137
1 Phil Jones From: Phil Jones [[email protected]] Sent: 09 July 2014 17:12 To: '[email protected]' Cc: Andrew Kelton FL <[email protected]>; Ray Lockyer PASAS <[email protected]>; Dave Hooper PASAS <[email protected]>; Des Williams PASAS <[email protected]>; Mark Hughes <mark.hughes7 @virgin.net> Subject: EN010049 - Swansea Bay Tidal Lagoon PASAS Written Representation 2... PASAS Written Representation 2... PASAS Ltd esponse to TLSB PEI Angling Trust and Fish Legal r... Fish Legal response to TLSB dr... Fish Legal to PINS about accep... 413196 Swansea tidal lagoon ex... Tawe Neath Afan Catches 2014-0... Salmon stock performance in Wa.. Sea trout stock performance 20... PASAS Answers to ExA Questions... We attach: - our (PASAS) written submission (9,181 words and 12 images) - a summary of our written submission (708 words) - our (PASAS) response to PEIR 2/8/13 - Fish Legal letters of - 5/8/13 (response to PEIR) - 17/12/13 (response to draft ES) - 3/3/14 (to PINS about acceptance of the application) - APEM Ltd expert fisheries assessment - Excel workbook of catch statistics - NRW document "Salmon stock performance in Wales 2013_2.docx" - NRW document "Sea trout stock performance 2013.docx" - our (PASAS) responses to some of the Examining Authority's first round of questions Phil Jones ===================================================== Phil Jones, Director (Treasurer) 44 Bwllfa Rd, Ynystawe, Swansea, SA6 5AL Tel: 01792 843951 Mob: 07957 154992 Pontardawe and Swansea Angling Society Ltd www.pasas.org.uk Reg'd in Wales No 6736638 Reg'd Office: 8 Bwllfa Rd, Ynystawe, Swansea, SA6 5AL =====================================================

Phil Jones - Pontardawe and Swansea Angling Society

Embed Size (px)

Citation preview

1

Phil Jones

From: Phil Jones [[email protected]]Sent: 09 July 2014 17:12To: '[email protected]'Cc: Andrew Kelton FL <[email protected]>; Ray Lockyer PASAS

<[email protected]>; Dave Hooper PASAS <[email protected]>; Des Williams PASAS <[email protected]>; Mark Hughes <[email protected]>

Subject: EN010049 - Swansea Bay Tidal Lagoon

PASAS Written Representation 2...

PASAS Written Representation 2...

PASAS Ltd esponse to TLSB PEI

Angling Trust and Fish Legal r...

Fish Legal response to TLSB dr...

Fish Legal to PINS about accep...

413196 Swansea tidal lagoon ex...

Tawe Neath Afan Catches 2014-0...

Salmon stock performance in Wa..

Sea trout stock performance 20...

PASAS Answers to ExA Questions...

We attach:

- our (PASAS) written submission (9,181 words and 12 images)

- a summary of our written submission (708 words)

- our (PASAS) response to PEIR 2/8/13

- Fish Legal letters of - 5/8/13 (response to PEIR) - 17/12/13 (response to draft ES) - 3/3/14 (to PINS about acceptance of the application)

- APEM Ltd expert fisheries assessment

- Excel workbook of catch statistics

- NRW document "Salmon stock performance in Wales 2013_2.docx"

- NRW document "Sea trout stock performance 2013.docx"

- our (PASAS) responses to some of the Examining Authority's first round of questions

Phil Jones

=====================================================Phil Jones, Director (Treasurer)44 Bwllfa Rd, Ynystawe, Swansea, SA6 5ALTel: 01792 843951 Mob: 07957 154992

Pontardawe and Swansea Angling Society Ltdwww.pasas.org.ukReg'd in Wales No 6736638Reg'd Office: 8 Bwllfa Rd, Ynystawe, Swansea, SA6 5AL=====================================================

Page 1 of 2

PROPOSED SWANSEA BAY TIDAL LAGOON – REF EN010049

SUMMARY OF THE WRITTEN REPRESENTATION BY PONTARDAWE AND SWANSEA ANGLING SOCIETY LTD – REF 10026500 (9,181 words and 12 images)

1. The first section is “About us and our fishery”:

1.1. We explain who we are, who our members are, the nature of our fishery and of our fishing rights.

1.2. We mention the well-recognised benefits to the community of fishing.

2. The second section questions “Justification for the development”: We:

2.1. argue that the huge environmental impacts are not justified by the modest power generating capacity

2.2. draw attention to relevant parts of national renewable energy policy

2.3. question whether the proposed development is really a “nationally significant infrastructure project” within the meaning of the legislation and ask the Examining Authority to rule on the meaning of “capacity”.

3. The third section is “Our concerns – summary” where we quickly summarise concerns (developed in more detail later) about:

3.1. effects on fish and our fishery

3.2. the applicant’s environmental statement

3.3. the possible re-siting of the turbines

3.4. the Water Framework Directive (WFD) assessment.

4. The fourth section is about “Consultation” where we:

4.1. counter the applicant’s suggestions that we have failed to engage properly

4.2. argue that the applicant has not consulted properly in accordance with the law, PINS guidance and their own consultation strategy

4.3. explain the contact which has taken place

4.4. submit that the application has been submitted prematurely.

5. The fifth section is about “Environment Statement – Flows, Fish Movements, Turbine Encounter, Etc” where we:

5.1. refer to previous correspondence

5.2. agree with warnings about “a clear distinction between precision and accuracy” and “the potential false impression of accuracy due to precision”

5.3. give details of latest Tawe salmon and sea trout stock assessments (“at risk”, not “stable” as claimed in the ES)

5.4. describe likely effects on flows in Swansea Bay and their effects on fish movements

5.5. explain concerns about the scope for re-location of the turbines

5.6. indicate parts of the ES which we accept and parts which we don’t accept

5.7. draw attention to parts of the ES which call into question the approach to modelling and the ES conclusions

5.8. draw attention to the independent expert report (by APEM), to which the applicant has not responded

Page 2 of 2

5.9. explain our concerns about the turbine encounter modelling, draw attention to fallacies in its assumptions, argue that it fails to take account of significant factors, etc

5.10. discuss the proposed use of AFD in the context of Salmon & Freshwater Fisheries Act requirement for screens and argue that the proposal to let NRW agree details after the examination / decision and before construction is unsatisfactory

5.11. point out inconsistencies and errors in the assessment of impacts and disagree with conclusions in respect of both fish and recreational fisheries

5.12. draw attention to impacts overlooked (eg, capital value of fisheries) and other shortcomings in the ES

6. The sixth section is about the “WFD” assessment where we:

6.1. draw attention to errors in the identification of relevant waterbodies, which affects all assessments

6.2. draw attention to impacts not mentioned or assessed

6.3. argue that impacts discuss in the ES are likely to affect achievement of WFD objectives

6.4. note that important WFD articles 4.7 and 4.8 have not been mentioned

6.5. conclude that the WFD assessment is defective and wholly inadequate

7. The seventh section is about “Our status and the protection of fisheries interests” where we:

7.1. discuss our status as “category 3 affected persons”

7.2. explain that the applicant has denied that status and failed to comply with various requirements of the Planning ACt

7.3. explain that the applicant has failed, by diligent enquiry, to identify and involve other category 3 affected persons

7.4. explain that the applicant has wrongly certified compliance with Planning Act requirements

7.5. argue that the applicant has submitted the application prematurely, before completing the required consultations

7.6. ask the Examining Authority to reject the application

7.7. ask the Examining Authority, if the application is allowed, to ensure that measures for our protection (mitigation, monitoring, offsetting at an assumed level of harm, compensation, remediation arrangements, etc) are securely included in the DCO.

Pontardawe and Swansea Angling Society Ltd

9 July 2014

Page 1 of 21

PROPOSED SWANSEA BAY TIDAL LAGOON – REF EN010049

WRITTEN REPRESENTATION 9 JULY 2014 BY PONTARDAWE AND SWANSEA ANGLING SOCIETY LTD – REF 10026500

1. ABOUT US AND OUR FISHERY

1.1. We are a well-known, not-for-profit club with 300 (mainly local) members, founded in 1946. We own, control or enjoy fishing rights on about 8 miles of the River Tawe. Our website is at www.pasas.org.uk.

1.2. The fishing rights that we own on the Tawe cost us tens of thousands of pounds and their current value will be several times that. In addition we lease several miles of fishing. The money to fund this has been derived from membership subscriptions over many years.

1.3. Our fishing is available to members at modest cost and provides an important recreational amenity. We have no restrictions on membership and any member of the public may join us on payment of subscriptions (£5 or £10 for juniors; £20 for seniors and disabled; £60 for other adults).

1.4. The benefits to the community of fishing are well recognised. See for example “Fishing For Answers – The Final Report of the Social and Community Benefits of Angling Project, 2012”1

1.5. The Tawe supports salmon and sea trout (known locally as sewin), migratory fish which spend the early part of their life in freshwater before migrating to sea. Adults later return to spawn in the rivers of their birth as highly prized, valuable fish. Young fish leaving the river (smolts), adults returning to spawn and adults leaving again after spawning (kelts) have to migrate through Swansea Bay, past the proposed lagoon and its turbine array.

1.6. The Tawe also supports an important brown trout fishery, which are biologically the same species as sea trout. Some of the progeny of sea trout remain in the river as non-migratory brown trout.

1.7. Over the 10 years 2003-2012 the Tawe was ranked 7th in Wales for salmon catches and 18th in Wales for sea trout catches.

Before the construction of the Tawe Barrage, Tawe catches of sea trout in the 1980s were in the top ten in Wales. Salmon numbers were then building up from a 200 year period of extinction but were already in the Wales top 20.

Sea trout catches in the Tawe have declined since the construction of the Barrage, whilst those in the adjacent River Neath have considerably improved.

According to provisional catch return data, Tawe rankings in 2013 were 7th for salmon and 17th for sea trout, although stocks and catches are declining generally in Wales for reasons which are poorly understood.

After a peak in 2010, Tawe salmon catches have declined in 2011, 2012 and 2013 and, like those of most other South Wales rivers, are now classed by Natural Resources Wales (NRW) as “at risk”, requiring immediate action to stop the killing of fish until numbers have recovered. Measures to ensure this are apparently being drawn up by NRW at the moment.

1.8. Our rules already encourage members to return salmon and sea trout to the water unharmed.

1.9. We are members of many organisations, including the Welsh Salmon and Trout Angling Association (WSTAA), the Salmon and Trout Association Wales (S&TA), the Angling Trust (AT) and Fish Legal (FL, an organisation which provides specialist legal

1 http://resources.anglingresearch.org.uk/project_reports/final_report_2012

Page 2 of 21

assistance with issues threatening fisheries). We and Fish Legal have worked together in this case.

2. JUSTIFICATION FOR THE DEVELOPMENT.

2.1. We don’t accept that this development, which will have huge environmental impacts and only generate modest amounts of electricity, is justified within the terms of national energy policy.

2.2. Although described as a 240 MW project, actual production over time cannot achieve this because of utterly predictable tidal conditions. If annual production is 400 GWH, as claimed, that equates to 46 MW on average. That represents a capacity factor of under 20%, which doesn’t compare well with, for example, onshore or offshore wind.

2.3. We aren’t satisfied that the scheme meets the definition of a “nationally significant infrastructure project” for the purposes of the Planning Act 2008:

2.3.1. Section 15(3) says “A generating station is […a nationally significant infrastructure project…] if— (a) it is an offshore generating station, and (b) its capacity is more than 100 megawatts.”

2.3.2. “Capacity” is not defined in the Planning Act 2008 or other relevant legislation.

2.3.3. The Planning Inspectorate (PINS) has said that it believes that “"capacity", as used in the PA2008, probably … means the rated maximum gross output, or 'nameplate capacity', of the station”.

2.3.4. We believe that in the context of the contribution that a project can make to national renewable energy needs, a station’s maximum achievable annual average production (46 MW in this case) is more relevant than the nominal capacity of the turbines.

2.3.5. PINS has also said “the Planning Inspectorate, on behalf of the Secretary of State, is only able to decide whether development consent is required for a project, under PA 2008 s.55, once an application has been formally submitted.”

We therefore ask the Examining Authority to make a ruling on this.

2.4. The Overarching National Policy Statement for Energy (EN-1) says (our underlining):

“3.1.1 The UK needs all the types of energy infrastructure covered by this NPS in order to achieve energy security at the same time as dramatically reducing greenhouse gas emissions.

3.1.2 It is for industry to propose new energy infrastructure projects within the strategic framework set by Government. The Government does not consider it appropriate for planning policy to set targets for or limits on different technologies.

3.1.3 The IPC2 should therefore assess all applications for development consent for the types of infrastructure covered by the energy NPSs on the basis that the Government has demonstrated that there is a need for those types of infrastructure and that the scale and urgency of that need is as described for each of them in this Part.

3.1.4 The IPC should give substantial weight to the contribution which projects would make towards satisfying this need when considering applications for development consent under the Planning Act 2008.”

2.5. The National Policy Statement for Renewable Energy Infrastructure (EN-3) states specifically that it doesn’t cover tidal range schemes like this so there is no Government demonstrated / accepted need for this type of infrastructure.

2 IPC (Infrastructure Planning Commission) replaced by Planning Inspectorate (PINS)

Page 3 of 21

2.6. We support the over-arching policy in EN-1 that “The IPC should give substantial weight to the contribution which projects would make towards satisfying this need when considering applications for development consent under the Planning Act 2008”.

3. OUR CONCERNS – SUMMARY

3.1. EFFECTS ON FISH AND OUR FISHERY.

3.1.1. We are concerned that the proposed lagoon will harm salmon and sea trout, detrimentally affecting our fishery and its value. This is likely to arise as a result of:

• massive, unnatural flows in Swansea Bay interfering with normal migration routes and behaviour;

• fish (smolts, returning adults and kelts) being drawn into the turbines and killed;

• fish being drawn through the turbines into the impoundment and trapped;

• fish being driven away from the area by unfavourable conditions;

• other miscellaneous and unpredictable effects.

3.1.2. As some of the progeny of sea trout remain in the river as non-migratory brown trout, the scheme also has the potential to harm our wild brown trout fishery.

3.1.3. Because of these concerns we are opposed to the proposals and we ask the Examining Authority to recommend refusal of the application.

3.2. THE APPLICANT’S ENVIRONMENTAL IMPACT ASSESSMENT. An independent expert fisheries analysis commissioned by us and others supports our view that the developer’s environmental impact assessment is flawed and understates the likely harm to salmon and sea trout:

3.2.1. their turbine encounter modelling uses incorrect assumptions for fish movements in Swansea Bay, over-optimistic assumptions for the proposed acoustic fish deterrent scheme and fails to allow for important factors such as river flows and migration delays caused by the nearby Tawe Barrage;

3.2.2. their turbine mortality modelling uses incorrect fish sizes, fails to estimate population effects (lifetime egg deposition effects) and fails to allow for indirect mortality from post-passage predation, etc;

3.2.3. they fail to acknowledge the effect on fish from rivers further afield;

3.2.4. the assessment fails to set out a worst case for the effects on fish.

3.3. RE-SITING OF THE TURBINES. The application provides for the re-siting the turbine array, away from the location where the modelling has been carried out. This would invalidate the modelling and require re-assessment.

3.4. WATER FRAMEWORK DIRECTIVE (WFD). The WFD assessment is flawed in a number of ways and fails to take full account of the likely damaging effects on River Tawe waterbodies.

4. CONSULTATION

4.1. The applicant has implied (eg, in application document “5.1 A10.7 Inland fishing table.pdf”) that we have failed to engage in discussions about these concerns. At the Preliminary Meeting on 10 June 2014 they said that they had been seeking to meet us since October 2013. These claims are misleading.

Page 4 of 21

4.2. Although the applicant has failed to consult us as “category 3 affected persons” (discussed in more detail later), we have made every effort to respond properly at each stage but the applicant has made this very difficult.

4.3. PINS guidance (in Advice Note 16 ) is that “The overriding intention of the legislation is to ensure that detailed matters are consulted upon and solutions or mitigation negotiated with the local community, landowners, statutory consultees and local authorities before submission of the application for development consent.”

4.4. We and Fish Legal responded in detail to the Preliminary Environmental Information Report (PEIR) – our letters of 2 August 2013 (from ourselves, PASAS) and 5 August 2013 (from Fish Legal) are provided herewith. We received no response.

