125
© USM_REDAC_2009 Sediment Transport in Rivers Introduction Prof. Aminuddin Ab. Ghani

Sediment Transport in Rivers - redac, usm

Embed Size (px)

Citation preview

© USM_REDAC_2009

Sediment Transport in Rivers

Introduction

Prof. Aminuddin Ab. Ghani

© USM_REDAC_2009

CONTENTS

• Background • Sediment Transport Concept • Existing Sediment Transport Equations • Sediment Data Collection • Development of Sediment Rating Curve

Using Sediment Transport Equations • River Modelling

© USM_REDAC_2009

BACKGROUND

© USM_REDAC_2009

River System

© USM_REDAC_2009

River System

© USM_REDAC_2009

Relationships in Rivers

© USM_REDAC_2009

Features Associated With (a) Straight and (b) Meandering Rivers

Channel Pattern

© USM_REDAC_2009

Channel Pattern

© USM_REDAC_2009

Straight River

Channel Pattern

© USM_REDAC_2009

Figure 3.3 Typical Meandering RiverTypical Meandering River

Channel Pattern

Point Bar (Connected to banks)

© USM_REDAC_2009

Typical Middle Bar (Not connected to banks)

Sungai Pahang, Pekan

Mississippi river

© USM_REDAC_2009

Sand Deposition

© USM_REDAC_2009

Plan and profile of a naturally meandering stream

© USM_REDAC_2009

Typical Braided River

Channel Pattern

© USM_REDAC_2009

This is the flow at which water begins to leave the channel and move onto the floodplain.

Bank full discharge

© USM_REDAC_2009

Determination of bank full stage from a rating curve

Bank full discharge

© USM_REDAC_2009

Natural River Characteristics

Sungai Sedim, Kulim

Sungai Ulu Paip, Kulim

Sungai Kampar @ Kg Jahang,

Gopeng

Sungai Kulim, Kedah

© USM_REDAC_2009

Nuki River (Kitakyushu City, Fukuoka Prefecture)

Before construction ( October 1991 )

23 months after construction (July 1995) Sediment was deposited on which vegetation grew,

Creating a natural water space.

River Rehabilitation Example: Japan

Immediately after construction (August 1993)

© USM_REDAC_2009

(a) Pembinaan Siap Pada 30 Januari 2003 (b) 4 Bulan Selepas Pembinaan

Aliran Rendah (22 Mei 2003)

Aliran Tinggi (19 Mei 2003)

Constructed River: Kampus Kejuruteraan USM

© USM_REDAC_2009

Qualitative Analysis:

River Response

© USM_REDAC_2009

Dr. Hans Albert Einstein (1972)

If we change a river we usually do some good somewhere and “good” in quotation marks. That means we achieve some kind of a result that we are aiming at but sometimes forget that the same change which we are introducing may have widespread influences somewhere else. I think if, out of today's emphasis of the environment, anything results for us it is that it emphasizes the fact that we must look at a river or a drainage basin or whatever we are talking about as a big unit with many facets. We should not concentrate only on a little piece of that river unless we have some good reason to decide that we can do that.

© USM_REDAC_2009

River Equilibrium

4 Factors affecting river equilibrium

Flow discharge Sediment discharge

© USM_REDAC_2009

River straightening

Most popular option for a flood mitigation project

Banks unstable and collapse

© USM_REDAC_2009

Dam construction

Raising base level in main channel

Clear water release below a dam

© USM_REDAC_2009

Drop in Base Level of Main Channel

Channel Degradation due to Sand Mining

© USM_REDAC_2009

SEDIMENT TRANSPORT CONCEPT

© USM_REDAC_2009

Modes of Sediment Transport

© USM_REDAC_2009

Bed Material

Bed Load

Suspended Load

Wash Load

Total Bed Material Load

Total Load

Modes of Sediment Transport

© USM_REDAC_2009

Wash Load (silt/clay)

Bed-Material Load

(sand/gravel)

Suspended Bed-Material Load

(sand)

Bed-Material Load (sand and/or gravel)

Suspended Load as Normally Reported

Modes of Sediment Transport

Total Sediment

Load

© USM_REDAC_2009

Incipient Motion - Shields Diagram (Nalluri & Featherstone 2001)

τo = τc

τo = τc

τo = ρgRSo

© USM_REDAC_2009

Critical Shear Stress (τc): Shields Diagram

(d50 = 4mm)

© USM_REDAC_2009

Lower Flow Regime Upper Flow Regime

Types of Bed Form

© USM_REDAC_2009

Bed Form in Natural Waterways

© USM_REDAC_2009

Bed Form Sungai Jelai, Batu Kurau

© USM_REDAC_2009

Suggested Manning’s n

© USM_REDAC_2009

Particle Size Distribution of River Bed Material

Stesen SP7 Sg. Pari

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.01 0.10 1.00 10.00 100.00

Sampel 1 Sampel 2 Sampel 3 PurataSaiz Partikel (mm)

