powder Material Symposium and

Exhibition

Cesme 3rd – 6th September

2013

Relazione di TirocinioRoma, 12 Gennaio 20112

CONTAMINATION OF WATER BY HYDROCARBONS

Their presence is an hard risk for groundwater contamination

They use a lot of water for their activities

Petrochemical activities (refineries,

extraction wells..)

Transportation of oil by sea

Relazione di TirocinioRoma, 12 Gennaio 20113

HOW MUCH AND WHICH KIND OF WATER?

Production water

extracting

pumping

Process water

1 gallon = 3,8 L

- rich in hydrocarbons- Presence of heavy metals

Heterogeneous composition due to the different process of origin

Relazione di TirocinioRoma, 12 Gennaio 20114

Groundwater

Possible contamination

soil

Unsaturated zoneaquifer

Clay minerals

Aquifer-sea interface

Contamination plume

Complex situation:

High ionic strength

Heterogeneous and extended contamination

GROUNDWATER CONTAMINATION

Relazione di TirocinioRoma, 12 Gennaio 20115

THE MOST USED WATER TREATMENT SYSTEMS

Production water

Reinjection in exhausted wells

Process water

physical treatments:Chemical treatments

groundwaterBiological treatmentsMembranes treatments

Adsorption/chelation

Development of economic versatile

and efficent process

enhancement waste into a resource

Relazione di TirocinioRoma, 12 Gennaio 20116

AIM

MESOPOROUS MATERIAL

MSAProcess

characterization

DEVELOPMENT OF AN ADSORPTIVE PROCESS FOR DISSOLVED AND DISPERSED

HYDROCARBONS CAPTURE USING NON CONVENTIONAL MATERIALS.

Structural characteriza

tion Extruded and

particle MSA

Relazione di TirocinioRoma, 12 Gennaio 20117

MORPHOLOGY STUDY: SEM

Atom Extruded M SA Si (weight % ) 23.69

O (weight % ) 44.54

Al (weight % ) 9.90

Table 1. EDX analyses of extruded and particle M SA

Atom Particle M SASi (weight% ) 45.6O (weight% ) 53.8Al (weight% ) 0.6

Extruded MSA Particle MSA

Al

Si

Relazione di TirocinioRoma, 12 Gennaio 20118

STRUCTURAL STUDY: XRD

XRD spectra before and after the adsorption of aqueous and pure toluene

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80intensity (c/s)

2θ angles (degrees)

Extruded MSA

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80

Intensity (c/s)

2θ angles (degrees)

Particle MSA

No diffraction peaks Amorphous

BEFORE

Relazione di TirocinioRoma, 12 Gennaio 20119

STRUCTURAL STUDY: XRD

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80

intensity (c/s)

2θ angles (degrees)

Extruded MSA pure toluene

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80

Intensity (c/s)

2θ angles (degrees)

Particle MSA pure toluene

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80

intensity (c/s)

2θ angles (degrees)

Extruded MSA aqueous toluene

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80

Intensity (c/s)

2θ angles (degrees)

Particle MSA aqueous toluene

AFTER

Relazione di TirocinioRoma, 12 Gennaio 201110

STRUCTURAL STUDY: XRD

a (Å) b (Å) c (Å) α (˚) β (˚) γ (˚) V (Å3) cell type

Aqueous toluene 5.24 5.29 4.71 90.00 104.3 90.00 126.53 P 2/m

Pure toluene 4.70 10.24 4.12 90.00 93.05 90.00 201.58 P 2/m

a (Å) b (Å) c (Å) α (˚) β (˚) γ (˚) V (Å3) cell type

Aqueous toluene 6.37 7.64 4.57 90.00 107.8

9 90.00 211.54 P 2/m

Pure toluene 13.99 6.11 2.60 90.00 108.81 90.00 210.64 P 2/m

LE BAIL STRUCTURE REFINEMENT

Monoclinic structure with a β angle near to 90°

Crystal structure parameters of load extruded MSA.

Crystal structure parameters of load Particle MSA.

Relazione di TirocinioRoma, 12 Gennaio 201111

STRUCTURAL STUDY: XRDLE BAIL STRUCTURE REFINEMENT

“Light monoclinic” structure of confined toluene into MSA pores

Orthorombic structure of bulk crystal toluene

Relazione di TirocinioRoma, 12 Gennaio 201112

STRUCTURAL STUDY: FT-IR

Lewis sites > Brönsted sites

Detection of surface functional groups of MSA by Pyridine adsorption method

90

95

100

105

80

85

90

95

100

105

12001400160018002000

% of transm

ittance of pa

rticle

MSA

% of transm

ittance of ex

trude MSA

wavenumber cm -1

extrude M SAparticle M SA

Brönsted acid sites (1545 cm-

1)Lewis acid sites (1455

cm-1 )

Relazione di TirocinioRoma, 12 Gennaio 201113

STRUCTURAL STUDY: FT-IR

0

20

40

60

80

100

40080012001600200024002800320036004000

% of transmittance

w avenum ber (cm -1)

virgin M SA

M SA aqueous toluene

M SA water

0

20

40

60

80

100

40080012001600200024002800320036004000

% of transmittance

w ave num ber (cm -1)

virgin M SA

M SA pure toluene

0

20

40

60

80

100

40080012001600200024002800320036004000

% of transmittance

w avenum ber (cm -1)

aqueous toluene

virgin

water

0

20

40

60

80

100

40080012001600200024002800320036004000

% of transmittance

w avenum ber (cm -1)

pure toluene

virgin

Si-O-Si

Si-O-Si

Si-O-Si

Si-O-Si

H bonding of water

Free waterFree

silanol

Extruded MSA aqueous toluene

Particle MSA aqueous toluene

Extruded MSA pure toluene

Particle MSA pure toluene

Relazione di TirocinioRoma, 12 Gennaio 201114

STRUCTURAL STUDY: FT-IR

Strong interaction of water with silanol groups, weak in the case of pure toluene