4.5. We made oral representations at a public presentation on 17 October 2013 and on 18 November received a draft copy of the Environmental Statement (ES) with a request to respond within a month.

4.6. Replies to our responses to the PEIR were eventually provided, at our request, on 20 November and 5 December 2013 with a grudging comment in email that the applicant’s “… responsibility is not so much to respond to [representations] individually, but rather to “have regard” to them”.

4.7. We came to the conclusion that we needed independent expert fisheries assistance, which Fish Legal commissioned from APEM Ltd (with funding provided by Fish Legal, the Angling Trust, ourselves, Tawe & Tributaries Angling Association and Afan Valley Angling Club).

4.8. Fish Legal provided an initial response to the draft ES on 17 December 2013 (copy provided herewith) and informed the applicant that we were obtaining independent advice to help us to respond further.

4.9. We received the APEM report on 10 February 2014 (copy provided herewith) but TLSB had by then submitted their DCO application (on 7 February).

4.10. On 3 March 2014 Fish Legal wrote to the Planning Inspectorate (and TLSB, enclosing the APEM report) arguing in detail that, in view of the lack of proper consultation, the application should not be “accepted”. PINS nevertheless accepted the application for examination on 6 March.

4.11. On 4 April 2014 TLSB asked us to meet them to discuss (in confidence and without prejudice) a paper relating to their “efforts to maximise the benefits of the Swansea Bay Tidal Lagoon Project” or “other matters arising from the submitted application”. Such a meeting has now been arranged for 16 July 2014, subject to the production by TLSB of essential information (as to monitoring, mitigation, compensation, etc) which has been sorely lacking to date.

4.12. We’ve still received no response to the APEM report supplied to TLSB on 3 March 2014. When we pointed this out to TLSB at the Preliminary Meeting, in response to their implication that we we’d been dragging our feet, their immediate reaction was that they had addressed it in the ES as submitted with the application.

That was incorrect, which they subsequently acknowledged in email, saying then that “The ES chapter which was issued in November 2013 (and on which APEM’s comments were based) was an early draft and had not been internally reviewed. As such many of the comments APEM picked up on the draft chapter were also picked up in our own parallel review and as such were addressed in the final ES where relevant.”

That’s also incorrect, as made clear in the Fish Legal letter of 3 March 2014.

TLSB have now agreed to respond to the APEM report before we meet on 16 July.

4.13. Bizarrely, the consent application includes a proposal, not discussed with us, for our membership of a fisheries reference group to investigate the effects of the Tawe Barrage – presumably in connection with possible mitigation / offset measures.

Page 5 of 21

4.14. We maintain, therefore, that:

• there has been a lack of proper consultation, as required by the legislation and PINS guidance

• the application has been submitted prematurely

• the applicant’s implication that we’ve been dragging our feet is disingenuous.

5. ENVIRONMENT STATEMENT – FLOWS, FISH MOVEMENTS, TURBINE ENCOUNTER, ETC

5.1. GENERAL

5.1.1. Much of that which follows has already been set out in detail in correspondence, which we ask the Examining Authority to regard as part of this submission, particularly

• 2 August 2013 (PASAS)

• 5 August 2013 (FL)

• 17 December 2013 (FL)

• 3 March 2014 (FL).

5.1.2. Fish Legal will submit a written representation alongside this and their submission is likely to be more expert than ours. Ours is a layman’s attempt to set out the issues as we see them.

5.1.3. Our experience (for example, with the Tawe Barrage, which we opposed in the 1980s and which was commissioned in the 1990s and has harmed our fishery ever since) is that the gut feeling (call it “expert opinion” if you like) of experienced anglers who understand fish, rivers, flows, tides and man’s interference is that our predictions as to the likely consequences of major schemes are likely to be as sound as those of paid consultants, whose assurances and “expert opinion” need to be taken with very large doses of salt.

Everything we predicted in the case of the Tawe Barrage has come to pass and the assurances we were given have proved worthless.

5.1.4. We agree with ES Appendix 9.5 (“Accuracy And Limitations”) where it refers to “a clear distinction between precision and accuracy” and “the potential false impression of accuracy due to precision”.

5.2. ABOUT THE FISH

5.2.1. Salmon and sea trout (both adults returning to the Tawe and smolts and kelts leaving the river) have to navigate through Swansea Bay.

5.2.2. Table 9.12 shows migration and spawning periods for salmon and sea trout. We don’t accept the accuracy of this table:

• fresh salmon enter the river as late as December or even January;

• spawning is unlikely to start as early as September for either salmon or sea trout;

• smolts probably leave the system most months of the year – certainly into June – and departure is also delayed by the Tawe Barrage.

5.2.3. We don’t accept the statement in para 9.5.6.7. of ES Annex 9.1 that (our underlining) “Inter-annual variation in salmon and trout numbers according to rod catch data is evident, however broad scale estimates of fish numbers seem to indicate fairly stable populations. It should be noted that populations across the UK are in decline.”

Page 6 of 21

5.2.4. Recent data released by NRW show that populations of salmon and sea trout in the Tawe (and other South Wales rivers) are declining.

5.2.5. Tawe salmon are now classed by NRW as “at risk” and “at risk of failing in 2018”, requiring immediate measures to stop the killing of fish. The NRW graphs below, based on figures for 2012 and 2013, illustrate the position.

5.2.6. Tawe sea trout are classed as “probably at risk”, down a category from 2012

when they were “probably not at risk”.

5.2.7. We are supplying herewith, as well as in response to Question 7.22 of the Examining Authority’s first round of questions:

5.2.7.1. further information on methodology etc relating to the above assessments

5.2.7.2. rod catch data for salmon and sea trout in all Welsh rivers from the 1970s to 2013, highlighting the rankings of the Tawe, Neath and Afan.

5.3. FLOWS

5.3.1. Baseline residual flows in Swansea Bay are illustrated in Figure 6.40 (location of Tawe added by us)

(included for illustration only - please refer to application document for more detail)

Page 7 of 21

and peak flows are shown, for various tidal states, in Figure 6.4

(included for illustration only - please refer to application document for more detail)

The effect of the lagoon on such flows, with the turbine array in its proposed location, is illustrated in Figure 6.41 (location of Tawe added by us)

(included for illustration only - please refer to application document for more detail)

Differences in mean current speeds with the scheme in place are shown in Figure 6.33 (metres per second)

(included for illustration only - please refer to application document for more detail)

and Figure 6.34 (%)

Page 8 of 21

(included for illustration only - please refer to application document for more detail)

It will be seen that fish navigating to and from the Tawe will be constrained to a narrower channel with much higher flows. Fish approaching from the east and fish holding in the bay are likely to come into close contact with the turbines.

5.3.2. Maximum flows are not illustrated in the application documents in the same way as mean speeds are in Figures 6.33 and 6.34 but flows of up to 6,000 cubic metres per second (cumecs) are mentioned in the ES, para 9.5.3.5. These far exceed the flows which salmon and sea trout will encounter at any other time in their life.

The biggest flow ever recorded in the River Tawe (a 1 in 200 year flood in December 1979, when much of the valley was inundated) was 400 cumecs. In normal years a big spate is about 200 cumecs.

5.3.3. Figures 6.38 and 6.39 show flow speeds

• at site O5 (close to the turbines) of 3 metres per second for short periods and of 1.5 metres per second for hours at a time

• at site O3 (an unknown distance from the turbines, as the drawing is not to scale, but apparently at least 1.4km) of 1 metre per second.

5.3.4. We understand that sustainable swimming speeds for adult salmon are about 1 metre per second. Sea trout swimming speeds are lower and those of smolts are obviously lower again (apparently about 0.5 metres per second sustained). Although they can swim faster in bursts, we understand that some sort of trigger which alarms them is required to generate such swimming and that merely encountering high flows will not do that.

It will be seen that, even at considerable distances from the turbines, fish will encounter flows which draw them to the turbines or, at least, prevent them from making progress to the River Tawe. Such additional swimming effort at a critical time in their lives can compromise their ability to ascend the river, survive and spawn successfully.

5.3.5. The effects of these flows aren’t covered properly in the ES. For example they aren’t referred to per se in Table 9.11 “Potential impacts on fish and shellfish”.

5.4. TURBINE LOCATION.

The application proposes that re-siting of the turbine array be allowed within certain limits of deviation, as shown on page 7 of “2.2.2-2.2.10 Works Plan.pdf”

Page 9 of 21

(included for illustration only - please refer to application document for more detail)

This would allow: (a) deviation of up to 150m to the west and rotation of up to 15degrees clockwise; or (b) deviation of up to 1,150m to the east and rotation of up to 45degrees anti-clockwise.

Either of these or any permutation in between would have a significant effect on the flows illustrated in Figure 6.41.

Figure 4.13 in “6.2.4 ES Project Description.pdf” shows two main alternative locations for the turbine array.

(included for illustration only - please refer to application document for more detail)

Additional document “Annexe 8 - Submission in respect of location of turbine and sluice gate housing structure.pdf”, published on the PINS website on 16 June 2014, indicates that “TLSB proposes not to pursue Option B further” and “TLSB proposes only to pursue Option A as part of the authorised development pursuant to the Application”.

The schedule of works and drawings in Part 3 of Schedule 1 to the draft DCO is inconsistent with the files submitted with the application so it’s unclear (to us) whether the proposal in the additional document is binding or whether re-siting of the turbines within the limits of deviation shown on “2.2.2-2.2.10 Works Plan.pdf” (say, to a location C) would still be allowable. If re-siting were still allowed, we submit that it would invalidate many of the assumptions in the application.

5.5. ENVIRONMENT STATEMENT

5.5.1. The applicant’s ES says (para 9.5.3.31) that “Fish behaviour in coastal waters is highly dependent on tidal water movements and on features such as water depth and habitat characteristics (…). ... Diadromous migratory species also use characteristics such as the earth’s magnetic field (…), fluvial flow and associated salinity changes and olfactory cues to find their way into river systems. Features of the Project that may affect these behaviours include physical impedance by the seawalls, changes to hydraulic patterns, interactions with the turbine and sluices and temporary entrapment within the Lagoon. Changes in patterns of tidal movement can also be envisaged to

Page 10 of 21

have the potential to alter the course of olfactory trails, confusing fish attempting to find local rivers.”

We accept that, as far as it goes.

5.5.2. Para 9.5.3.33 says (our underlining) “The model of virtual fish is based on a model of a drifting particle to which is added an individual swimming velocity at each time step in the model. Models of drifting particles are well advanced and standard methods were used (…). The difference between a randomly drifting particle and a virtual fish in the model is determined by establishing a number of rules of behaviour that are applied to the particles to simulate fish behaviour. The justification for doing so is well established (over more than 20 years) and the model developed for the Project adopted existing best practice (…). These rules can include positive or negative rheotaxis (reactions to water current direction); swimming performance; depth preferences (e.g. to ensure that fish in the surf-zone of a beach follow the tide down the beach); magnetic compass bearing; response to olfactory stimuli; salinity preference; tidal state, and any other factors that can be introduced and synchronised with the model time such as wind, rain, sunlight and so forth. However, the most effective IBM models focus on a small number of key variables that are important to a fish in the context in which the model is being applied. A small number of rules and variables allow the models to be calibrated effectively across their entire range of functionality. The aim of the calibration is to ensure that the models are plausible in so far as they are not falsified by any known information about the target species, and that they accurately represent the implications of expert opinion within known confidence limits. Calibration is most accurate where the target of the model is a definite activity, bounded in space or time, where there is reasonable confidence in the motivation of the fish and where there is often extensive information and expert knowledge.”

5.5.3. Table 9.17 shows that the “particular rules applied to model” salmon and sea trout are “beach avoidance, minimum depth and olfactory trail”.

5.5.4. Para 9.5.3.36 says that “Where there was no existing scientific evidence or expert opinion about a parameter (for instance exactly where fish are located in the Bristol Channel before they start their directed navigation to the river mouth), parameter values for the model were chosen from a uniform random distribution in the area most likely to be a source of impacted individuals.”

The illustrations of modelling for salmon and sea trout all show an assumed starting point outside Swansea Bay, to the south and west of Mumbles Head.

5.5.5. Table 9.18 shows that the modelling of both salmon and sea trout, both juvenile and adult, is based on “trail follow”, whereas that of bass and sandeel, for example, is based on “area usage”.

5.5.6. Para 9.5.3.38 says that “at this proximity the model is completely defined by navigation along olfactory trails emanating from natal rivers”

5.5.7. Para 9.5.3.39 says “Salmon and sea trout smolts migrating from the rivers Tawe and Neath to sea were modelled leaving the rivers on an ebb tide, reflecting knowledge obtained from UK smolt tracking studies in the Tawe and other UK estuaries (Mee et al., 1996; Moore et al., 1998). Figure 9.16 shows an example of smolts emigrating from the R. Tawe.”

5.5.8. Para 9.5.3.117, about a Tawe Barrage study, refers to “delays experienced by the adult salmon, including: turbulent flows within the pass, poor fish pass design, time for physiological adjustments to freshwater, switch from passive to active migration.” (our underlining).

Page 11 of 21

5.6. ES APPENDIX 9.5 (“ACCURACY AND LIMITATIONS”)

5.6.1. Para 3.0.0.1 says "It must be appreciated that models of biology are inherently uncertain in comparison to models of physics and chemistry used for hydrodynamic models and water quality models respectively. ... Thus, expert opinion, is far more influential in assessment of the effects on animals and plants than is it on physical and chemical processes."

5.6.2. Para 3.0.0.11 says "There is a clear distinction between precision and accuracy for these models. ... The potential false impression of accuracy due to precision is the primary reason why the magnitude of impact statements based on broad classifications from ‘likely to be negligible’, through to, ’likely to be high impact’ are a true reflection of the accuracy of the modelling combined with expert opinion."

5.6.3. Para 3.0.0.14 says "The modelling is limited to the specific life stages outlined for each species. For the migrating species (salmon, trout, eel, lamprey, etc.) this is limited to the period of their lives when they either enter their natal or other river from the ocean, or when they leave the rivers and swim toward the open ocean. These models do not cover all or any other stages of their lives where they may conceivably use Swansea Bay, and do not cover any times when the fish are meandering around with no particular aim (if in fact they ever exhibit this behaviour in their lives). The models also do not incorporate any avoidance (or attraction) behaviour towards the turbines, sluices or lagoon wall structures."

5.7. INDEPENDENT EXPERT REVIEW

5.7.1. The APEM report commissioned by us (referred to above and provided with this representation) draws attention to many shortcomings in the applicant’s ES. APEM only had access to the November 2013 draft ES but most of the points made in the report appear to us to apply equally to the final ES as submitted.

5.7.2. The applicants have not responded to the report but have told us that they will now do so – before we meet them in the near future to engage in the discussions which should have been held before the premature submission of the consent application.

5.8. FALLACIES IN THE MODELLING

5.8.1. The adoption of a “small number of rules” is simplistic. Having started by saying that “Fish behaviour in coastal waters is highly dependent on tidal water movements” the applicants have gone on to produce a model which fails to take account of that and in which fish slavishly follow olfactory trails.

5.8.2. A paper recently published by the Crown Estate, “Hydrodynamic models to understand salmon migration in Scotland” (Guerin, A.J., Jackson, A.C., Bowyer, P.A. and Youngson, A.F. 2014), proposes, in the section dealing with “behaviours near the home river”, that “adults follow (in reverse) a sequence of cues imprinted during their outward migration as smolts and that any odour memory forms only part of the sequential imprinting process” (our underlining).

5.8.3. Fish looking to ascend rivers are attracted by fluvial flows, not just olfactory cues. The model apparently takes no account of varying flows from the River Tawe and has apparently been based on something like average flows in the River Tawe.

5.8.3.1. The Tawe is a very flashy river, with summer flows down to 1 cumec or less and spates commonly reaching 200 cumecs. Average flow throughout the year is about 10 cumecs. Levels rise and fall very quickly as these charts of actual Tawe spates show:

Page 12 of 21

The first shows the river rising from about 10 cumecs to about 200 cumecs (2 metres rise) in about 3 hours. The second shows the river rising from about 2 cumecs to about 70 cumecs (1.5 metres rise) in about 1 hour.

5.8.3.2. These spates, which would normally be easily detectable by and attractive to salmon and sea trout, are likely to produce plumes out into Swansea Bay quite different from the olfactory trails illustrated in the models. Although not illustrated in the ES Chapter on Fish, the Water Quality Chapter confirms that during such spates the river plume will hug the lagoon wall rather than meander round the bay in an anti-clockwise direction.