Peratus Telus (%)

d90

d65

d10

d35

d50

d60

© USM_REDAC_2009

Critical Velocity (Vc) for various conduit materials

© USM_REDAC_2009

2/13/21 SRn

V =

Manning’s n for River Design

1.216/1

50dn=

266/1

90dn=

Uniform Sediment

(Cu = d60 / d10 ≤ 3)

Non -Uniform Sediment

(Cu = d60 / d10 > 3)

© USM_REDAC_2009

EXISTING SEDIMENT

TRANSPORT EQUATIONS

© USM_REDAC_2009

Transport Modes Equation Range of Data

Bed Load

Shields 1.56 < d50(mm) < 2.47 Meyer-Peter-Muller 3.17 < d50(mm) < 28.6 Einstein – Brown ψ < 10 Einstein 0.785 < d50(mm) < 28.6

Total Bed Material Load

Graf 0.09 < d50(mm) < 2.78 Engelund & Hansen 0.19 < d50(mm) < 0.93

Yang 0.137 < d50(mm) < 1.71 yo(m) < 1.0 m

Ackers & White 0.04 < d50(mm) < 4.94

Existing Sediment Transport Equations

© USM_REDAC_2009

Graf (1986)

© USM_REDAC_2009

Ackers - White (1972)

© USM_REDAC_2009

Ackers - White (1972)

© USM_REDAC_2009

Yang (1996)

© USM_REDAC_2009

Yang (1996)

© USM_REDAC_2009

Yang (1996)

© USM_REDAC_2009

SEDIMENT DATA COLLECTION

© USM_REDAC_2009

Observed or Measured Sediment Rating Curve

© USM_REDAC_2009

Definition of Sediment Rating Curve

A relationship between flow discharge (Q) and the corresponding sediment transport rate (Tj)

© USM_REDAC_2009

River Equilibrium

4 Factors affecting river equilibrium

Flow discharge Sediment discharge

© USM_REDAC_2009

Flow Discharge

© USM_REDAC_2009

Flow Discharge

Model Neyrflux Type 80 Universal Current Meter

Electromagnetic Current Meter

© USM_REDAC_2009

Water Surface Slope, So

Distance = 100 – 250 m

Electronic Digital Measurement (EDM)

© USM_REDAC_2009

Bed Material

Van Veen

Sampler

© USM_REDAC_2009

Bed Material Sampling

© USM_REDAC_2009

Bed Material Sampling

Wading

Boat

Bridge

© USM_REDAC_2009

Dry Sieving

© USM_REDAC_2009

Sediment Distribution Curve (25.08.2008 @ LA1/03)

© USM_REDAC_2009

Bed Load

Low Flow High Flow

Helley-Smith Sampler

© USM_REDAC_2009

Bed Load Sampling

© USM_REDAC_2009

Bed Load Sampling @ Ladang Victoria

© USM_REDAC_2009

Sectional Bed Load Rate, Gb

© USM_REDAC_2009

Bed Load Rate for a Cross Section, Tb

Tb = gb1 + gb2 + gb3 + gb4 + gb5 + gb6 + gb7+ gb8 = 0.0165 + 0.0388 + 0.0600 + 0.0641 + 0.0678 + 0.0469 + 0.0157 + 0.0102 = 0.3200 kg/s

Lokasi : Sungai Langat @ Jenderam Bridge, Hilir Sepang

Tarikh : 8/10/2008 T = 600 s B = 25.2 m W3 = 1093.65 g W4 = 762.5 g hs = 7.6 cm n = 8 gb1 = = 0.0641 kg/s

( )

×

×+

82.25

076.06002/50.76265.1093

© USM_REDAC_2009

Suspended Load

© USM_REDAC_2009

Suspended Load

Low Flow High Flow

DH-59 Sampler DH-48 Sampler

“Depth Integrating Method”

© USM_REDAC_2009

Suspended Load Sampling @ Ladang Victoria

© USM_REDAC_2009

Suspended Load, Tt

Cv =

= = 7.91x10-5

Calculation

65.210210 6−×

s

m

SC Qt = Cv x Q

= 7.91x10-5 x 14.394 = 1.14x10-3m3/s Tt = Qtx ρs = 1.14x10-3 x 2650 = 3.018 kg/s

Location : Sungai Langat @

Jenderam Bridge, Hilir Sepang

Date : 8/10/2008 (Q=14.394m3/s)

Date No. Weight of Weight of Weight of Weight of Weight of Weight ofSampel Filter Paper Filter Paper Filter Paper Filter Paper Filter Paper Filter Paper