In aqueous solution water and toluene use different sites of adsorption

Lewis sites for toluene

Bronsted (silanol groups ) sites for water

Silanol groups = Brönsted acid

sites

Relazione di TirocinioRoma, 12 Gennaio 201115

STRUCTURAL STUDY: TGA

50

60

70

80

90

100

0 100 200 300 400 500 600

%weight loss

T (°C)

PARTICLEM SA

pure toluene

aqueous toluene-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0 50 100 150 200 250 300 350 400

d (% of loss weight)/dT

T (°C)

PARTICLEM SA

pure tolueneaqueous toluene

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

% weight loss

T (°C)

EXTRUDED M SA

pure toluene

aqueous toluene-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 100 200 300 400

d (% weight loss)/(dT)

T (°C)

EXTRUDED M SA

pure tolueneaqueous toluene

Particle MSA T max (˚C) Extruded MSA T max (˚C)

virgin 64 96pure toluene 71 76

aqueous toluene 103 131

Relazione di TirocinioRoma, 12 Gennaio 201116

BATCH TESTS

Kinetics

Isotherms

MSA

Toluene

PROCESS CHARACTERIZATION: EXPERIMENTAL TESTS

Increasing ionic

strength

Effect of seawater salinity (I≈0.5M)

Relazione di TirocinioRoma, 12 Gennaio 201117

MESOPOROUS MATERIAL:ORGANIC KINETICS

0

50

100

150

200

250

300

350

400

0 500 1000 1500

Conc. (mg/L)

tim e (m in)

Toluene

0

50

100

150

200

250

300

350

400

0 500 1000 1500

Conc. (mg/L)

tim e (m in)

Toluene

eobs CCkdtdC

tke

obseCCC 10

Integrating

between C0 and Ce

Relazione di TirocinioRoma, 12 Gennaio 201118

0

50

100

150

200

250

300

350

400

0 500 1000 1500

C (mg

/L)

tim e (m in)

H2O deio

0.001M

0.01M

0.5 M

MESOPOROUS MATERIAL:ORGANIC KINETICS

H2O deio 0.001M 0.01M 0.5MKobs (min-1) 0.0097 0.0101 0.0103 0.0152Ce (mg/L) 51 47 73 57C0 (mg/L) 363 353 374 344

R2 0.950 0.968 0.980 0.958

Relazione di TirocinioRoma, 12 Gennaio 201119

MESOPOROUS MATERIAL:ORGANIC ISOTHERMS FROM AQUEOUS SOLUTIONS

0

50

100

150

200

250

300

0 20 40 60 80 100

qe (mg/g)

Ce (m g/L)

Toluene

1° stage: toluene adsorption up to monolayer formation: adsorbed-adsorbent interaction

2° stage: toluene “adsorption” up to pore filling: adsorbed-adsorbed interaction

Relazione di TirocinioRoma, 12 Gennaio 201120

0

50

100

150

200

250

300

0 20 40 60 80 100

qe (m

g/g)

Ce (m g/L)

Toluene

0

50

100

150

200

250

300

0 20 40 60 80 100

qe (m

g/g)

Ce (m g/L)

Toluene

MESOPOROUS MATERIAL: ORGANIC ISOTHERMS FROM AQUEOUS SOLUTIONS

n

es

nes

el

ele CK

CKCK

CKqq11max

(J.W. Lee et al., 2004)

Relazione di TirocinioRoma, 12 Gennaio 201121

MESOPOROUS MATERIAL: EFFECT OF SALINITY

H2O deio 0.001 M 0.01 M 0.5 MKl (L/mg) 0.032 0.029 0.095 0.062Ks (L/mg)n 0.030 0.025 0.033 0.047

n 13 29 6 4qmax (mg/g) 326 314 330 330

R2 0.978 0.995 0.948 0.983

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

qe (m

g/g)

Ce (m g/L)

H20 deio0.001M0.01M0.5 M

Relazione di TirocinioRoma, 12 Gennaio 201122

MESOPOROUS MATERIAL: PARTICLE MSA

0

50

100

150

200

250

300

350

0 500 1000 1500

Conc. (mg/L)

tim e (m in)

0

25

50

75

100

125

150

175

200

0 10 20 30 40 50

qe(m

g/g)

Ce (m g/L)

0

25

50

75

100

125

150

175

200

0 10 20 30 40 50

qe(m

g/g)

Ce (m g/L)0

50

100

150

200

250

300

350

0 500 1000 1500

Conc. (mg/L)

tim e (m in)

PARAMETER VALUEC0 (mg/L) 330Ce (mg/L) 45K (min-1) 0.0190

R2 0.973

PARAMETER VALUEKl (L/mg) 0.0692Ks (L/mg)n 0.0616qmax (mg/g) 196

n 15R2 0.974

Relazione di TirocinioRoma, 12 Gennaio 201123

CONCLUSION

Relazione di TirocinioRoma, 12 Gennaio 201124

THANKS FOR THE ATTENTION