5.8.3.3. Such spates, which often last a very short time, would normally assume greater importance than remnants of olfactory trails in the west of the bay but are likely to be masked by the massive flows into and out of the lagoon.

This is not allowed for in the model.

5.8.3.4. Para 9.5.3.6 recognises that “The Project could marginally increase the energetic cost to migrating fish: first, due to them having to navigate around the structure; and secondly, by concentrating currents along its boundary. However, the IBM constructed as part of the Project (Appendix 9.3, Volume 3) indicates that total delay, at most, would be two tidal cycles, and thus the effective energetic cost would be minimal.” but it fails to acknowledge that such a delay could cause fish to miss completely the opportunity provided by a spate to ascend the river.

5.8.4. The model apparently fails to allow for “positive or negative rheotaxis (reactions to water current direction)”, which is likely to be highly significant:

5.8.4.1. Without the lagoon fish are likely to follow tidal flows into the estuary (“passive migration” as mentioned in para 9.5.3.117) to investigate whether conditions are suitable for river entry. And they’re likely to drop back again in the same way if not “turned on” to “active migration” by attractive conditions.

This is not allowed for in the model.

5.8.4.2. Flows through the turbines (into the lagoon) on a flood tide could be mistaken by fish for flows into the estuary. Even if they try to avoid the turbines, flows are likely to be such that they can’t swim against them.

5.8.4.3. Flows through the turbines (across the bay) on an ebb tide are likely to mask river spates which could otherwise attract fish and facilitate river entry.

5.8.5. The model assumes that fish approach from a westerly direction and make directly for the Tawe, following olfactory trails to the west of the lagoon. Despite the comment in para 9.5.3.36 about “… no existing scientific evidence or expert opinion about a parameter (for instance exactly where fish are

Page 13 of 21

located in the Bristol Channel before they start their directed navigation to the river mouth)”, it is known and has been pointed out to the applicant (with evidence) that fish are just as likely to approach from the east. See for example the section on “adult salmon model” on page 14 of the APEM report

5.8.6. The model assumes that each fish, released at 60 second intervals, makes its own way at its own speed to the mouth of the river. But it’s known that fish travel in groups so that, if one fish encounters the turbines, the others in its group are also likely to do so. Failure to recognise this is failure to allow for worst case.

5.8.7. The model assumes that once a fish reaches the river mouth, it has achieved its objective and it’s removed from the model. This is known to be wholly incorrect and has been pointed out to the applicants. It’s quite normal for large numbers of fish entering a river mouth to drop back, hang around until conditions for river entry are more favourable, try again or even move to another river. The Tawe Barrage, which hinders entry into the Tawe, exaggerates this.

5.8.8. The statements in para 9.5.3.39 about smolts are wrong:

5.8.8.1. The Mee et al 1996 paper says nothing about smolts – it’s about returning adults.

5.8.8.2. The Moore et al 1998 paper was about “The migratory behaviour of wild Atlantic salmon smolts in the River Test and Southampton Water, southern England” and it says “There was also a significant seaward migration of smolts during the latter part of the flood tide suggesting active directed swimming”

5.8.8.3. Moore et al also produced a 1996 paper “The movements of emigrating salmonid smolts in relation to the Tawe Barrage, Swansea” which said “The movement of salmonid smolts past the sonar buoys located immediately downstream of the barrage in the lower estuary was random with respect to the tidal cycle and occurred during both ebbing and flooding tides.”

Smolts leaving for sea on a flood tide will be exposed to the large flows into the turbines.

5.8.9. The model assumes that sea trout in Swansea Bay are in “trail follow” mode but sea trout inhabit coastal waters and, if there are good stocks of sandeel and other prey species in Swansea Bay, as indicated in Fish baseline Appendix 9.1, it has to be assumed that a proportion of the sea trout will be in “area usage” mode, greatly increasing the risk of turbine encounter.

5.9. MITIGATION PROPOSED:

5.9.1. The only mitigation proposed to counter operational effects is the use of acoustic fish deterrent (AFD (devices). No details are given.

5.9.2. Sections 14 and 41 of the Salmon & Freshwater Fisheries Act 1975 provide that:

“in any case where— (a) by means of any conduit or artificial channel, water is diverted from waters frequented by salmon or migratory trout; and (b) any of the water so diverted is used for the purposes of [...] any mill [...]; "the responsible person" [...] [the occupier of the mill] [...] shall, unless an exemption from the obligation is granted by the appropriate agency, ensure (at his own cost) that there is placed and maintained at the entrance of, or within, the conduit or channel a screen which [...] prevents the descent of the salmon or migratory trout; and [...] Any exemption [...] may be granted subject to conditions."”

Page 14 of 21

“"mill" includes any erection for the purpose of developing water power”

“"screen" means a grating or other device which, or any apparatus the operation of which, prevents [...] the passage of salmon or migratory trout”

5.9.3. It’s understood that NRW, normally the “appropriate agency”, accept acoustic fish deterrent (AFD) devices as “screens” for the purposes of the SAFF Act and they have detailed guidance on the subject “Science Report – Screening for intake and outfalls: a best practice guide”. Some extracts:

“the effectiveness of the screening measures should reflect the level of risk to the fish stock or fish community and the importance attached to the stock, community or associated habitat”

“It is strongly recommended that the principles of risk analysis are applied to any intake screening proposal. However, the requirements of the relevant legislation must be taken fully into account.”

“a number of factors that may be used in a risk assessment [...]: the value of the fish stock in economic or conservation terms; the percentage of the fish stock that must pass the scheme; the percentage of those fish that pass successfully; the additional loss due to other schemes (i.e. cumulative impacts); the significance of given percentage levels of loss in economic and conservation terms.”

“The key elements of the Environment Agency’s s.14 policy are: 1. A standard risk assessment checklist procedure is used [...]; 2. Full recognition is given to the precautionary approach (“where there are threats of serious or irreversible damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation”). This is complementary to the approach adopted in the Habitats Regulations.”

“Projects within or connected with a designated SAC and therefore regulated under the Habitats Regulations demand more stringent risk assessment criteria. The critical test is whether the appropriate assessment can demonstrate no adverse effect on integrity of the European site. In this context, the BATNEEC criteria are replaced by BAT (Best Available Technology), without consideration to cost. The project may not proceed if adverse effect on site integrity cannot be avoided. The appropriate assessment therefore is the form of risk assessment procedure used in such cases.”

5.9.4. There’s no serious discussion in the ES of the effectiveness of such devices in circumstances such as these, merely some passing comments in para 9.5.6.14 et seq such as:

“Results indicate that sounds with frequencies between 20 and 600 Hz can effectively repel fish from the intakes of power stations. Efficiency is species-specific, with hearing specialists, such as herring, being much more susceptible to AFDs than generalists such as goby. For salmonid fish (salmon and sea trout), deflection efficiencies of around 70% appear to be typical”

“An important factor to consider when planning the installation of AFDs are the velocities in proximity to the turbine intakes, and the range at which avoidance behaviour is expected. For maximum effectiveness the avoidance range should extend beyond the range at which current velocities exceed the swimming capacity of the target species. If velocities are above these, fish may become entrained regardless of the operation of AFDs. This is particularly important in a tidal context, where currents are naturally strong, and fish may not necessarily perceive an abstraction until they are very close to it.”

Page 15 of 21

“Installation of AFD systems should be preceded by acoustic modelling of installation to ensure that the spread of noise is not excessive, which might interfere with the natural movements of fish or marine mammals”

This is wholly inadequate.

5.9.5. The draft DCO says “No part of the authorised development shall commence until a written strategy for the mitigation of the impacts of the authorised development on fish [...] has been submitted to and approved in writing by NRW. [...] The fish mitigation strategy shall provide for [...] use of behavioural fish guidance systems to discourage movement of fish through the turbines.”

This would place NRW under huge pressure. What would happen if they were not satisfied about the effectiveness of a proposed AFD system? What level of effectiveness should they require? This is a matter which should be resolved by the Examining Authority.

5.10. ES ASSESSMENTS AND CONCLUSIONS

5.10.1. METHODOLOGY.

5.10.1.1. The significance of an impact (Table 9.4) is based on the “value” of the receptor and the “magnitude” of the impact and can be: no impact, insignificant, minor to insignificant, minor, moderate to minor, moderate or major:

5.10.1.2. The value of salmon and sea trout as fish is assessed (Table 9.2) as

“National / High” and the value of the salmon and sea trout fishery is also assessed as “National / High”.

5.10.1.3. The magnitude of an impact (Tables 9.3 and 9.9) is based on the potential consequences for the receptor and can be:

Magnitude Salmon and sea trout – fish

Salmon and sea trout – fisheries

High The impact would have a serious, non-reversible effect over the integrity of the VER. Activities predicted to occur and affect the VER continuously over the long term or during sensitive life stages.

Recreational fishing activity on … adjacent watercourses will be severely affected by the project and/or associated construction activities. Permanent (> 3 years) interference … will occur.

Medium The integrity of the overall VER would not be affected but there may be some effect on the overall conservation objectives for that species within a given geographical area. There is the potential for activities to regularly

Recreational fishing activity on … adjacent watercourses will be severely affected by the project and/or associated construction activities. Long-term (> 6 months to 3 years) interference …

Page 16 of 21

disrupt the receptors, over the medium to short term and during sensitive life stages.

will occur.

Low Species are subjected to a limited adverse effect. Disturbance to the population size is within parameters of natural variability. Activities are likely to be intermittent and irregular over the medium to short term.

Recreational fishing activity on … adjacent watercourses will be severely affected by the project and/or associated construction activities. Permanent (> 1 to 6 months) interference … will occur.

Negligible A small observable effect is predicted. Disturbance is expected to fall within natural variability. Impacts are limited to the area in the immediate vicinity of the development.

Recreational fishing activity on … adjacent watercourses will remain largely unaffected the Project and/or associated construction activity. Intermittent and temporary interference … will occur.

Neutral Although it is not always possible to state categorically that there will be no impact on a receptor the term ‘neutral’ will be used where the level of exposure is considered to be less than the tolerance of the receptor, therefore an impact is unlikely. Or there will be no impact at all on the species in question.

Although it is not always possible to state categorically that there will be no impact on a receptor the term neutral will be used where the level of exposure is considered to analogous to natural variation.

Positive The change is likely to prove beneficial to the VER.

The change is likely to prove positive to the status of the fishery.

5.10.1.4. Para 9.3.4.7 says that “Confidence in the predictions of the assessment has been assigned according to a three point scale based on expert judgement:

1) High – the confidence in the prediction is very high and conclusions are primarily informed through data; some expert judgment has been used;

2) Probable – the confidence in the prediction is likely and conclusions are based on a balance of data and expert judgement; and

3) Uncertain – the outcome is unclear and conclusions are significantly based on expert judgement.”

5.10.2. SALMON AND SEA TROUT RECREATIONAL FISHERIES

5.10.2.1. The potential impacts for River Tawe salmon and sea trout fisheries are shown (Table 9.47) as:

Page 17 of 21

• Reduction in salmon and sea trout returns.

• Reduction in revenue for fishing right owners, lease holders and angling clubs.

5.10.2.2. As we have pointed out several times, we own salmon and sea trout fishing rights which have a capital value of many tens of thousands of pounds so another major potential (likely) impact is reduction in their value.

5.10.2.3. As some of the progeny of sea trout remain in the river as non-migratory brown trout, the scheme also has the potential to harm our wild brown trout fishery. This is not mentioned anywhere in the ES.

5.10.2.4. Para 9.7.4.18 says that “The impact of the operational phase on salmon and sea trout smolt and adult migration, including entrainment and injury in the turbines, has been assessed as being of Minor significance post mitigation. This is due to the low proportion of fish that are predicted to pass through the turbines, the relatively fish-friendly design (small number of blades, slow rotation rate and minimum gap runner) of the turbines and the proposed deployment of fish deterrent systems as a mitigation measure.”

Para 9.7.4.19 concludes that during the operational phase “the overall predicted long-term impact on the salmon and sea trout fishery is expected to be of Low magnitude with a significance value of Minor, and a confidence of Probable”.

We don’t accept this.

5.10.2.5. The definition of low magnitude in Table 9.7 is “Recreational fishing activity on … adjacent watercourses will be severely affected by the project and/or associated construction activities. Permanent (> 1 to 6 months) interference … will occur.”

This is not of “minor” significance.

5.10.2.6. And operational effects will last longer than 3 years, so according to Table 9.9 magnitude should be “high”.

That produces a significance of “major”.

5.10.2.7. Turbine encounter is likely to be under-stated because of incorrect assumptions about fish movements, failure to apply an appropriate set of model rules, failure to take account of river flows and fish reactions to Tawe Barrage, etc.

In view of the current status of Tawe salmon, described above, we believe turbine encounters are likely to be of “high” magnitude.

This again produces a significance of “major”.

5.10.2.8. Turbine encounter is just one of a number of potential impacts identified and assessed in tables 9.32 and 9.34 (15 for salmon, 17 for sea trout), with a range of magnitudes, significances and probabilities, some of which are challenged. It isn’t clear how they’ve been distilled down to the overall conclusion in para 9.7.4.19.

5.10.2.9. Para 3.0.0.1 (“Accuracy and Limitations”) says "It must be appreciated that models of biology are inherently uncertain in comparison to models of physics and chemistry used for hydrodynamic models and water quality models respectively. ... Thus, expert opinion, is far more influential in assessment of the effects on animals and plants than is it on physical and chemical processes."

Page 18 of 21

Assessments incorporating a significant element of expert judgement, such as the turbine encounter assessment, cannot according to the principles set out above be given a confidence rating of “High”.

5.10.3. SALMON AND SEA TROUT – FISH

5.10.3.1. Tables 9.32 and 9.34 contain a number of errors and inconsistencies, for example:

• mitigation code F in Table 9.34 doesn’t appear in Table 9.32

• impact of waterborne noise and vibration from turbines – Table 9.32 different from 9.34

• significance of impact of waterborne noise and vibration from turbines goes from high to certain after mitigation when mitigation is n/a.

5.10.3.2. For the reasons set out above and below, we don’t accept the conclusions relating to:

• Turbine encounter. The mortality modelling counts only fish killed and fails to take account of lifetime egg deposition effects, ie the loss of killed fish from future breeding populations.

• Habitat fragmentation. Interference with normal migration through the masking of Tawe spates and delays due to entrapment in the lagoon is not fully recognised.

• Habitat modification. It’s ridiculous to suggest a positive impact for sea trout through the provision of foraging habitat. Sea trout can already forage in Swansea Bay without the risk of turbine encounter.

• Increased predation. Adult sea trout (up to a couple of pounds or more) are just as vulnerable to predation by cormorants as smolts.

5.10.3.3. As some of the progeny of sea trout remain in the river as non-migratory brown trout, the scheme also has the potential to harm our wild brown trout fishery. This is not mentioned anywhere in the ES.

5.10.4. OTHER SHORTCOMINGS IN THE ES

5.10.4.1. There’s no mention of the cumulative effects of building further tidal lagoons in the Bristol Channel, which is apparently the applicant’s intention, according to press reports.

5.10.4.2. The APEM report explains in section 3.1 that “Due to extensive movement of migratory salmonids along the South Wales coast there is potential for populations of more rivers to be impacted than currently included within the far-field zone.” Some of these will be fish from Special Areas of Conservation – eg, the Usk.

6. WATER FRAMEWORK DIRECTIVE (WFD)

6.1. STAGE 1 – RELEVANT WATERBODIES:

6.1.1. In the WFD Assessment (application document “8.3 Water Framework directive.pdf”) paras 3.2.0.3 (coastal waterbodies), 3.2.0.4 (transitional waterbodies) and 3.2.0.5 (river waterbodies) identify the waterbodies likely to be affected by the scheme and therefore to be assessed.

6.1.2. Para 3.2.0.3 includes only two River Tawe waterbodies:

Page 19 of 21

6.1.2.1. GB110059032180 – River Tawe – confluence with Twrch to tidal limit. This is the main stem of the Tawe and its ecological status could be jeopardised by the effects of the scheme on fish described above.

6.1.2.2. GB110059025690 – River Tawe – confluence with Nant Cwmgelli to tidal limit. We think this is a misdescription (by NRW) of an insignificant, largely culverted, stream entering the Tawe between the Tawe Barrage and Morriston. The waterbody is Nant Cwmgelli itself, not that part of the Tawe between the Tawe / Cwmgelli confluence and the tidal limit (wherever that might be).