LA1/S1 LA1/S2 LA1/S3 + + +Dry Suspended Dry Suspended Dry Suspended

Solid Solid SolidLA1/S1 LA1/S2 LA1/S3

(g) (g) (g) (g) (g) (g)10-Aug-08 LA2/03 0.3207 0.3192 0.3171 0.3424 0.3389 0.3386

Weight Weight Weight Weight Sample Suspended Cv Q Qt Tt

of Dry of Dry of Dry of Dry Volume Solid Suspended Suspended Suspended Suspended Concentration

Solids Solids Solid Solid Cm

LA1/S1 LA1/S2 LA1/S3 Average (g) (g) (g) (g) (ml) (x10-6) (m3/s) (kg/s)

0.0217 0.0197 0.0215 0.0210 100 210 7.91E-05 14.394 1.14E-03 3.0179

© USM_REDAC_2009 Jambatan Kg Dusun Nanding(28 August 2008)

d50=2.50 mm

0.0000.0100.0200.0300.0400.0500.0600.0700.0800.090

0 1 2 3 4 5 6 7 8 9

River Width (m)

Susp

ende

d Lo

ad R

ate

(kg/

s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 1 2 3 4 5 6 7 8 9River Width (m)

Sect

iona

l Bed

Loa

d Ra

te (k

g/s)

0.00

1.00

2.00

3.00

0 1 2 3 4 5 6 7 8 9River Width (m)

Elev

atio

n (m

)

Jambatan Nami (03 August 2008)

Q=3.47 m3/s

Lateral Distribution of Bed Load and Suspended Load

Bed Load

Suspended Load

Sungai Muda

d50=2.50 mm

0.00

5.00

10.00

15.00

20.00

25.00

0 2 4 6 8 10 12 14 16 18River Width (m)

Susp

ende

d Lo

ad R

ate

(kg/

s)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 2 4 6 8 10 12 14 16 18River Width (m)

Sect

iona

l Bed

Loa

d R

ate

(kg/

s)

1.00

1.50

2.00

2.50

3.00

3.50

0 2 4 6 8 10 12 14 16 18River Width (m)

Elev

atio

n (m

)

Q=20.95 m3/s

Bed Load

Suspended Load

Sungai Langat

© USM_REDAC_2009

Sediment Database Sungai Pari @ Manjoi

© USM_REDAC_2009

Sungai Pari @ Manjoi

Sediment Rating Curve for a cross section

© USM_REDAC_2009

Nama Nombor Tarikh Masa Q V B Yo A P R S0 Tb Tt Tj d50

Sungai Sampel ( m3/s ) ( m/s ) ( m ) ( m ) ( m2 ) ( m ) ( m ) ( kg/s ) ( kg/s ) ( kg/s ) ( mm )

(LA1) LA1/01 23-Aug-08 9.00 am 17.564 0.225 35.00 3.34 78.045 36.500 2.14 0.000700 0.0275 4.0647 4.0921 1.10(Dengkil) LA1/02 23-Aug-08 12.00 pm 18.896 0.238 35.00 3.33 79.475 36.634 2.17 0.000700 0.0282 4.7188 4.7470 1.70

LA1/03 25-Aug-08 9.00 am 45.456 0.482 36.60 3.97 94.348 38.679 2.44 0.000750 0.0422 8.5146 8.5568 2.00LA1/04 25-Aug-08 11.00 am 44.294 0.462 36.40 3.78 95.964 38.227 2.51 0.000750 0.0406 12.0473 12.0879 1.40LA1/05 26-Aug-08 12.00 pm 91.769 0.757 37.40 4.85 121.290 40.424 3.00 0.000900 0.0469 99.3514 99.3983 3.00LA1/06 26-Aug-08 2.00 pm 96.104 0.794 37.27 4.80 121.098 40.354 3.00 0.000900 0.0468 82.4151 82.4619 2.00LA1/07 27-Aug-08 12.00 pm 34.647 0.387 36.10 3.89 89.620 37.732 2.38 0.000700 0.0384 21.9241 21.9624 1.00LA1/08 27-Aug-08 2.00 pm 35.866 0.399 35.79 3.80 89.961 37.419 2.40 0.001000 0.0420 22.9553 22.9973 1.30LA1/09 28-Aug-08 3.00 pm 120.763 0.786 37.60 5.70 153.569 42.228 3.64 0.000650 0.0571 67.2329 67.2900 0.31LA1/10 28-Aug-08 6.00 pm 118.261 0.774 37.15 5.77 152.849 42.250 3.62 0.000650 0.0571 62.6461 62.7031 0.65