6.1.3. Para 3.2.0.3 fails to include a number of others, linked to the proposed lagoon by migratory fish, and for which such fish are an essential element of their ecological classification, for example:

6.1.3.1. GB110059032200 – Lower Clydach – headwaters to confluence with Tawe. An impassable man-made barrier at the bottom of the Lower Clydach is currently being addressed to allow salmon and sea trout to re-populate approx 20km of this tributary, which could become a major spawning stream. The effects on fish, described above, could jeopardise this and the attempt to bring its WFD “fish” and ecological status up to good by 2015.

6.1.3.2. GB110059032190 – Upper Clydach – headwaters to confluence with Tawe.

6.1.3.3. GB110059032280 – Giedd – headwaters to confluence to Tawe.

6.1.3.4. Etc.

6.1.4. Para 3.2.0.4 fails to include the Tawe estuary between the Tawe Barrage and the highest point reached by tides at the Beaufort Weir in Morriston – about 3.5 miles of water with serious water quality issues caused by the Tawe Barrage.

(Waterbody GB541005900900 described as Tawe Estuary doesn’t extend above the Tawe Barrage.)

Unfortunately NRW (or rather, Environment Agency Wales before them) have failed to give this a WFD waterbody identifier or to include it in any other waterbody. NRW have indicated that for the next WFD cycle (2016-2021) they propose to incorporate this stretch of water in existing waterbody GB110059032180 (Tawe –confluence with Twrch to tidal limit).

6.2. STAGE 2 – BASELINE. This is incomplete because of the omission of the waterbodies mentioned above.

6.3. STAGE 3 – RELATIONSHIP OF PROJECT COMPONENTS TO RELEVANT WATERBODIES:

6.3.1. This assessment is incomplete because of the omission of the various waterbodies mentioned above.

6.3.2. Table 3.3 – Turbines and sluice gates. Fails to acknowledge fish turbine encounters and associated mortality.

6.3.3. Table 3.3 – Various construction components (cofferdam, seawalls, etc) which will cause suspension of sediments and contaminants, which will be swept into the estuary by incoming tides, fail to acknowledge the likely damaging effects on the stretch between the Barrage and Morriston.

6.4. STAGE 4 – PRELIMINARY ASSESSMENT:

6.4.1. This assessment is incomplete because of the omission of the various waterbodies mentioned above.

Page 20 of 21

6.4.2. Table 3.5, GB110059032180 – River Tawe – confluence with Twrch to tidal limit:

6.4.2.1. This fails to acknowledge the likely damaging effects on the stretch between the Barrage and Morriston of construction works and dredging, which will lead to the suspension of sediments and contaminants, which will be swept into the estuary by incoming tides. The Barrage is likely to prevent all these materials returning to the Bay on the ebb tide and they are likely to settle out in the Barrage impoundment. Water quality here is already poor because of stratification and sedimentation.

6.4.2.2. It does acknowledge the likely effects on fish but not in way which is consistent with tables 9.32, 9.34 and 9.47 in the ES. The impacts discussed in more detail in the ES are likely to compromise the waterbody’s good ecological status.

6.4.3. Table 3.6, GB110059025690 – River Tawe – confluence with Nant Cwmgelli to tidal limit. No further comment.

6.4.4. Table 3.9, GB541005900900 – Tawe Estuary. Fish are not a component of this waterbody’s classification.

6.5. STAGE 5 – DETAILED ASSESSMENT:

6.5.1. This assessment is incomplete because of the omission of the various waterbodies mentioned above.

6.5.2. Para 3.6.0.5 says “the pressures exerted from the Project on anadromous fish populations are by far outweighed by the natural dynamics (e.g. predation at sea) which influence stock recruitment. Additionally, risks posed from in-river sources, are likely to have a much greater impact than the Project itself.” We don’t think these are relevant considerations. Two wrongs don’t make a right. The development must not compromise achievement of WFD objectives.

6.5.3. We have argued above that the detrimental effects of the project have been under-stated and we submit that it would in fact compromise achievement of such objectives.

6.6. WFD ARTICLES 4.7 AND 4.8:

6.6.1. ARTICLE 4.7. The assessment makes no attempt to justify the damaging development on the grounds of overriding public interest etc.

6.6.2. ARTICLE 4.8. This article appears to completely preclude any development which will permanently exclude or compromise the achievement of objectives in other waterbodies within the same River Basin District – eg, the River Tawe waterbodies mentioned above.

6.7. CONCLUSION. The WFD assessment is therefore defective and wholly inadequate. If the applicant seeks to correct these shortcomings with new information:

6.7.1. it seems to us that Regulation 17 of The Infrastructure Planning (Environmental Impact Assessment) Regulations 2009 would apply and that the examination should be suspended pending compliance with the requirements of the Regulation;

6.7.2. we would want to make further representations in accordance with the Regulation.

Page 21 of 21

7. OUR STATUS AND PROTECTION OF FISHERIES INTERESTS

7.1. OUR STATUS

7.1.1. Damage to our property rights might entitle us to make a “relevant claim”. We are therefore “category 3 affected persons” for the purposes of the Planning Act 2008.

7.1.2. The Examining Authority has recently confirmed this by according category 3 status to the Tawe and Tributaries Angling Association Ltd under section 102A of the Planning Act 2008.

7.2. APPLICANT’S FAILURE TO RECOGNISE OUR STATUS

7.2.1. We are giving details separately, in reply to Question 7.16 in the Examining Authority’s first round of questions, of:

• the way in which the applicant has denied us category 3 status and failed to consult us properly in accordance with its own consultation strategy

• the applicant’s failure by diligent enquiry to identify and consult other category 3 persons (including other riparian and fishery owners like ourselves)

• the applicant’s failure to notify us and other category 3 affected persons of the acceptance of the application

• the applicant’s wrongful certification of compliance with the section 58 notification requirements.

7.2.2. We submit that, because of the above failings, the consent application was submitted prematurely:

• before we were able to discuss our expert fisheries analysis with the applicant

• before discussions about monitoring, mitigation or compensation arrangements.

7.3. PROTECTION OF OUR INTERESTS

7.3.1. As stated above, we are opposed to the application and ask the Examining Authority to recommend refusal.

7.3.2. If the application is allowed, we ask the Examining Authority to ensure that secure measures for our protection are included in the Development Consent Order, including:

7.3.2.1. requirements to implement any mitigation and offsetting measures devised as a result of discussions between the applicant, NRW, ourselves and other interested parties

7.3.2.2. proper monitoring, at the applicant’s expense, of the effects of the construction, operation and maintenance of the project

7.3.2.3. offsetting measures to counter an assumed level of harm (as in the case of the Cardiff Bay Barrage), whether or not demonstrated by monitoring, because of the possibility that monitoring might not identify true impacts

7.3.2.4. compensation arrangements to take effect if monitoring shows that fish and therefore our fishery have been harmed

7.3.2.5. requirements to remedy any damaging effects of the project

7.3.2.6. security (eg in the form of a bond) to cover any liabilities which the developer, or any other entity to which responsibility is transferred, fails to honour.

Pontardawe and Swansea Angling Society Ltd www.pasas.org.uk

Treasurer – Phil Jones

Pontardawe and Swansea Angling Society Ltd Reg’d Office 8 Bwllfa Rd Ynystawe Swansea SA6 5AL Registered in Wales No 6736638 Our Disabled Membership Section operates as Tawe Disabled Fishers

Directors: Life President and Secretary Ray Lockyer 8 Bwllfa Rd Ynystawe Swansea SA6 5AL Tel 01792 844014 Email [email protected] Chairman Dave Hooper Berwyn 19 Cefn Rd Glais Swansea SA7 9EZ Tel 01792 844887 Mob 07813 519859 Email [email protected] Treasurer Phil Jones 44 Bwllfa Road Ynystawe Swansea SA6 5AL Tel 01792 843951 Mob 07957 154992 Email [email protected]

Social Secretary Spencer Williams 81 Capel Rd Clydach Swansea SA6 5PY Tel 01792 849293 Mob 07968 332119 Email [email protected] Head Bailiff Dave Hooper Berwyn 19 Cefn Rd Glais Swansea SA7 9EZ Tel 01792 844887 Mob 07813 519859 Email [email protected] Tawe Disabled Fishers Secretary Des Williams 2 Heol Hen Seven Sisters Neath SA10 9AF Mob 07971 639404 Email [email protected]

Members of Welsh Salmon & Trout Angling Association Angling Trust Fish Legal Salmon and Trout Association

Wild Trout Trust Carmarthenshire Rivers Trust Inst of Fisheries Mgt Canoe Wales

Tidal Lagoon (Swansea Bay) plc Suite 6, J-Shed Kings Road Swansea SA1 8PL Emailed as a PDF to [email protected] 2 August 2013 Dear Sirs PROPOSED TIDAL LAGOON, SWANSEA BAY 1. INTRODUCTION.

This is a response to your public notice which appeared in the South Wales Evening Post on 29 June 2013. That notice is unclear because it says that “Any response or representation in respect of the proposed Project, Application and/or DCO must be received by the Applicant on or before 5 August 2013”. But our understanding, based on the advice at http://infrastructure.planningportal.gov.uk/application-process/the-process/ is that this is only a pre-application consultation on the Preliminary Environmental Information Report (PEIR) and that we’ll be able later, at the pre-examination stage (after acceptance of the application by the Planning Inspectorate), to register, submit further views and attend a preliminary meeting run and chaired by an Inspector. This is not therefore our final response to your proposals. We expect to present further objections later, when we’ve been able to study your completed Environmental Impact Assessment (EIA).

2. ABOUT US AND OTHER FISHING ORGANISATIONS. a. Firstly, Section 9.7 and Appendix A of Appendix 9.1 need to be corrected:

i. Para 9.7.3 says

“Angling associations offer a framework of representation to small, local clubs and individual members. Incentives for joining may include: public liability insurance; legal advice; discounted goods from partners; and government lobbying on members’ behalf.” Your terminology is confused and your distinction between clubs and associations is incorrect:

Pontardawe and Swansea Angling Society Ltd Page 2 of 9

(1) Individual anglers tend to form local organisations which might be known as clubs, associations, societies or by other names. Most of the “local clubs” in this area are not “small” – they have hundreds of members each and between them the clubs on the rivers Tawe, Neath and Afan have more than a thousand members.

(2) Those first-tier organisations also form second-tier organisations for the purposes of joint representation. These can also be known as associations – eg, many game angling clubs in Wales belong to the Welsh Salmon & Trout Angling Association (WSTAA). Most of the clubs on the rivers Tawe, Neath and Afan belong to the Gower Region of WSTAA.

(3) Second-tier organisations also form third-tier organisations for higher level joint representation across disciplines – eg, WSTAA is a member of the Federation of Welsh Anglers, along with the Welsh Federation of Coarse Anglers and the Welsh Federation of Sea Anglers.

(4) The Angling Trust is a comprehensive first-, second- and third-tier organisation with individuals as well as first- and second-tier organisations in membership.

ii. Para 9.7.3 also says “The Angling Trust offers club and individual membership and is very active in terms of conservation, fisheries management and protecting anglers’ rights. However, no affiliated clubs exist in South Wales.” This is not correct. We have been members of the Angling Trust for several years (and its legal arm, Fish Legal, for several decades) and we are not the only members in South Wales.

iii. Appendix A gets “clubs” and “associations” mixed up and says “awaiting responses” for clubs. That’s not correct. Table 9.21 shows that we were consulted and expressed our views at an early stage. We met Eva Bishop (then Director of Tidal Development of Inazin) on 11 April 2012 and told her then of our interest and our concerns.

b. We are a not-for-profit angling club in the Swansea Valley. We are a reputable club of long standing, having been formed in the 1940s and incorporated as a company limited by guarantee in 2008. We own, control or enjoy the fishing on most of the River Tawe between Ynysmeudwy and Morriston – about 8 miles of the lower part of the river. Our fishing is for salmon, sea trout and brown trout.

c. We are not just “recreational anglers”. We are a business. Ownership and leasing of river bed / bank and fishing rights are property rights which carry entitlements.

d. We have about 300 members – about 130 adult (£60 per annum), about 120 OAP/disabled (£20 per annum) and about 50 juniors (£5 or £10 per annum). These charges only partially reflect the value we place on our fishing as we minimise costs to members. We have no restrictions on membership. Most of our members are local. Our level of membership is lower than usual at the moment, apparently because of the recession – it’s

Pontardawe and Swansea Angling Society Ltd Page 3 of 9

normally over 400.

e. We are members of: the Welsh Salmon and Trout Angling Association; Angling Trust; Fish Legal; Wild Trout Trust; Carmarthenshire Rivers Trust; Institute of Fisheries Management and the Salmon and Trout Association.

f. The benefits to the community from fishing are well-recognised both across the United Kingdom and specifically in Wales. See for example: i. Fishing For Answers – The Final Report of the Social and Community Benefits of Angling Project

http://resources.anglingresearch.org.uk/sites/resources.anglingresearch.org.uk/files/Final%20report.pdf);

ii. the Welsh Government guidance to Natural Resources Wales under section 4 of the Environment Act 1995; and

iii. the Welsh Government Wales Fisheries Strategy 2008,

3. FISH AND FISHING IN THE RIVER TAWE. a. As mentioned above, our fishing in the River Tawe is for salmon, sea trout and brown trout.

Over the 10 years 2003-2012 Environment Agency catch returns show that the Tawe was ranked 7th in Wales for salmon catches and 18th in Wales for sea trout catches.

b. The quality of the salmon fishing has been improving steadily since the 1970s. The sea trout fishing is not as good now as it was in the 1970s and 80s, when the Tawe was ranked in the top ten in Wales. The decline is due in part to the River Tawe Barrage which was commissioned in the late 1980s. Although sea trout catches have declined generally in Wales in recent years, the Tawe has declined more than most.

c. Salmon and sea trout are important species. The salmon is a protected species under the EU Habitats Directive. Both are priority fish species in the UK Biodiversity Action Plan and the Swansea BAP. They are also highly valued by the public as indicators of environmental quality, in addition to the social and economic benefits of fishing – see, for example: i. Mawle, G.W. & Peirson, G.(2009). ‘Economic Evaluation of Inland Fisheries’. Managers report from

science project SC050026/SR2, Environment Agency. http://a0768b4a8a31e106d8b0-50dc802554eb38a24458b98ff72d550b.r19.cf3.rackcdn.com/scho0109bpgi-e-e.pdf; and

ii. O’Reilly, P.O. and Mawle, G.W. (2006). ‘An appreciation of the social and economic values of sea trout in England and Wales’ in ‘Sea trout: Biology, Conservation and Management: Proceedings of First International Sea Trout Symposium, Cardiff, July 2004’, editors Graeme Harris and Nigel Milner.

d. The latest annual assessment for Welsh Government as reported to the North Atlantic Salmon Conservation Organisation through the European Union, is that the Tawe salmon stock is ‘At risk’ though may be improving. It is therefore important to protect both species from damage by developments.

Pontardawe and Swansea Angling Society Ltd Page 4 of 9

The mouth of the River Tawe, used by juvenile and adult salmon and sea trout leaving the river and by adults returning to the river, is right alongside the proposed lagoon.

e. The Tawe catchment contains 14 water bodies for WFD purposes. Of those that are assessed for Fish, only 3 are ‘Good’ while 5 are only ‘Moderate’ (EAW River Basin Management Plan Western Wales River Basin District Annex B: Water body status objectives). The objective is for all the water bodies to have good ecological status or potential. We need measures to improve fisheries, not developments which are likely to harm them.

4. JUSTIFICATION AND CLAIMED BENEFITS FOR THE PROPOSED LAGOON. a. Approach.

The benefits to the Swansea area and to Wales appear trifling and over-stated compared with the potential environmental damage. The Welsh Government and Natural Resources Wales approach to developments is “to ensure that our natural resources are healthy and resilient and are efficiently managed for Wales’ long-term economic, social and environmental benefit”. We fail to see how this proposal would fit in with those aspirations and we’ll expect to see a detailed justification using the ecosystem services methodology favoured by Welsh Government. It seems to us that Swansea Bay and Wales would suffer the environmental impacts but that the commercial profit, largely derived from public subsidy, would be siphoned off and accrue elsewhere.

b. Electricity generation. It’s claimed that the “nominal capacity” of the generating station would be 240MW. But that’s misleading. Because of utterly predictable tidal conditions, actual capacity would be a lot less. The PEIR concedes that actual generation over a year can never be any more than 400GWh, which is shown by simple calculation to equate to a maximum overall generating rate of just 46MW. It isn’t clear, therefore, why the procedure in sections 14 and 15 of the Planning Act 2008 is being used, because that procedure applies to onshore generating stations with a capacity of more than 50MW and offshore generating stations with a capacity of more than 100MW.

c. Public access to the structure. The likely periods when the walkway on top of the structure is available to the public needs to be described and quantified. We believe that they’re likely to be quite limited. The eastern breakwater to Swansea Docks is closed to the public because of the risks from high seas and this structure would be subject to the same risks – more so, because the proposed height is lower than the existing eastern breakwater. Because the proposed structure is so large, it would take a dangerously long time to evacuate visitors when weather deteriorates unexpectedly. So the claimed benefit of allowing public assess to the structure for recreation is likely to be minimal and the images in the publicity literature of the public taking a stroll along

Pontardawe and Swansea Angling Society Ltd Page 5 of 9

the top of it are fanciful.

5. PERCEIVED THREATS FROM THE PROPOSED LAGOON. a. The effect of the lagoon needs to be looked at cumulatively with the effects of the barrage and other issues.

b. Chapter 9 of the PEIR appears to identify many of the issues that occur to us so we won’t list them all here,

although some of the more important points as far as salmon and sea trout are concerned, some points of detail and apparent errors and omissions are commented on below.

c. We are concerned that the lagoon proposal has reached such an advanced stage without your having carried out the necessary investigations to establish the likelihood and extent of the “potential effects” listed in Table 9.5. We believe that any of the potential effects described there would be sufficient to preclude the development and for that reason we oppose this proposal and will continue to do so vigorously at all stages, enlisting all the support we can muster. We would point out that the Governments’ Feasibility Study in relation to tidal power lagoons on the Welsh Grounds and Bridgwater Bay further up the Severn Estuary concluded that they might cause local extinction of salmon stocks in the Wye, Usk and Severn salmon stocks. Given its proximity to the Tawe estuary, the impact on salmon and sea trout populations of the Swansea Tidal Lagoon will be even more severe, with even greater probability of local extinction.

d. Fish likely to be affected. We are mainly concerned with salmon and sea trout but there are also other important species bound for or leaving the River Tawe, such as sea lamprey, eel, etc. i. Table 9.2 is not laid out correctly. It shows sea trout incorrectly as “Other fish species”, as though they

are not “Migratory” or “Diadromous” – they should be in the top part of the table, with salmon and lamprey.

ii. Table 9.6 in the PEIR shows the fish species and life stages to be considered for modelling. (1) For adult sea trout the entry is “sea trout adult – local feeding behaviour”. Whilst some sea

trout are likely to feed in the area, it should also be recognised that most returning adults are likely to arrive from more distant waters intent on finding the Tawe and entering it to spawn. Table 9.6 doesn’t appear to cover these important fish. Neither does it cover the out migration behaviour of sea trout and salmon kelts.

(2) For adult salmon the entry is “salmon adult – immigration / river entry” but for juvenile eels and adult lamprey the entries say “coastal river searching”. The reason for the different wording is not understood. If this is meant to imply that salmon proceed directly to the river mouth without having to search for their river and without milling about outside, it would be a mistake. The arrival of salmon in Swansea Bay is likely to be driven by tides but their entry into the river is driven by river flows. They can hang around outside the river for lengthy periods waiting for a spate in the river. This is exacerbated by the Tawe Barrage, which prevents fish from entering

Pontardawe and Swansea Angling Society Ltd Page 6 of 9

the estuary until river flows are quite high.

iii. Table 9.7 in the PEIR shows migration periods for salmon and sea trout. (1) Smolt (spring, autumn) – you need to be aware that salmon smolt growth and migration from

the River Tawe isn’t typical. We understand that they grow quickly and migrate early.

(2) Kelt (winter). If winter is taken as December, January and February, you need to be aware that kelts are observed in the river Tawe in March. The emigration of both salmon and sea trout kelts seems to be given little consideration in this report. Indeed this table, copied from elsewhere, is the only reference to them. Sea trout kelts are particularly important as multiple spawners may contribute a large proportion of the annual run and even bigger proportion of egg deposition. Even for salmon, previous spawners generally contribute about 10 percent of the run, so kelts will also need protection.

iv. Table 9.7 doesn’t mention returning adult salmon and sea trout, looking to ascend the Tawe to spawn. These fish arrive in the area of the proposed lagoon all the way through from March to December.

v. Table 9.13 in Appendix 9.1 doesn’t even mention kelt migration as well as being muddled over migration and spawning times.

e. Unnatural flows. i. Releases from the impoundment at times other than normal ebb. The inclusion in the scheme of large

sluice gates suggests to us that they will be used to control the way in which impounded water is released. Without knowing how they might be used, we’re unable to assess the effect but it occurs to us that strong flows of water from the impoundment at low tide are likely to have various damaging effects.

ii. Our experience of the Tawe Barrage is that incoming tidal flows can be so great that levels upstream of the barrage can be lower than those outside the impoundment, creating a wholly unnatural “upstream waterfall”. It seems likely that the same will apply in the case of the lagoon. Even with large sluice gates, it won’t be possible for the impoundment to fill quickly enough for levels inside to match those outside. So there will be a powerful flume of water entering the impoundment, creating massive erosion / disturbance of the bed of the impoundment.

f. Fish passing through turbines. i. We understand that mortality / damage to fish is likely to be high, if they pass through the turbines. It

seems highly likely to us that fish will be drawn through the turbines for a number of reasons.

ii. As we understand it, returning adult salmon swim up the south side of the Bristol Channel and then back along the north side, hugging the coast, looking for their river. (Tawe salmon used to be caught

Pontardawe and Swansea Angling Society Ltd Page 7 of 9

in the nets which used to operate outside the Usk.) If we’re right, Tawe salmon seem likely to encounter the eastern wall of the lagoon and swim around it to the west – right past the turbine array.

iii. Although less is known about the movements of sea trout, adult sea trout seem likely to encounter the lagoon wall in the same way. We understand that there’s generally an anti-clockwise flow in Swansea Bay which is likely to carry them past the turbine array.

iv. Strong flows into the impoundment on an incoming tide seem likely to sweep adult salmon and sea trout through the turbines, as they pass.

v. If Tawe river water is carried into the impoundment on incoming tides, it follows that it will be expelled through the turbines on an ebbing tide. Salmon and sea trout looking for the river Tawe are likely to be attracted to this, making it likely that they’ll also pass through the turbines on ebbing tides, when flows allow.

vi. When trapped inside the impoundment, fish are likely to detect Tawe river water being drawn into the impoundment. They are likely to be attracted to this.

vii. Salmonid movement is generally with the tide. Given that large volumes of water will pass into and out of the lagoon, we anticipate that a large proportion, perhaps the majority, of smolts and adults (fresh-run or kelts) will be entrained, probably several times. The consequences for the populations of both species of migratory salmonid, and our fisheries, are likely to be severe.

g. Fish passing through power station cooling water intake screens and industrial supply intakes. This risk is mentioned in the PEIR. It needs to be covered comprehensively in the EIA.

h. Fish deterred from ascending the river to spawn or from proceeding to distant feeding grounds on departure from the river, leading to extinction of River Tawe salmon and sea trout: i. Because of unnatural flows close to the river mouth.

Fish looking to ascend the River Tawe currently find river water discharging into the bay from the mouth of the river between the two docks breakwaters. If the scheme goes ahead, these flows will be completely disrupted. Even if not entrained and swept into the impoundment, fish are likely to have difficulty finding the river. Fish are literally unlikely to know whether they’re coming or going.

ii. Because of very high levels of suspended sediment. As explained above, unnatural flows are likely to create extremely turbid conditions. It’s said in the PEIR that salmon and sea trout are used to experiencing this in the Severn estuary and can cope with it. But there’s a big difference between fish going with the flow in the massive Severn estuary and fish close to the River Tawe trying to find its mouth so that they can enter it.

Pontardawe and Swansea Angling Society Ltd Page 8 of 9

iii. Because of noise and vibration. The PEIR mentions the risk. It needs to be covered comprehensively in the EIA.

iv. Because of entrapment within the lagoon. The risk of fish passing repeatedly through the turbines, in and out of the impoundment, is mentioned above. But it seems likely that some fish will become trapped in the impoundment and never find their way out. This would be as bad as killing them because, if they are prevented from migrating in the normal way to and from the river and their feeding grounds, they are lost from the stock of the River Tawe.

i. Fish affected by water quality issues. i. From increases in suspended sediment and disturbance of historic contaminants.

Apart from the obvious risk of fish kills, there’s also the risk of fish becoming tainted and unsuitable for consumption. In the case of salmon and sea trout, this would be a major concern.

ii. From sewage discharges. Again, the risk is mentioned in the PEIR and it needs to be addressed comprehensively in the EIA.

6. OTHER POINTS. a. Monitoring.

We can’t see any provision in the PEIR for pre-and post-construction monitoring, with a view to quantifying the effects on salmon and sea trout. If the proposal went ahead, we would require such monitoring so that compensation could be claimed for any damage to our fishery and remediation could be arranged. Such monitoring and remediation would obviously need to be at the developer’s expense. A level of remediation should be assumed to reflect the precision of the monitoring programme. We would point out that the precision of any monitoring programme will depend on the number of years monitoring pre- as well as post-construction. We reiterate the advice of EA Wales to learn from the monitoring and mitigation programme for the Cardiff Bay Barrage, as well as the studies in relation to the Swansea Barrage. There is no evidence in the PEIR that this advice has been followed. The stocks of both migratory salmonids in the Tawe are currently below their target levels. The target, rather than current, levels should be taken as baseline against which the impact of the lagoon would be assessed.

b. Security. If approved, this will be a high risk scheme for investors. In case it failed and the developer became insolvent, security would need to be provided to cover the costs of removing the structure and putting right any damage done. We can’t see any provision in the PEIR for such security. It’s something which we will

Pontardawe and Swansea Angling Society Ltd Page 9 of 9

pursue at the highest levels before any decision on the proposal. Any such security arrangements will need to provide for transfers of responsibility from the initial developers to any other entities. There has already been one transfer from Inazin to Tidal Lagoon Swansea Bay plc since the scheme was first promoted in 2012.

c. Appendix 9.1 contains some inaccurate information (e.g. the life history of salmon; rod catches being described as ‘non-quantitative’) as well as textual errors. We hope that greater care will be taken with the full EIR.

Finally, we repeat that any damaging effect on the important River Tawe runs of salmon and sea trout would be enough to preclude the proposed development. We would not be satisfied with mitigation, remediation or compensation. As far as we are concerned, YOU MUST NOT DAMAGE RUNS OF THESE FISH. We fail to see how you would be able to eliminate any risk of this so WE ARE UTTERLY OPPOSED TO THE PROPOSAL.

Yours faithfully

Phil Jones for Pontardawe and Swansea Angling Society Ltd

Copies to: Welsh Salmon & Trout Angling Association Other affected clubs on the Tawe, Neath and Afan Angling Trust and Fish Legal Natural Resources Wales (Fisheries) Welsh Govt (Fisheries) Carmarthenshire Rivers Trust Salmon and Trout Association Councillors Welsh Assembly Members MPs MEPs

1

2

3

4

5

6

7

8

9

10

11

12

13

F

Phin  

R

Fe

A

ish Legal

Proposed Shydropowndepende

REPORT  

ebruary 20

APEM REF: 4

Swansea Ber develoent expert

14 

413196 

Bay Tidal pment – t fisheries 

Lagoon 

 analysis 

 

   

  

    

     

 

 

           

 

CLIENT: 

PROJEC

DATE O

REPORT 

 

:   

CT No:    

OF ISSUE:  

T AUTHORS      

R

 

 

 

S:     

 GrouGwaun

 SouthTel:

Website: Registered i

Fish Legal

413196 

February 2

Nicola TeagNigel Milne 

APEM Ltd.und Floor, Un Elai Medi CLlantrisant

h Wales, CF: 01443 239 www.apemin England N

2014 

gue er 

 Unit 2 Campus t 72 8XL 9205 mltd.co.ukNo. 2530851 

 

 

A

 

CON

1.1.

3.3.3.3.

4.4.4.

5.5.5.5.5.5.5.5.5.5.

6 9.0)

6.6.

6.

7.7.

8.8.

APEM Report 4

NTENTS .....

AUTHOR

.1  NIGEL M

.2  NICOLA T

SUMMAR

BASELINE

.1  SECTION 

.2  SECTION 

.3  SECTION 

.4  SECTION 

FISH TUR

.1  MODEL A

.2  MODEL P

.3  MODEL O

FISH TUR

.1  MODEL A

.2  MECHAN

.3  PRESSUR

.4  SHEAR ST

.5  CAVITATI

.6  POST PAS

.7  MODEL T

.8  MODEL B

.9  MODEL O

.10  SLUICE PA

FISH, INC)  29 

.1  SECTION 

.2  SECTION TURBIN

.3  SECTION 

MITIGAT

.1  CHAPTER

.2  POTENTIA

MONITO

.1  MONITO

.2  MONITO

413196 – Swa

..................

RS QUALIFIC

MILNER ..........TEAGUE (NEE 

RY OF KEY P

E (APPENDI

9.5.2 METHO

9.5.3 MIGRA

9.5.4 MIGRA

9.5.5 PRESEN

RBINE ENCO

APPROPRIATEN

PARAMETERISA

OUTPUTS AND

RBINE PASS

APPROPRIATEN

NICAL INJURY ..E CHANGE ....TRESS AND TU

ION .............SSAGE EFFECTTECHNICAL INP

BIOLOGICAL IN

OUTPUTS AND

ASSAGE AND I

CLUDING RE

9.4.3 STUDY9.4.8 ASSESSES...............9.5.3 OPERA

TION (OFFSE

R 9 ...............AL OPPORTUN

ORING .........

RING OF IMPA

RING THE EFFE

ansea Bay Tida

C

..................

CATIONS ....

..................O’KEEFFE)....

POINTS ......

IX 9.1, SECT

ODOLOGY .....ATORY FISH POATORY FISH CHNCE OF MIGRA

OUNTER MO

NESS AND GEN

ATION AND CA

CONCLUSION

AGE MODE

NESS AND GEN

..................

..................RBULENCE ......................TS ................PUT DATA ......NPUT DATA ....CONCLUSION

NJURIES .......

ECREATION

 AREA ..........SMENT OF THE

..................ATIONAL PHAS

ETTING) .....

..................NITIES ...........

..................

ACTS AND A BA

ECTIVENESS O

al Lagoon hyd

CONTENT

 

..................

..................

...................

...................

..................

TION 9.5 M

...................OPULATIONS A

HARACTERISAT

ATORY FISH S

ODELLING (

NERAL METHO

ALIBRATION ...S ................

ELLING (APP

NERAL METHO

...................

...................

...................

...................

...................

...................

...................S ...................................

AL AND CO

...................E SIGNIFICANC

...................E EFFECTS .....

..................

...................

...................

..................

ASIS FOR COM

F MITIGATION

dropower dev

..................

..................

...................

...................

..................

IGRATORY 

...................AND RIVER QU

TION ............PECIES, SPAW

APPENDIX 

D ......................................................

PENDIX 9.4)

D ...........................................................................................................................................................................................

OMMERCIAL

...................CE OF FISH MO

...................

...................

..................

...................

...................

..................

PENSATION CL

N MEASURES ...

elopment – in

..................

..................

...................

...................

..................

FISH) .........

...................UALITY STATUS...................

WNING AND NU

9.3) ...........

...................

...................

...................

) ................

...................

...................

...................

...................

...................

...................

...................

...................

...................

...................

L FISHERIES

...................RTALITY THRO

...................

...................

..................

...................

...................

..................

LAIMS ..............................

ndependent efisheries an

.................

.................

..................

..................

.................

.................

..................S ..................................URSERY AREAS

.................

..................

..................

..................

.................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

S (CHAPTER

..................OUGH TIDAL 

..................

..................

.................

..................

..................

.................

..................

..................

xpert alysis 

 

... III 

.... 5 

..... 5 

..... 6 

.... 7 

.... 9 

..... 9 

... 10 

... 10 S . 12 

.. 14 

... 14 

... 14 

... 19 

.. 21 

... 21 

... 23 

... 24 

... 24 

... 24 

... 24 

... 24 

... 25 

... 28 

... 28 

... 29 

... 29 

... 31 

.. 33 

... 33 

... 33 

.. 37 

... 37 

... 41 

A

10 

APEM Report 4

STATEME

REFEREN

413196 – Swa

ENT OF TRU

NCES ...........

ansea Bay Tida

UTH ...........