LA2 LA2/01 5-Aug-08 2.30 pm 7.503 0.262 24.00 2.34 28.660 25.101 1.14 0.001250 0.2069 1.0825 1.2894 0.38(Jenderam) LA2/02 5-Aug-08 5.00 pm 6.856 0.254 23.74 2.15 26.976 24.799 1.09 0.001250 0.2060 0.7935 0.9994 0.40

LA2/03 10-Aug-08 9.00 am 14.270 0.366 25.20 2.74 38.986 26.546 1.47 0.001850 0.3200 3.0179 3.3379 0.40LA2/04 10-Aug-08 12.00 pm 16.128 0.416 24.96 2.71 38.798 26.412 1.47 0.001850 0.3008 3.0286 3.3294 0.40LA2/05 13-Aug-08 9.00 am 9.764 0.260 24.92 2.74 37.594 26.120 1.44 0.001000 0.2056 2.1018 2.3074 0.55LA2/06 13-Aug-08 12.00 pm 9.923 0.262 24.81 2.57 37.811 26.126 1.45 0.001000 0.2181 1.1658 1.3839 0.47LA2/07 23-Aug-08 2.00 pm 10.862 0.268 26.04 2.80 40.485 27.252 1.49 0.001150 0.2600 4.8538 5.1139 0.38LA2/08 23-Aug-08 5.00 pm 10.534 0.268 25.86 2.77 39.359 27.023 1.46 0.001150 0.2310 4.7036 4.9345 0.40LA2/09 26-Aug-08 4.00 pm 45.063 0.668 32.93 3.74 67.443 34.859 1.93 0.001250 0.2917 18.8618 19.1535 0.33LA2/10 26-Aug-08 6.00 pm 44.983 0.692 32.93 3.62 65.009 34.841 1.87 0.001250 0.2890 21.0956 21.3847 0.38

LA3 LA3/01 5-Aug-08 10.00 am 8.321 0.607 22.26 1.05 13.714 22.861 0.60 0.001150 0.3656 1.6716 2.0372 0.90(UKM) LA3/02 5-Aug-08 1.00 pm 7.899 0.571 22.09 1.20 13.825 22.961 0.60 0.001150 0.4595 1.4453 1.9048 0.80

LA3/03 11-Aug-08 9.00 am 11.378 0.443 21.80 1.89 25.675 23.123 1.11 0.001150 0.2765 2.7927 3.0692 0.70LA3/04 11-Aug-08 12.00 pm 11.034 0.427 21.62 1.88 25.867 22.943 1.13 0.001150 0.2986 2.3107 2.6093 0.73LA3/05 14-Aug-08 9.00 am 6.247 0.293 21.50 1.69 21.313 22.418 0.95 0.001150 0.2654 0.6704 0.9358 0.73LA3/06 14-Aug-08 12.00 pm 6.112 0.296 21.50 1.68 20.673 22.443 0.92 0.001150 0.2465 0.7695 1.0160 0.70LA3/07 25-Aug-08 5.00 pm 19.024 0.578 23.50 2.64 32.890 25.108 1.31 0.001150 0.3300 3.8780 4.2080 1.00LA3/08 25-Aug-08 7.00 am 18.749 0.568 23.26 2.69 33.002 24.900 1.33 0.001150 0.2982 4.8088 5.1070 1.10LA3/09 27-Aug-08 9.00 am 19.390 0.542 23.50 2.39 35.808 25.174 1.42 0.001150 0.3350 9.3189 9.6539 1.10LA3/10 27-Aug-08 11.00 am 19.070 0.542 23.30 2.31 35.203 24.912 1.41 0.001150 0.3197 8.4722 8.7919 1.00

Sungai Langat

Data summary

© USM_REDAC_2009

0.1

1

10

100

1000

1 10 100 1000

Tota

l Bed

Mat

eria

l Loa

d, T

j(K

g/s)

Discharge, Q (m3/s)

Dengkil

Jemderam

Jalan Tangkas

Kg Dusun Nanding

Jambatan Bt 14 Cheras

Jambatan Kg Rinching, Semenyih

Present Study

Sediment Rating Curve for Dengkil Reach

Sungai Langat

© USM_REDAC_2009

Yang Equation

Sediment Transport Equation Assessment

Location Total of Data Discrepancy Ratio between 0.5-2.0

No. of data %

LA1 (Dengkil) 10 1 20.00

LA2 (Jenderam) 10 6 60.00

LA3 (UKM) 10 6 60.00

LA4 (Kg Dusun Nanding) 10 3 30.00

LA5 (Cheras) 10 4 40.00

LA6 (Semenyih) 10 10 100.00

Overall 60 30 50.00

Location Total of Data Discrepancy Ratio between 0.5-2.0

No. of data %

LA1 (Dengkil) 10 3 30.00

LA2 (Jenderam) 10 3 30.00

LA3 (UKM) 10 10 100.00

LA4 (Kg Dusun Nanding) 10 4 40.00

LA5 (Cheras) 10 3 40.00

LA6 (Semenyih) 10 8 80.00

Overall 60 31 51.67

Engelund-Hansen Equation

© USM_REDAC_2009

0.1

1

10

100

1000

1 10 100 1000

Tota

l Bed

Mat

eria

l Loa

d, T

j(K

g/s)