..................

al Lagoon hyd

..................

..................

dropower dev

..................

..................

elopment – in

..................

..................

ndependent efisheries an

.................

.................

xpert alysis 

 

.. 42 

.. 43 

 

5  

 

1 AUTHORS QUALIFICATIONS 

 

1.1 Nigel Milner 

BSc Hons2.1,  Zoology,  Swansea University College  Swansea,  1970. PhD University of  East Anglia,  1976.  The  distribution  and  toxicity  of  zinc  in  juvenile  flatfish.  (in  receipt  of NERC Fisheries Research Studentship). Five years   (1975‐80) as Research Associate for University of Wales Institute of Science and Technology, Cardiff (UWIST) working on reservoir impacts on  salmonid  ecology.  Joined Welsh Water  Authority  1980;  led  various  multidisciplinary environmental teams  in water  industry and regulators (Welsh Water 1980 ‐ 1979; National Rivers Authority  1979‐1989,  Environment Agency  1989  –  2007).  Left  as  Fisheries  Science Manager for EA England and Wales. Joined APEM as associate  in 2007. Currently honorary Lecturer and Research Fellow at Bangor University, School of Biological Science, Molecular Ecology  and  Fisheries  Genetics  Laboratory. Member  of  Atlantic  Salmom  Trust  Honorary Scientific Advisory Panel. Member of Salmon and Trout Association Science Advisory Panel.  Relevant recent projects 

Severn Tidal Barrage, responsible for salmonid assessment and impact modelling. 

Aberdeen Harbour Development (2008). Impact assessment of quay construction on salmonid passage through estuary and effects on fisheries. 

King Street Gas Storage‐Pipelines  (2008).  Impact assessment of brine discharge on salmonid migration through Mersey estuary and effects on fisheries. 

Co‐convener AST conference (York 2010) and workshop (Pitlochry, 2011) on fish and flows,  Editor  and  contributor  to  various  reports Milner  et  al.,  2011)  and  papers (Milner et al., 2011). 

Burbo Bank Extension: migratory salmonid noise risk assessment  (2013). Review of salmonid  migration  in  coastal  zones  and  potential  for  impact  from  windfarm development. 

Celtic Sea Trout Project  (2009‐2013) Management Group member and Task  leader for Task 7 “Marine ecology, life histories and modelling for Management”.  Report in preparation. 

Co‐Chair of ICES Working Group on Sea Trout (WKTRUTTA), November 2013), report writing in progress. 

 Some Publications relevant to Swansea Bay Tidal Lagoon EIA 1. Milner , N.J., Elliott, J.M., Armstrong, J.D., Gardiner, R., Welton, J.S. and Ladle, M. (2003) 

The  natural  control  of  salmon  and  trout  populations  in  streams.  Fisheries  Research 62,11‐125.  

2. Milner, N.J. and Evans, R. (2003) The incidence of escaped Irish farmed salmon in English and Welsh rivers. Fisheries Management and Ecology 10, 403‐406.  

3. Armstrong,  J.D., Kemp, P.S., Kennedy, G.J.A., Ladle, M. and Milner, N.J.  (2003) Habitat requirements of Atlantic salmon and brown trout in streams. Fisheries Research 62, 143‐170. 

4. Milner, N.J.,  Karlsson,  L., Degerman,  E.,  Jholander,  A., MacLean,  J.C   &   Hansen,  L‐P. (2006).  Sea  trout  (Salmo  trutta  L.)  in  Atlantic  salmon  (Salmo  salar  L.)  rivers  in 

 

6  

Scandinavia and Europe. In G.S. Harris and N.J. Milner.  Sea Trout: Biology, Conservation and Management. Proceedings of First International Sea Trout Symposium, Cardiff, July 2004. Blackwell Scientific Publications, Oxford, 139‐153.  

5. Milner,  N.J.,  Harris,  G.S.,  Gargan,  P.,  Beveridge, M.,  Pawson, M.G., Walker,  A.    and Whelan,K. (2006) Perspectives on sea trout science and management In G.S. Harris and N.J. Milner.    Sea  Trout:  Biology,  Conservation  and Management.  Proceedings  of  First International Sea Trout Symposium, Cardiff, July 2004. Blackwell Scientific Publications, Oxford, 480‐489. 

6. Evans, M., Milner, N.J. and Aprahamian, M.  (2008) Life in Welsh Rivers: Fishes.  In:   D.D. Williams and C.A. Duigan, (Eds)  Rivers of Wales: A Natural Resource of International and Historical Significance, Backhuys Publishers, Leiden.   

7. G.S. Harris and N.J. Milner  (2006)   Sea Trout: Biology, Conservation and Management. Proceedings  of  First  International  Sea  Trout  Symposium,  Cardiff,  July  2004.  Blackwell Scientific Publications, Oxford, 499pp. 

8. Milner N.J., Solomon D.J. & Smith G.W. (2012) The role of river flow in the migration of adult Atlantic salmon, Salmo salar, through estuaries and rivers. Fisheries Management and Ecology 19, 537‐547. 

9. Milner N.J., Cowx, I.G & Whelan, K.F. (2012) Salmonids and flows: a perspective on the state of  the  science and  its application.   Fisheries Management and Ecology 19, 445‐450.  

1.2 Nicola Teague (nee O’Keeffe) 

Nicola has a bachelors degree  in Zoology  from  the University of Sheffield and achieved a distinction  in her MSc  in Marine Resource Development and Protection  from Herriot‐Watt University.  She  is  a  Chartered  Biologist  with  the  Society  of  Biology  as  well  as  being  a member.  She  is  also  a member  of  the  Institute  of  Fisheries Management  and  is  actively involved with  the  Institute being both on  its Council  and  Training  committees  as well  as deputising  on  the  Executive  Committee  on  behalf  of  APEM  Managing  Director,  Keith Hendry. Nicola is an Associate Director at APEM Aquatic Scientists and heads up the Marine Ecology and Fisheries Engineering teams. She has specialised in migratory fish and fisheries engineering  throughout  her  career  and  has  been  actively  involved  in  the  tidal  power generation sector. She was  lead migratory and estuarine  fisheries advisor  to DECC  for  the Severn Tidal Power  study and  lead marine ecology advisor  to Peel Energy  for  the Mersey Tidal  Power  study. One  of  her  specialist  skills  is  the  assessment  of  fish  passage  through hydropower  turbines  which  has  included  the  development  of  a  bespoke  compound mortality model for the passage of fish through the proposed Severn tidal power turbines.    

 

7  

2 SUMMARY OF KEY POINTS 

1. Due  to  extensive movement  of migratory  salmonids  along  the  South Wales  coast 

there  is  potential  for  populations  of more  rivers  to  be  impacted  than  currently 

included within the far‐field zone. 

2. Migratory  salmonids  could  approach  from  any  seaward  direction  rather  than  the 

currently predominantly assumed oceanic westerly direction. 

3. The  fish  characterisation  could  be  improved  by  looking  at  longer  term  data  and 

referring to conservation limit assessment information. 

4. The main migratory periods reported are questionable for adult salmonids in general 

and more crucially  for sea  trout which may be present within  the area  for  feeding 

throughout the year, if their principal prey species are present. 

5. There are large elements of uncertainty in the modelling approaches and their input 

data which  are  not  currently  sufficiently  discussed  or  their  potential  implications 

acknowledged. 

6. The  presence  of  the  Tawe  barrage  and  its  potential  influence  on migratory  fish 

behaviour  has  not  been  discussed  or  incorporated  into  the  encounter modelling 

which  could  result  in  underestimates  of  delay  to  passage  and  the  potential  for 

multiple returns to the estuarine/coastal environment before entering freshwater. 

7. There  does  not  appear  to  be  any  mechanism  for  incorporating  environmental 

conditions  in particular  river  flows  into  the encounter modelling which may be an 

important factor in relation to passage past the Tawe barrage. 

8. The fish size distribution data used for the encounter model and STRIKER estimates 

are not fully appropriate to the local river populations of adult salmon and sea trout.  

9. The  fish  turbine  passage  modelling  is  currently  based  on  a  deterministic  model 

however,  due  to  the  uncertainty  in  input  parameters  a  stochastic model may  be 

more appropriate to allow interpretation of the potential range of model outputs. 

10. There  should  be  some  acknowledgement within  the  assessment  that  the  turbine 

passage compound mortality estimates cannot be considered as complete mortality 

rates as it is not possible to quantify a number of the impacts such as predation risk 

and sluice passage. 

11. It is understood that the EIA in general has adopted a Rochdale Envelope approach. It s not clear however, how a worse case approach has been implemented for fish. 

12. Population effects are not estimated.  Even if direct fish number losses (at least from 

turbine M) are small, there are additional potential mortality effects (e.g.predation). 

The eventual effects on populations would give added confidence about the impacts. 

There is precedent for this for salmon on the DECC Severn Tidal Power SEA study. 

13. In absence of population modelling. Life time egg deposition offers an improved way 

to  estimate  impacts  giving  a more  realistic  representation  of  the  importance  of 

larger fish. 

 

8  

14. Given  the  inherent uncertainty  in  fully quantitatively assessing  impacts, qualitative 

magnitudes of  effects  focusing on  effects upon  the  species or population may be 

more appropriate than the quantitative thresholds used within the assessment. 

15. There  is  discussion  in  the  assessment  chapter  regarding modelling  impacts  upon 

Wye and Usk fish however, there is no presentation of the modelling outputs and no 

discussion of this further within the assessment. 

16. The  summary  tables  of  impacts  are  incomplete  for  increased  predation  and 

entrainment and injury from turbines. It is not therefore possible to comment on the 

final assessment conclusions at this time. 

17. There is limited discussion of mitigation measures within chapter 9, the main one for 

fish being the use of an Acoustic Fish Deterrent. There is however, some uncertainty 

regarding the proven effectiveness of this technique for this specific application. 

18. There are  further potential mitigation options  that  could be  considered which are 

discussed within this document. 

19. In the absence of monitoring methods being provided within the assessment, some 

potential options are discussed within this document. 

    

 

9  

3 BASELINE (APPENDIX 9.1, SECTION 9.5 MIGRATORY FISH) 

3.1 Section 9.5.2 Methodology 

Study Area  Migratory salmonids, salmon and sea trout, are  likely to move extensively along the South Wales  coast,  such  that  the  stocks  likely  to  be  exposed  to  the  Swansea Bay  Tidal  Lagoon (SBTL) will include those from the Taf in Carmarthen Bay to the Rivers Wye and Severn.   The  target  rivers nominated  in  the draft EIA  (Tawe, Neath and Afan)  represent only small parts of the South Wales origin migrating salmonids. Based on EA rod catch statistics (2009‐2011)  these  three  rivers  contribute  10%  of  salmon  and  19%  of  sea  trout  abundance between the Taf and the Wye. Rod catches are here taken to be approximate  indices  (NB without  correction  for  rod  exploitation  rate or  catch  reporting) of  adults of both  species returning to spawn and sea trout in marine feeding phase (Table 3.1).   

Table 3.1 Relative abundance (based on in‐river rod catches) of salmon and sea trout referred to in the SBTL draft EIA as percentage of fish in all South Wales Rivers from the 

Taf to the Wye. 2009‐2011 averages.  (Source: EA Catch statistics) 

  Because coastal movements appear to be extensive more fish will be potentially exposed to Lagoon encounters than suggested in the Report.  These potential effects may not be  trivial collectively, because although proportionally  far  fewer salmon  from say the river Wye will be exposed than Tawe or Neath fish, the abundance of salmon and sea trout in some of the South Wales rivers is much higher than in the nominal target rivers; the Wye, Usk and Tywi being notable(Figure 3.1).  While the direction of error is clear the amount however, is not. It is not possible to predict with any certainty what proportion of say Wye salmon or Tywi sea trout will be exposed. It is likely however, that repeat encounters will arise, especially in the case of sea trout which are multiple spawners (they spawn and re‐migrate to sea several times in their life time) and their migrations  are more  coastal  that  salmon,  involving  feeding  on  coastally  abundant pelagic prey species. Recent genetic and microchemistry studies (from the Celtic Sea Trout Project. www.Celticseatrout.com) on  sea  trout exchange  in  the  Irish Sea  (which extended only to the Tywi) suggest that movements maybe extensive.   

Year Tawe+Neath+Afan All Taf‐Wye Tawe+Neath+Afan All Taf‐Wye

2009 191 1,983 854 5,046

2010 324 2,601 1,031 4,468

2011 196 2,548 782 4,851

mean  237 2,377 889 4,788

% 10 19

SALMON SEA TROUT

 

10  

 

Figure 3.1 Annual rod catches (mean, unadjusted, 2009‐2011) of salmon and sea trout in rivers immediately adjacent to the lagoon and further along the South Wales coast. 

(Source EA Catch statistics) 

 

3.2 Section 9.5.3 Migratory Fish Populations and River Quality Status 

The provenance of the freshwater fish population data is unclear. The data are given as NFC classifications  for  one  year,  but  if  these  are  the  same  data  as  used  for  the  EA’s WFD reporting they should represent electric fishing surveys for up to six previous years.   A full evaluation of  the  river  fish population status  is not  feasible given  the  time  restrictions on this  review; moreover  it  is  impossible  to  form  a  view  on  the  populations  from  the WFD reported status because they cannot be related to specific locations around the catchments (particularly making a distinction between accessible and  inaccessible areas) or to types of environmental  impacts. While  this  information  is  not  critical  for  estimating  the  potential impacts  of  the  lagoon,  they  are  relevant  for  proposing  realistic,  targeted  and  effective mitigation and future monitoring. A full review would consider the historical Salmon Action Plans  (SAPs)  and  contemporary  River  Basin  Management  Plans  (RBMPs)  in  particular whether  the  rivers  are  considered  to  be  in  good  ecological  status/potential  for  the  fish aspect of the biological quality element.   The catch data reported are accurate, but the status (see 9.5.5 below)  is more completely described by  longer term analysis. This could reasonably extend back to 1994 (when effort data began  to be collected and  second  reminders used  for  the catch  returns), or even  to 1976 when the national data collection began with some regional consistency.    It depends on the purpose.  Mitigation should be set in the context of the overall carrying capacities of the  affected  rivers,  informed by  knowledge of environmental quality  changes,  and  this  is better described over the long term.   

3.3 Section 9.5.4 Migratory Fish Characterisation 

The migratory  salmonid  (salmon and  sea  trout) characterisation  is generally accurate, but the Conservation status (9.5.4.3) would be improved by (a) looking at the longer term data 

0

500

1,000

1,500

2,000

2,500

3,000

Declared rod catch

Salmon Sea Trout

 

11  

(Figure  3.2  and  see  also  9.5.3  comments)  and  (b)  referring  to  the  Conservation  Limit assessment  as  reported  annually  by Cefas/  EA  (e.g. Cefas/EA,  2013)  and  also  used  as  an index for conservation status in SACs (Cowx and Fraser, 2004).   

 

Figure 3.2 Long term trends in salmon and sea trout rod catches for the Afan, Neath and Tawe 

 While rod catches do have significant constraints on their  interpretation, which should not be  ignored,  the  comment  (9.5.5.6)  that  rod  catches  are  poor  indicator  of  numbers  is probably  over‐stating  the  case.  Indeed  rod  catches  are  the  basis  of  the  Cefas/EA  annual assessment to NASCO.  The trends and status are different for the species and between the rivers. Thus: 

All  three  rivers  have  history  of  former  polluted  status  and  low  stocks, with  now 

recovered stocks that are subject to more recent pressures. 

For salmon, the Tawe and Neath catches have  increased since 1980s, but the Afan 

still has low catches (Figure 3.2).  

Salmon CL compliance is poor on the Tawe, the only one of the rivers for which this 

type of assessment  is reported (Figure 3.3), and  is currently (2012)  judged to be “At 

Risk” and “Probably at Risk” of failing in 2017 (Cefas/EA, 2013). 

For sea trout, the Tawe catches, having recovered  from pollution  (Solomon, 1994), 

have  shown  gradual  decline.  Similarly,  the  Neath  (although  recovering  later)  has 

increased catches which are now (since 1999) greater than the Tawe. However, sea 

trout  catches  in  all  three  rivers  show  recent decline,  in  contrast  to  salmon  (Figure 

3.2).  