Discharge, Q (m3/s)

Present Study Data

Engelund-Hansen

Yang

Sungai Langat

Assessment of Yang and Engelund-Hansen Equations

© USM_REDAC_2009

0.01

0.1

1

10

1 10 100 1000

Tota

l Bed

Mat

eria

l Loa

d, T

j(K

g/s)

Discharge, Q (m3/s)

Present Study Data

Engelund-Hansen

Yang

Sungai Muda

Assessment of Yang and Engelund-Hansen Equations

© USM_REDAC_2009

DEVELOPMENT OF SEDIMENT RATING CURVE

USING SEDIMENT TRANSPORT

EQUATIONS

© USM_REDAC_2009

Computation Steps

• Obtain Cross Section Data • Compute flow discharge for each flow

depth using Manning’s equation • Compute sediment transport rate using

chosen sediment transport equation • Plot flow disharge vs. sediment transport

rate

© USM_REDAC_2009

Cross Section Data

Surveyed Cross Section at LA5, Sungai Langat

© USM_REDAC_2009

Flow Discharge Computation yo B A P R So n V Q

(m) (m) (m2) (m) (m) (m/s) (m3/s)

0.50 6.82 1.6708 6.95 0.241 0.0012 0.051 0.26 0.44

1.00 18.49 7.9038 18.99 0.416 0.0012 0.051 0.38 2.99

1.50 19.41 17.3804 18.36 0.947 0.0012 0.051 0.65 11.38

2.00 20.33 27.3168 21.73 1.257 0.0012 0.051 0.79 21.61

2.50 21.35 37.6990 23.16 1.627 0.0012 0.051 0.94 35.43

3.00 22.62 48.6969 24.78 1.965 0.0012 0.051 1.07 51.89

3.50 24.22 60.4067 26.68 2.264 0.0012 0.051 1.17 70.75

4.19 27.64 78.0204 30.46 2.561 0.0012 0.051 1.27 99.21

5.00 39.28 107.8882 42.38 2.546 0.0012 0.051 1.27 136.64

5.50 47.45 126.0745 50.79 2.482 0.0012 0.051 1.25 157.00

6.00 50.64 155.4999 54.26 2.866 0.0012 0.051 1.37 213.11

6.50 52.97 181.3358 56.73 3.196 0.0012 0.051 1.47 267.27

7.00 55.56 208.4767 59.31 3.515 0.0012 0.051 1.57 327.37

7.39 57.47 230.4973 61.58 3.743 0.0012 0.051 1.64 377.43

© USM_REDAC_2009

Sediment Transport Rate Computation

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.01 0.1 1 10 100

Perc

enta

ge pa

ssin

g (%

)

Particle size (mm)

d50 = 1.20 mm

Sediment Distribution Curve on 26 August 2008

© USM_REDAC_2009

Computed Sediment Transport Rate yo d50 τ τ 3/2 V 2 Qs Qs Gw CT Cv Qj Tj

(m) (mm) ( N/s ) ( Kg/s ) ( Kg/s ) (= Qs / Gw) ( Ct / 2.65 ) (m3/s) (kg/s)

0.50 1.20 2.831 4.764 0.069 0.293 0.030 430.7 0.0001 2.6E-05 0.00001 0.03044

1.00 1.20 4.900 10.848 0.143 3.762 0.383 2915.3 0.0001 5E-05 0.00015 0.39367

1.50 1.20 11.145 37.207 0.429 40.506 4.129 12036.6 0.0003 0.00013 0.00147 3.9046

2.00 1.20 14.799 56.932 0.626 94.741 9.658 20223.2 0.0005 0.00018 0.00389 10.3211

2.50 1.20 19.158 83.855 0.883 206.771 21.078 32658.8 0.0006 0.00024 0.00863 22.8650

3.00 1.20 23.130 111.242 1.135 373.530 38.076 47355.7 0.0008 0.00030 0.0157 41.7214

3.50 1.20 26.656 137.623 1.372 597.872 60.945 64234.8 0.0009 0.00036 0.0253 67.1279

4.19 1.20 30.152 165.564 1.617 967.485 98.622 90026.5 0.0011 0.00041 0.0410 108.678

5.00 1.20 29.971 164.080 1.604 1351.68 137.785 1.3E+05 0.0011 0.00041 0.0561 148.638

5.50 1.20 29.222 157.968 1.551 1519.84 154.928 1.5E+05 0.0011 0.00040 0.0626 165.818

6.00 1.20 33.739 195.971 1.878 2437.12 248.432 2.0E+05 0.0012 0.00047 0.1004 266.171

6.50 1.20 37.628 230.817 2.172 3472.79 354.005 2.5E+05 0.0014 0.00054 0.1431 379.128

7.00 1.20 41.381 266.196 2.466 4768.16 486.051 3.1E+05 0.0016 0.00060 0.1958 518.867

7.39 1.20 44.062 292.483 2.681 5893.07 600.721 3.5E+05 0.0017 0.00064 0.2429 643.654

Total Bed Material Load Computation using Engelund-Hansen Equation

© USM_REDAC_2009

Computed Sediment Rating Curve

Jambatan Bt 14, Cheras (LA5), Sungai Langat

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 50 100 150 200 250 300 350 400

Qj (

m3 /s

)

Q (m3/s)

Engelund-Hansen Equation

Measured (August 2008)

© USM_REDAC_2009

Computed Sediment Transport Rate

Total Bed Material Load Computation using Yang Equation

yo d50 Ws Wsd50/ν U* = U*/Ws Re*= VS/Ws Vc/Ws VcS/Ws Log CT CT Cv Qj Tj

(m) (mm) ( m/s ) (gRSo)1/2 U*d50/ν (ppm) (ppm) (m3/s) (kg/s)

0.50 1.20 0.15 180 0.0532 0.3547 63.854 0.0021 1.4925 0.00179 1.4250 0.00003 0.00001 4.4E-06 0.0117

1.00 1.20 0.15 180 0.0700 0.4667 84.004 0.0030 2.05 0.00246 1.7599 0.00006 0.00002 0.0001 0.1722

1.50 1.20 0.15 180 0.1056 0.7038 126.685 0.0052 2.05 0.00246 2.4966 0.00031 0.00012 0.0013 3.5716

2.00 1.20 0.15 180 0.1217 0.8110 145.982 0.0063 2.05 0.00246 2.6480 0.00044 0.00017 0.0036 9.6098

2.50 1.20 0.15 180 0.1384 0.9228 166.095 0.0075 2.05 0.00246 2.7681 0.00059 0.00022 0.0078 20.7712

3.00 1.20 0.15 180 0.1521 1.0139 182.503 0.0085 2.05 0.00246 2.8478 0.00070 0.00027 0.0138 36.5515

3.50 1.20 0.15 180 0.1633 1.0884 195.920 0.0094 2.05 0.00246 2.9042 0.00080 0.00030 0.0214 56.7512

4.19 1.20 0.15 180 0.1736 1.1576 208.371 0.0102 2.05 0.00246 2.9510 0.00089 0.00034 0.0334 88.6267

5.00 1.20 0.15 180 0.1731 1.1541 207.746 0.0101 2.05 0.00246 2.9488 0.00089 0.00034 0.0458 121.439

5.50 1.20 0.15 180 0.1709 1.1396 205.134 0.0100 2.05 0.00246 2.9393 0.00087 0.00033 0.0515 136.525

6.00 1.20 0.15 180 0.1837 1.2245 220.417 0.0110 2.05 0.00246 2.9921 0.00098 0.00037 0.0790 209.264

6.50 1.20 0.15 180 0.1940 1.2932 232.775 0.0118 2.05 0.00246 3.0306 0.00107 0.00040 0.1082 286.774

7.00 1.20 0.15 180 0.2034 1.3562 244.108 0.0126 2.05 0.00246 3.0631 0.00116 0.00044 0.1429 378.595

7.39 1.20 0.15 180 0.2099 1.3994 251.892 0.0131 2.05 0.00246 3.0841 0.00121 0.00046 0.1729 458.097

© USM_REDAC_2009

Computed Sediment Rating Curve

Jambatan Bt 14, Cheras (LA5), Sungai Langat

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 50 100 150 200 250 300 350 400

Qj (

m3 /s

)

Q (m3/s)

Yang Equation Measured (August 2008)

© USM_REDAC_2009

RIVER MODELLING

© USM_REDAC_2009

Quantitative Analysis:

River Response

© USM_REDAC_2009

Major Steps of Computation for FLUVIAL-12 Model

© USM_REDAC_2009

Input Data

© USM_REDAC_2009

Cross Section

Alignment

Channel Geometry

© USM_REDAC_2009

Channel Cross Sections

Ch. 3020 ( 21 Oktober 2002) Jambatan Manjoi, Ch. 3380 ( 21 Oktober 2002)

Taman Merdeka, Ch. 2475 ( 21 Oktober 2002) Alor Limpah Batu, Ch. 1220 ( 25 Julai 2001)