0

50

100

150

200

250

1980 1985 1990 1995 2000 2005 2010 2015

Declared rod catch

Salmon

Afan Neath Tawe

0

200

400

600

800

1000

1200

1980 1985 1990 1995 2000 2005 2010 2015

Declared rod catch

Sea trout

Afan Neath Tawe

 

 

 

Figushow

20%ile

 These rthe  likethat all Figure 3comprocomme 

3.4 Se

Table  9receiveperiodscan  be angling for  the about 3be presSea  tropassed River Tyto be .1sea troube preseel and 

ure 3.3 Salmws the Conse observed e

river‐specifiely cumulatthree river3.1) have caomised  by ents on impa

ection 9.5.5

9.13  (p39  bd.    Is  this s appear to characterisseason (e.gTywi and 1

3 weeks aftsent in coasout have a their first pywi 47% of 1+ maidens ut in the Irisent in coas sprat) are 

mon Conservservation Legg deposit

c conservative effects rs (and otheapacity for ithe  projectact).  

5 Presence 

baseline  repthe  origin be shown ased  from  thg. March 3r

1st April  to er river enttal waters fhigh propopost‐smolt returning sor older (Hish Sea feedtal waters tpresent.  

vation Limiimit (total etion and the

tion and enof the scheers that miincrease in t  (albeit  pr

of Migrato

port)  is  a  lof  tables  9as Septembhe  rod  catcrd to Octobe17th Octobtry (Davidsofor about a rtion of    fiwinter at ssea trout adHarris 2002)d and growthroughout 

12 

it Complianegg deposite yellow bathat trend.

nvironmenteme and mght be  imptheir stocksrobably  at 

ry Fish Spec

ittle  unclea9.7  and  9.8ber to Januach  data  (Figer 17th for Wber  for  the on et al., 19month priosh of age  .sea before fdult sample.  Their exa

w during winthe year, if

nce assessmtion), the band is the 9. 

al observatitigation op

pacted  in Sos and fishernotionally 

cies, Spawn

ar  for migr8  in  the  EIAary, which isgure  3.4), wWye and Uothers).   Sa996; Sheltoor to the sta1+  (and  sofirst return ed in the roact location nter monthsf their princ

ment for thelack line is t5% probabi

tions are reptions  (see outh Wales,ries which c“Minor”  le

ning and Nu

atory  salmoA  draft?    Ths not correcwhich  are  csk; March 2almon are n, 2001); thart of recordme at  .2+);to the rived catch (19in the wints (CSTP, uncipal prey sp

 

e Tawe. Redthe trend inility bound

elevant to abelow).    It , see Table could potenevel,  but  s

ursery Area

onids  on  the main mct.   Adult pconstrained2th to Octocaught on herefore fisded seasona;  that  is  thers.   On the996‐98) werter is unknopublished) pecies (mai

d line n the aries of 

ssessing is  likely 3.1 and 

ntially be ee  later 

he  copy migratory presence d  by  the ober 17th average sh might al catch. ey have e nearby re found own, but and will nly sand 

 

13  

Note however, that Figure 3.4 is based on the three nominally affected rivers only and other rivers some of which have much  larger stocks may have  fish present beyond  these  times. The Wye  for example  is renowned  for a significant spring run of salmon  (Gee and Milner, 1984; Gough et al., 1992), although  it  is  less than formerly and much underrepresented  in most recent catches due to fishing season controls. 

 

Figure 3.4 Seasonal rod catch of salmon and sea trout in the Tawe, Neath and Afan. (Source EA Catch statistics) 

 In conclusion, some adult returning salmon are  likely to be  in Swansea bay coastal waters between January and November, with highest abundance between May and October, and kelts between December and March.  Sea trout adults will be present throughout the year, but  at  highest  abundance  between  April  and  September,  and  their  kelts will  be  present between November and March.        

0 0 0

46

15

27 27

17

5

0 00 0 0 1 2

8

15

24

37

14

0 0

0

10

20

30

40JAN

FEB

MAR

APR

MAY

JUN

JUL

AUG

SEP

OCT

NOV

DEC

Percentage m

onthly catch

Tawe+Neath+Afan, sea trout and salmon,  2009‐11

Sea trout Salmon

 

14  

4 FISH TURBINE ENCOUNTER MODELLING (APPENDIX 9.3) 

4.1 Model appropriateness and general method 

Fish  encounter with  a  tidal  power  scheme  is  the  single  biggest  factor which  sets  a  tidal scheme  apart  from  a  freshwater  hydro  scheme  and  likely  represents  both  the  greatest determinant of predicting  resultant mortality and highest  factor of uncertainty within  the assessment process. This factor is unique to the individual site and cannot be inferred from any other existing schemes. It will be dependent upon the site location and conditions, the fish  populations  that may  pass  through  the  area  and  the  design  and  operation  of  the scheme itself. Modelling through the combination of a hydrodynamic model of the site and species specific Individual Based Model (IBM) is the only means of predicting fish encounter prior  to construction. As with any modelling approach however,  it  is based on  theoretical information  often  backed  up with  limited  or  uncertain  data  and  as  such  is  fraught with uncertainty and open to challenge and criticism of in particular the input data.  Although uncertainty  in  the model  technique and calibration are discussed  in  the upfront sections of this appendix, there is limited discussion of the uncertainty and limitations of the input  data  in  particular  and  how  these  may  have  influenced  the  model  outputs  and ultimately the predicted impacts from turbine passage.  There  is no mention  in this appendix of the presence of the Tawe barrage and how  it may influence  the  behaviour  of  migratory  fish  or  consideration  or  reference  to  the  various studies that have been undertaken since it was constructed on this issue. It is not clear from the appendix whether  the  release point of  fish within  the Tawe was above or below  the barrage but  it  is assumed to be below as no mention has been made of the delay of entry and exit  resulting  from  the  impoundment  structure. The  lack of  consideration of  this key factor on fish behaviour upon entering and exiting the Tawe may have affected the model running  and  resultant  outputs  which  could  potentially  be  falsifying  the  results  of  the assessment in either direction.  It is not clear from the reporting as to what rivers are included within the modelling and the final turbine passes within the overview results. All of the video capture figures appear to be for  the  Tawe  only.  The  appendix  would  benefit  from  clearer  discussion  on  the  rivers included.  

4.2 Model parameterisation and calibration 

Salmon smolt model  The  input parameters  for  salmon  smolts appear  to be predominantly based on a  tracking study  reported  by  Moore  et  al.,  1998  undertaken  in  Southampton  Water.  Given  the potential  impacts of  the Tawe barrage upon salmon smolt movement  into and within  the estuary in particular however, it is recommended that data from a more locally based study is considered to determine if differing input parameters have any bearing on the outputs of the model. A suitable study would be that reported by Moore  in 1997 on ‘The movements of Atlantic  salmon and  sea  trout  smolts  in  the  impounded estuary of  the R. Tawe,  South Wales’.  Part  of  the  study  includes  reporting  on  a  single  salmon  smolt  145 mm  in  length which was  tracked both above  the  impoundment and below  it  through  the  lower estuary and into Swansea Bay for a period of 6 hours and 8 minutes over a distance of 12.6Km. The 

 

15  

track shown in Figure 6 within the report shows time of transit and route which appears to move close along the wall of the proposed barrage. Oranges were also released at the time of tracking the individual to represent random drifting particles. It is reported that tracking the oranges had to be abandoned to keep up with the smolt. Speed over the ground was reported as 57 cms‐1 which could be compared with data in the hydrodynamic model to give an indication of swimming speed for this individual.   The Moore (1997) study also  indicated that due to delays resulting from the Tawe Barrage entry into the lower estuary can be during any state of tide as smolts are largely unable to detect  the  state  of  tide  below  the  barrage  unless  it  is  overtopping.  It may  therefore  be necessary to  look at other release times to determine  if this factor has any bearing on the number of passes  into  the barrage. Although only  for  a  single  individual  the  information presented from this study could provide useful local input parameters for the model.  Adult salmon model The report assumes rather strong directional swimming towards natal rivers as soon as they enter coastal waters. At some stage immediately prior to eventual river entry, that must be so. However, there  is strong evidence for temporary straying by salmon,  in addition to the true  (reproductive)  straying  referred  to  by  Quinn  (1993)  and  others  and  noted  in  this Report. The key reference  (Davidsen, et al.,2013) describes behaviour of  fish well  inside a fiord  system  with  a  comparatively  constrained  coast.  In  the  open  coastal  zone,  more representative of Gower and Swansea, one might expect salmon  to make more extensive search patterns, influenced in part by tidal direction. This has been shown for salmon on the Aberdeen  coast  (Hawkins  et  al.,  1979).  Conventional  tagging  (Swain,  1982)  and  micro‐tagging (Jones, 1994) of salmon in the South Wales rivers have shown extensive recaptures of non‐natal fish in rivers along the North Bristol Channel coast. The strong tidal currents of the Bristol Channel may enhance this effect. The recapture of tagged smolts from the rivers Usk, Wye and Severn (Swain, 1982) indicate that around 4% of recaptured fish in the vicinity of their home river were recorded in the non‐tidal reaches of non‐home rivers and a further 48% in tidal waters of the Severn estuary and Bristol Channel. In addition to ‘overshooting’ to nearby rivers, a number were also recaptured  in the River Parrett on the south coast of the Bristol  channel.  It  is unknown whether  these  fish would have  later  returned  to  their home river had they not been captured or would have remained as ‘stray’ fish.   Jones (1994) undertook a review of the microtagging programme of salmon and sea trout in Wales  between  1984  and  1993  investigating  the  return  of  tagged  stocked  salmon  in particular.  The  review determined  that  some  returning  adults were  regularly  captured  in non‐natal rivers both east and west of their natal river. Tagged smolts released in the Afan were recorded to the East in the neighbouring Ogmore. Those in the Ebbw were recorded in its westerly neighbouring Taff.  Loughor, Ogmore, Rhymney, Taff  and  Tawe  releases were recorded to the east in the Severn estuary fishery. In addition to the Severn estuary fishery Tawe fish were recorded in the eastern rivers Ogmore and Usk. As above it is not possible to say whether these fish would have returned to their natal rivers had they not been captured or would have remained ‘strays’. There is a possibility however, that they indicate that adult salmon could be presented to the Tawe and other impacted rivers not just from the West as modelled but also from the East. Additionally, it further indicates that fish from other rivers 

 

16  

than  those  identified  within  the  assessment  may  also  interact  with  the  scheme  and potentially be impacted by it.  There  is however,  still much uncertainty over  return migration behaviour  to  South wales coast and  regional behaviours are  likely  to vary depending upon how salmon  return  from oceanic residence  (Malcolm et al., 2010). Nevertheless, there  is a good case  for proposing that  coastal  wandering  is  more  than  assumed  in  the  report  and  from  that  come  two consequences:  (1)  Tawe  and  Neath  fish might  be  expected  to  experience more  repeat turbine encounters, and (2) the salmon exposed to the scheme may include fish from other rivers, similarly making coastal migrations.  

 

Sea trout smolts 

There are no detailed notes on the calibration model input parameters for sea trout smolts 

within  this  appendix.  There  are  however,  brief  output  notes  on  p  28.  Again  the Moore 

(1997) study may provide  insight for the calibration for this species  life stage. A single sea 

trout smolt was tracked as part of the study both above and below the barrage. The smolt 

was detected moving through the barrage  lock  into the  lower estuary where the track was 

subsequently  lost  for  a  period  of  4  days.  It was  then  again  detected  below  the  barrage 

before moving back  into the  lock and finally detected above the barrage for the  last time. 

The  4  day  period  over which  it was  not  detected  in  the  lower  estuary  before  returning 

suggests  that  at  least  some  sea  trout  smolts  could  remain  in  the  estuary  and  coastal 

environment  for  a prolonged period  and make  returns  into  the  freshwater  environment. 

This behaviour could have a significant  impact upon the risk of the barrage and  its turbine 

structures  to  this  species  lifestage  which  is  otherwise  assumed  to  swim  continuously 

towards the ocean. 

The output notes also  indicate that a 4 hour release time each side of spring high tide was 

adopted. The Moore (1997) study however, suggests that they may  in fact enter the  lower 

estuary during any state of the tide due to the presence of the Tawe barrage.  

Adult sea trout 

There are greater concerns over the post‐smolt sea trout encounter modelling due to their 

use of the estuarine and coastal environment as discussed below. 

Sea trout will be feeding in the area for much of the year (including the winter, see above, if suitable prey species are present) and as such repeat encounters are  therefore  likely. The model currently assumes that as with salmon they will only appear in the area prior to entry into  the  freshwater  system  and  will  make  directed  movement  from  the  oceanic environment into the estuary and ultimately river. This is however, less likely to be the case for  sea  trout which  if possible needs  to be  represented within  the model  to give a more realistic worse case of impacts upon the population.  

 

17  

Swimming  speeds  of more  resident  individuals may  not match  those  of  kelts  (the  fish studied on the key reference). It would be beneficial to try alternative assumptions of swim speed and orientation etc. to see if they alter the model outputs.  Sea trout will probably approach the scheme from all seaward directions and as for salmon include  fish  from  other  rivers.  The  preliminary  genetic  stock  identification  studies  of  the Celtic Sea Trout Project  (CSTP)  (reports  in preparation) demonstrate extensive  straying of sea trout (including The Tywi and Tawe) around the Irish Sea. The prevalence of sea trout in coastal net fisheries (when such fisheries were operating – EA catch statistics) and studies of sea  trout  elsewhere  (Malcolm  et  al.,  2010)  suggest  that  their  migrations  are  primarily coastal and driven by  feeding and availability of prey species, typically sand eel and sprat. Sea trout from other natal rivers may therefore also frequent this area and interact with the scheme.  It  is  not  clear  from  the  reporting what model  parameters  for  navigation  and  orientation were used for sea trout kelts. The reporting would benefit from more detailed notes on this for clarity and to ensure that the most appropriate information has been used.  It is likely that whitling especially may make return forays to the rivers, prior to a spawning migration, based on  scale  reading  from  the CSTP which would  increase  their potential  to interact with the scheme. 

 

For adults of both species 

Size frequency data for 2012 for the 3 target rivers from the EA statistics are shown (Figure 

4.1) and the means and SDs correspond with the chosen stats for the species in the Report 

(sea  trout are slightly  larger).  It should be noted  that a wt/length regression  for sea  trout 

had to be used for the translation of the original weight distributions for salmon in view of 

limited  time.  This  will  be  approximately  correct  because  the  two  species  have  similar 

shapes; but ideally salmon data, which are available, would be used. 

 

Figure 4.1 Size‐frequency data and statistics for the three rivers from EA statistics 2012 

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Percentage

Length class (cm)

Length distributions 2012 (Tawe+Neath+Afan)

Salmon Sea trout

Salmon Sea troutn 136 672min 43.1 29.4max 93.2 89.6mean 68.8 38.6SD 10.0 11.325%Q 62 3175%Q 77 45av-1sd 59 27av+1sd 79 50

 

18  

It would be informative to model contrasting groups of small and large salmon and sea trout to see if there is any effect of swimming speed if this is not already included in the modelling approach (Figure 4.1). There may be an impact of temperature upon the model results in particular resulting from likely  lower swimming speeds  in spring and winter.  It would be good to  include this factor within the modelling if it is not already.  In Report Table 5 adult salmon “encounters” is 603 vs 2,044 for sea trout. It is not clear what creates this difference in outputs within the model.  Also and related, sea trout turbine passes are proportionally even higher than salmon (3,906 vs 997) compared with encounters.  Is this a function of size and swimming speed, and /or some  imposed  behaviour  in  the  model?  The  ratios  (seatrout/salmon)  of  passes  and encounters are  close  to  the  relative abundance of  the  two  species  (if  the  catches  can be taken  as  indices  of  abundance  (see  Table  1  and  text  above).  But  given  their migratory behaviours it is likely that sea trout will be disproportionately prevalent in the area (to their true abundance), and thus even higher proportionate lagoon encounters and turbine passes might be expected.  There does not appear to be any mechanism of factoring environmental conditions in to the model such as river flows. This condition  is  likely to  influence time of entry and potentially residence time and movement within the estuary and bay especially due to the presence of the  Tawe  barrage  which  is  known  to  cause  delay  to  river  entry.  Mee  et  al.  (1996) determined from tracking studies of adult salmon in the Tawe estuary in 1993 and 1994 that individuals were only detected  traversing  the barrage at  flows between 1.9 and 9.6 m3s‐1. Over the two study years of the 81 adult salmon tracked 38 (46.9%) were  last detected  in the estuary and were not observed to pass the barrage. Of the 46 sea trout adults tracked 15 (32.6%) were  last detected  in the estuary. Those fish that did traverse the barrage took between 8 days and 15 weeks to do so. The 64 fish attempting to pass the barrage made a total of 222 approaches with 41 fish succeeding. Russell et al. (1998) reported on a tracking study of adult salmon  in the Tawe estuary  in relation to the barrage. A total of 68% of the salmon  adults  successfully  tracked  and  observed  to  approach  the  barrage  were  not recorded as passing upstream within the period of tag life (3 to 35 days) indicating that they moved back out of the estuary or away from the sonar buoys. A study of the movement of adult Atlantic salmon in the Usk estuary tracked 56 adult salmon (Aprahamian et al., 1998). 23 of  the  fish moved  into  freshwater of which 7  then  returned  to  sea, 20 were  recorded migrating out of the estuary and 11 were  last detected  in the  inner estuary although 2 of these were later detected outside of the estuary; one in the Severn Estuary and the other in the River Wye. This study demonstrates that adult salmon upon entering the  inner estuary of a river can regularly (over 50%  in this study) migrate back out of the estuary. They may therefore come into contact with the scheme multiple times. This behavioural trait does not seem to have been factored into the model.  