© USM_REDAC_2009

Channel Cross Sections

Jambatan Silibin, Ch. 4540 ( 21 Oktober 2002)

Tokong Buddha, Ch. 4160 ( 21 Oktober 2002) Ch. 3600 ( 21 Oktober 2002)

Kuala Sungai Pari ( 22 Julai 2001 )

© USM_REDAC_2009

Observed Flow Profiles

Measured Data

Water Surface Profiles

Perbezaan Paras Air Sungai Pari

34.00

35.00

36.00

37.00

38.00

39.00

2000 2500 3000 3500 4000 4500 5000Keratan Rentas, m

Para

s, m

P. Air 7/10/2002 (35.00 Cumecs) P. Air 8/10/2002 (34.70 Cumecs)P. Air 9/10/2002 (47.80 Cumecs) P. Air 10/10/2002 (14.15 Cumecs)P. Air 21/10/2002 (7.05 Cumecs)

Paras Air Cerapan Sungai Pari Paras Air Cerapan

© USM_REDAC_2009

Hydrological Data

2000 Flood Hydrograph

Puncak Hidrograf Tahun 2000 Sungai Pari

0

20

40

60

80

100

120

2390 2400 2410 2420 2430 2440 2450Masa, jam

Kada

ralir

, m3 /s

© USM_REDAC_2009

River Data

Taburan Purata Saiz Endapan Bahan

Dasar Untuk Sungai Pari

0.00

10.00

20.00

30.0040.00

50.00

60.0070.00

80.00

90.00

100.00

0.01 0.10 1.00 10.00 100.00

Saiz Partikel, mm

Pera

tus

Telu

s, %

Cerapan Dasar Hil ir Cerapan Dasar Hulu

d50 = 2.50 mm

d50 = 1.80 mm

Bed material Bank material

Sediment rating curve

© USM_REDAC_2009

Model Output

© USM_REDAC_2009

FLUVIAL-12 Model

Predicted Flow Profiles

Profil Paras Air Sungai Pari Bagi Kadaralir Q=48 m3/s

Profil Paras Air Sungai Pari Bagi Kadaralir Q=15 m3/s

2000 Flood

34.5035.0035.5036.0036.5037.0037.5038.00

2000 2500 3000 3500 4000 4500 5000Keratan Rentas, m

Par

as, m

Paras air simulasi (FL-12) Paras air cerapan

35.50

36.00

36.50

37.00

37.50

38.00

38.50

2000 2500 3000 3500 4000 4500 5000Keratan Rentas, m

Para

s, m

Paras air simulasi (FL-12) Paras air cerapan

© USM_REDAC_2009

Predicted Cross Section Changes

Ch. 2475 Taman Merdeka

Ch. 3020

36.00

37.00

38.00

39.00

40.00

41.00

0.00 10.00 20.00 30.00 40.00 50.00Jarak Dari Tebing Kiri, m

Par

as, m

P. Dasar Awal P. Air AwalP. Dasar Simulasi FL-12 P. Air Simulasi FL-12P. Dasar Simulasi FL-14 P. Air Simulasi FL-14

35.00

36.00

37.00

38.00

39.00

40.00

41.00

0.00 10.00 20.00 30.00 40.00 50.00Jarak Dari Tebing Kiri, m

Par

as, m

P. Dasar Awal P. Air AwalP. Dasar Simulasi FL-12 P. Air Simulasi FL-12P. Dasar Simulasi FL-14 P. Air Simulasi FL-14

© USM_REDAC_2009

Ch. 3380 Jambatan Manjoi

Ch. 3600

34.00

35.00

36.00

37.00

38.00

39.00

40.00

0.00 10.00 20.00 30.00 40.00 50.00Jarak Dari Tebing Kiri, m

Para

s, m

P. Dasar Awal P. Air AwalP. Dasar Simulasi FL-12 P. Air Simulasi FL-12P. Dasar Simulasi FL-14 P. Air Simulasi FL-14

34.00

35.00

36.00

37.00

38.00

39.00

40.00

0.00 10.00 20.00 30.00 40.00 50.00Jarak Dari Tebing Kiri, m

Par

as, m

P. Dasar Awal P. Air AwalP. Dasar Simulasi FL-12 P. Air Simulasi FL-12P. Dasar Simulasi FL-14 P. Air Simulasi FL-14

Predicted Cross Section Changes

© USM_REDAC_2009

HEC-RAS Modeling

© USM_REDAC_2009

HEC-RAS Modelling

Sungai Muda Model Set-up

© USM_REDAC_2009

What Is a Bund?

• The U.S. Federal Emergency Management Agency (FEMA) defines a bund or levee as a “man-made structure, usually an earthen embankment, designed and constructed in accordance with sound engineering practices to contain, control, or divert the flow of water so as to provide protection from temporary flooding.”

© USM_REDAC_2009

BUND DESIGN AND CONSTRUCTION Bund Height = 3 m (Freeboard = 1 m)

© USM_REDAC_2009

BUND DESIGN AND CONSTRUCTION Bund Height = 3 m (Freeboard = 1 m)

© USM_REDAC_2009

BUND DESIGN AND CONSTRUCTION Bund Height = 3 m (Freeboard = 1 m)

© USM_REDAC_2009

BUND CONSTRUCTION AT LAHAR TIANG 2B (HULU)

© USM_REDAC_2009

BUND CONSTRUCTION AT PANTAI KAMLOON 2B (HULU)

© USM_REDAC_2009

CAD of Sungai Muda (2001)

Cross section interval: 200-250m

© USM_REDAC_2009

TIN of Lower Reach Sungai Muda

© USM_REDAC_2009

Design Cross Section

Sungai Muda

© USM_REDAC_2009

Sediment Input

Sungai Muda

© USM_REDAC_2009

Selection of Sediment Transport Equation

Sungai Muda

© USM_REDAC_2009

Sediment Deposition after Channel Widening

Sungai Muda 2003 Hydrograph (50-yr ARI)

Deposition

Original Bed Level

© USM_REDAC_2009

© USM_REDAC_2009

River Sand Mining Envelopes

• The suitable sand mining reaches can be determined by drawing the predetermined bed level based on HEC-RAS modelling.

• The minimum envelope level or “redline” adopted for the sand extraction is 1.0 m above the datum bed levels.

• The maximum envelope level is taken as 1.5 m from the top of deposition level as stated in the existing DID’s guideline.

© USM_REDAC_2009

Stock Pile

Stock Pile

Main Bank

30 m

Mining Setback (Minimum)

‘redline’

Deposition Thalweg

Maximum Allowable Mining Depth = 1.5 m ELEV. 98.5m

ELEV. 100m

1.0 m

10m

30 m

Mining Setback (Minimum)

10m

Allowable Section for Sand Mining

Setback, “redline” and Maximum Allowable Mining Depth for In-Stream Mining

Figure 1.2: River Sand Mining Management Guideline

© USM_REDAC_2009

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

200 240 280 320 360 400 440 480

Initial Cross Section

Simulated Cross Section

Minimum Mining Level

Allowable mining depth = 1.5m"redline"

1m

CH 9700 (Deposition Level = 2.8m)

Minimum and Maximum Envelope Lines

Sungai Muda Extra Replenishment Level

© USM_REDAC_2009

Sustainable In stream Extraction

• Reduced number of extraction sites by increasing extracted volume for each site

• Allowing replenishment to occur along the river

• Extraction only from large rivers having the main channel width wider than 20 m

© USM_REDAC_2009

Appropriate Extraction Sites

An extraction site can be determined after setting the 1 m “redline”.

© USM_REDAC_2009

Minimum and Maximum Envelope Lines

1.5 m Extraction Level

1.0 m “Redline”

Sungai Muda

© USM_REDAC_2009

Appropriate Extraction Sites

Recommended areas for sand mining (based on 2003 flood hydrograph):

• CH 17254.06 to CH 19454.46 • CH 20056.20 to CH 20690.80 • CH 20970.17 to CH 21399.46 • CH 21865.41 to CH 23556.37 • CH 23960.61 • CH 24454.94 to CH 26133.94 • CH 26467.28 • CH 27042.74 to CH 28146.99

• CH 28907.23 • CH 30046.23 to CH 30484.41 • CH 30978.42 • CH 31426.28 • CH 32061.49 to CH 32360.40 • CH 33433.75 • CH 33650.64 • CH 33939.03

2003 Hydrograph (50-yr ARI flood)

© USM_REDAC_2009

Extraction Volume Determination

1m “redline”

1m “redline”

CH 23556.37

CH 25454.42

© USM_REDAC_2009

Extraction Volume Determination

Setback = 50 m Setback = 20 m

toe

toe 1m “redline”

1.5m

© USM_REDAC_2009

Chainage Area (m2)

Average Area (m2)

Distance (m)

Mining Volume

(m3) 23556.37 275

253 1598 404,294 25454.42 231

Extraction Volume Determination

Chainage Area (m2)

Average Area (m2)

Distance (m)

Mining Volume

(m3) 23556.37 210

196.5 1598 314,007 25454.42 183

Total deposition volume

Total extraction volume

** 314,007 m3 / 12 months = 26,000 m3 /month

** middle-third mining volume = 404,294 m3 / 3 = 134,765m3

X 2.3

© USM_REDAC_2009

Thank You