 

Attraction to turbines during generation (both species) 

Regarding the effect of freshwater flow per se as an attractant to migrating salmon entering 

rivers from the sea, the evidence  is usually confounded by the  likely role of chemical cues 

 

19  

(e.g. pheromonal or geochemical origin). Thorstad et al.(2003) reported that freshwater HEP 

discharge into a Norwegian fiord had minimal effect on salmon homing to a nearby river. It 

is  difficult  however,  to  extrapolate  this  result  to  the  Swansea  Bay  situation  because  the 

environment  and  local  topography  are  very  different.  Moreover  the  salinity  of  the 

generating  flow  is  predicted  to  be  virtually  the  same  as  the  sea,  so  this mechanism  is 

unlikely  be  a  problem. While  chemical  attractants  are  undoubtedly  important  cues  for 

coastal  and  in‐river  orientation,  the  roles  of water  volume  flow,  turbulence  and  velocity 

should not be forgotten. These hydraulic variables are important and in rivers HEP releases 

have been demonstrated frequently to attract salmon and cause significant migration delays 

(Thorstad et al., 2008), with salmon being preferentially attracted to areas of high velocity 

(Karpinnen et al., 2004).  The Swansea Bay lagoon ebb generating discharge might therefore 

present locally important attraction to migratory fish and cause deviation from a migration 

route located by chemical cues. This effect will be related to the size of generating flow, its 

configuration and attenuation in the sea, which will be partly influenced by the tidal cycle.  

It  is not clear  from  the reporting what determined  the olfaction strength upon release.  In 

reality this is likely to alter seasonally in particular in relation to river discharge. Changes in 

olfaction  strength  may  alter  the  navigation  time  and  route  made  by  adult  salmonids 

returning  to  their natal  river  and  could  influence  the potential  for  them  to pass  into  the 

lagoon. 

4.3 Model outputs and conclusions 

Were re‐modelling to be undertaken on the basis of some or all of the points detailed above then this is likely to result in changes to the modelling results in the following ways:  

Adult salmon and sea trout populations from other Rivers along the Welsh coast may come into contact with the scheme and potentially be impacted by it increasing the number of rivers to be assessed. 

As a  result of  ‘straying’ salmon and particularly sea  trout adults may approach  the scheme from potentially any seaward direction rather than just the west which is the situation  currently modelled. This  could  result  in  changes  to  the model outputs  in either direction. 

Sea trout are  likely to be resident within the area for  longer periods than currently modelled and as such have greater potential to interact with the scheme. 

The  influence  of  Tawe  barrage  is  likely  to  result  in  delayed  adult  entry  into  the freshwater  environment  and  potentially  increased  ‘straying’  back  into  the  estuary and  coastal  environment.  It may  also  result  in  random  entry  into  the  estuary  in relation to tidal state. These factors if incorporated into the model may influence the outputs. 

Factoring  environmental  conditions  into  the  model  in  particular  in  relation  to passage over the Tawe barrage may influence the outputs. 

 

20  

Amending  the  input parameters  for  salmon  and  sea  trout  smolts  from  alternative local tracking studies may influence their route of passage within the Bay. 

Incorporating  different  swimming  speeds  in  relation  to  size  frequency  and environmental conditions  in particular  temperature  in  to  the model may  influence the rate and route of passage through the Bay.   

 

21  

5 FISH TURBINE PASSAGE MODELLING (APPENDIX 9.4) 

5.1 Model appropriateness and general method 

The  STRIKER  fish  turbine  passage modelling  approach  adopted within  this  assessment  is generally an appropriate technique for predicting quantitative estimates of fish mortality for a  tidal power scheme.  It  is a similar modelling approach based on  the original Von Raben method  to  that  used  for  other  tidal  power  scheme  assessments  including  the  operating Annapolis  Royal  development  and  the  DECC  Severn  Tidal  Power  Scheme  study  options. Specific comments regarding the model parameters and setup are discussed in detail below.  Other relevant studies Within  the  introduction,  studies  in  relation  to  tidal  barrages  are  discussed  and  a  list  of references given. Studies undertaken for DECC in relation to the Severn Tidal Power Scheme however,  are  notable  exceptions which  included  a  review  of  Fish  Passage  through  Tidal Power Turbines (APEM, 2010a) and the development and running of a stochastic compound mortality model (APEM, 2010a & b). It should be noted that Andy Turnpenny of THA was a peer reviewer for the former document.  There  is  also  no mention  of  the  Annapolis  Royal  scheme  in  the  Bay  of  Fundy,  Canada. Although this scheme only has a single STRAFLO unit it has been generating since 1984 and a number of studies have been undertaken to monitor fish passage and mortality through the  turbines, sluices and  fishways  including pre and post generation population estimates for some species. This site represents the best available  information for an operating tidal turbine.  It should be noted however, that comparison opportunities are  limited as  it has a differing turbine type, the turbine was a test unit and is not optimally sized for the physical characteristics  of  the  location  and  has  relatively  inefficient  operation  due  to  its manual operation. Due to it being the only monitored operating site it does however, warrant some note in the Swansea scheme assessment.  Deterministic vs stochastic modelling approaches The model used for the assessment is the STRIKER v.4 Turbine Fish Passage Model which is a version  of  the  model  specifically  developed  for  tidal  hydropower  applications.  It  is  a deterministic model with  fixed  input parameters per  run of  the model. A  review of blade strike  models  as  part  of  the  Severn  Tidal  Power  Scheme  (APEM,  2010a)  included consideration of both deterministic and stochastic models and where possible comparison of  the  results  against  empirical  site  specific  data.  A  stochastic model  operates within  a Monte Carlo platform  to enable variation of numerous parameters such as discharge, net head, flow, guide vane angle, fish orientation, fish behaviour, mutilation ratios, fish  length and  the  number  of  potential  passes  over  a  specified  range. When  run  over  a  series  of iterations (usually 1,000) a range of potential predicted mortality rates can be provided to take account of inherent uncertainties and give indications of different levels of probability of  a  situation  occurring  (see  Figure  5.1).  Rather  than  just  obtaining  a  single  mortality probability  figure  this  therefore  takes  account  of  inherent  uncertainty  in  the modelling approach and  its  input parameters to provide a minimum and maximum mortality rate as well  as  a  mean,  to  give  an  indication  of  the  range  of  potential  outcomes  upon  the populations.  

 

 

 

Figur

 Ploskeyand stoexperimstochasdetermconsideundertoand  sevstochasdetermoverestundertasuch pr UncertaThere aturbine

re 5.1 Exam

y and Carlsoochastic vermental datastic modelliinistic  modered  to  oveook a similaverity  of  costic  model inistic  motimated  straken on freovide a use

ainty and liare inherent passage m

mple output

on (2004) unrsion of Tura from Poweing was  dedel.  It  shoerestimate ar comparisollisions  dawas  considel  outputike  probabeshwater hyeful insight t

imitations t limitationsmodelling fo

t from the sPower Sch

ndertook a rnpenny’s (2erhouse 1 oemed  to  reuld  be  nopredictionson betweenta  from  a dered  to  mts  were  hbility  at  theydropower dto a tidal tu

s and uncerr a tidal po

22 

stochastic bheme (APE

study to co2002) bladeof Bonnevilesult  in  clooted  howevs  on  averagn the two m1:25  scale more  closehigher.  In e  hub  zonedevelopmerbine asses

rtainty withower schem

P

blade strike M, 2010b)

ompare thee strike molle Dam. Thoser  outputver,  that  tge  by  2  tomodelling apMcNary Da

ely  match  tboth  case

e.  Althoughnts they arssment. 

any modelme this is en

Percentiles:0%10%20%30%40%50%60%70%80%90%100%

model for t

predictionsdel with emis comparists  to  empirhe  determ  5  times.  Dpproaches aam  turbinethe  bead  tes  the  de  both  of  te large scal

ling assessmhanced by 

Forecas2.011131517192224273152

 

 

the Severn

s of a determpirical fielson concludrical  data  tministic  modDeng  et  aland bead tre model.  Agtrial  data  aeterministichese  studiele examples

ment approthe fact th

st values05.32.89.79.71.82.03.25.56.73.80

Tidal 

rministic d based ded that han  the del  was .  (2005) ajectory gain  the and  the model 

es  were s and as 

oach. For at there 

 

23  

are very few operating schemes and for those that do exist there is little empirical data. The behaviour of migratory  fish  in estuarine  and bay environments  is  also not well  known  in addition to their potential interaction with a tidal power impoundment and its turbine and sluice  structures.  This  appendix  would  benefit  from  text  discussing  uncertainty  and limitations to allow the outputs of the modelling to be viewed in this context. The use of a more stochastic model to provide a range of potential probabilities would also assist with understanding the uncertainty and potential range of outcomes.  

5.2 Mechanical injury 

Fish orientation The model assumes random orientation of fish as it passes through the turbine through the use  of  an  average  ‘apparent’  length  and  a  factor  of  0.67.  An  alternative  method  for accounting for this factor would be to have this  input value as a variable function within a stochastic  version of  the model which would  result  in  a  range of  final outputs. Although providing a range of outputs to assist with the assessment of uncertainty  in the modelling approach it is unlikely however, to make a significant difference in the mean model output.  Vertical fish position It  is  unclear  from  the  information  provided  how  the  vertical  position  of  the  fish  as  it approaches the turbine and passes the blades has been accounted for within the model. It would appear  from  the model description however,  that  it  is accounted  for. This  is a key factor which can be influenced by fish species and life stage and their swimming behaviour. In general higher mortality rates are observed  for  fish passing at the tip of the blade.  It  is noted however that the design being assessed here  is a Minimum Gap Runner technology which  has  been  documented  to  reduce  the  mortality  of  tip  passing  fish  by  up  to  3% (Normandeau  et  al,  2000  cited  in  Ploskey  et  al.,  2007)  compared  to  a  standard  Kaplan design. For a horizontal turbine there  is also the potential for swirl and as a result random orientation reducing the influence of species specific behaviour.  Abrasion, grinding and collision with fixed structures It is agreed that it is not possible to quantitatively assess the potential injury and mortality rates  resulting  from abrasion, grinding or collision with  fixed  structures  such as  the guide vanes  and  draft  piers.  Collision  with  fixed  structures  however,  is  considered  likely  to increase  as  turbulence  within  the  turbine  increased.  As  the  turbine  moves  away  from optimal efficiency such as during flood tide generation the risk of this injury mechanism may therefore increase. The potential for injuries to be sustained may also be increased in a tidal power  turbine  than a  riverine  scheme due  to  the potential  for biofouling and a  resultant abrasive surface as can be observed at the La Rance scheme.  

 

 

Figure 

5.3 P

The  forchange pressurtaken frmodel pthe turb

5.4 Sh

It  is notwithin  tundertathat theso, this the abs

5.5 Ca

It  is  agcavitatishould 

5.6 P

Althougpassagethat mothe ove

5.7 M

RotatioThere aturbinehoweve

5.2 Evidenc

ressure cha

rmulae  useare approp

res were usrom Figure parametersbine units p

hear stress 

t  specificalthe  STRIKEaken by Tue mortality is a suitablence of ded

avitation 

reed  that  ion and thabe minimal

ost Passage

gh  not  spece effects haortality rateerall assessm

Model techn

on rate appears to s which is rer, just be d

ce of biofouRa

ange 

ed  within  tpriate  for aed within th5 within ths in the abseproposed fo

and turbul

ly  stated wR model  tornpenny etformulae cae techniquedicated CFD

t  is not pot if designe. 

e Effects 

cifically  stave not beenes cannot bement of effe

nical input d

be an  inconreported as due to a rep

uling and a ance turbine

he  STRIKERa  study of  the assessmis appendixence of sper this devel

ence 

within  this ao  predict mt al., 1992 aalculated fre for predicD modelling.

ossible  to qed and oper

ted  it woun quantitatie predicted ects. 

data 

nsistency  in67rpm (ma

porting of m

24 

resultant ae (photo: N

R  model  tothis  type.  Itent. It is asx from Turnecific Compuopment. 

appendix wmortality  froare howeverom these tcting morta. 

uantitativerated efficie

ld  appear  tively assess from this c

n the documaximum) onmaximum an

brasive surNicola Teagu

o  predict  mt  is not howsumed thatpenny, 199utational Fl

hat  formulaom  shear  ster mentionrials was uslity from th

ly predict mently that m

that  potentsed within tcause but sh

ment as to tn page 5 andnd average. 

 

rface on theue) 

mortality  rawever, cleat the exposu8 which areuid Dynami

ae or othertress.  The  eed and as sed (Turnpehis factor of 

mortality  ramortality rat

tial mortalithe STRIKER hould be ac

the rotationd 60rpm onIt is genera

e draft tube

ates  from  pr what accure pressure again appic (CFD) pro

r values weexperimentsuch  it  is aenny et al., 2f turbine pa

ates  resultites from th

ty  rates  froR model. It iscknowledge

n rate (rpmn page 18. Tally conside

e of a La 

pressure limation res were ropriate ofiles for 

ere used tal  trials assumed 2000). If ssage in 

ng  from his cause 

om  post s agreed d within 

m) of the This may red that 

 

25  

the probability of a fish being struck by a blade  increases as rotation rate  increases.  If the value of 67rpm is correct then this could result in an increased strike probability than those reported.  Operating performance The operating performance of the turbines was considered within the model  in relation to net head, flow rate and guide vane angle under both ebb and flood generation modes and the  frequency of occurrence of each  scenario. Although not built  in as  variable  functions within the model this adds a stochastic feature to the otherwise deterministic model design.  

5.8 Model biological input data 

The conclusion that there are no size data for adult salmon and sea trout returning to the rivers is incorrect. The Panteg trap on the Tawe has produced salmon and sea trout size data that  should  be  available  through  Natural  Resources  Wales  (NRW).  NRW  (formerly Environment Agency Wales) annually collects individual size data on catches of both species declared  through  the  rod  catch  return  system. Such data  for 2012 were used  to produce Figure 4.1 above (2012 was used because  it was the only set of data  immediately to hand that covers both species). These size distribution data can be obtained from NRW. Note that data  for  the smallest sea  trout category  is gathered  in a slightly different way  from  larger fish (the anglers are asked for a seasonal total, which  is  likely to be  less accurate than the individual  records  for  larger  fish).  Some  caution  is  therefore  needed  to  consider  and  if necessary adjust for size selective reporting. For that the modellers should refer to the NRW trap  data  from  the  Rivers Dee  and  Tamar.  This  need  not  be  a major  issue  however:    it depends on the application. 

 

In  Figure 5.3  the  STRIKER  size distributions are overlaid on  the  catch  size distributions of Figure 4.1. The  salmon distribution clearly under  represents  larger  fish. For  sea  trout,  the smallest size class  is under  represented and  the middle sizes are over represented.  In sea trout  rod  catch  data  from  all  rivers  in Wales  and  North West  Region  the  smaller  size category are the most abundant. Notwithstanding some deviations through the age‐related time  of  first  maturation  and  return,  this  is  to  be  expected  in  populations  with  stable recruitment.  This  is  not  seen  in  the  STRIKER  distribution,  which  looks  more  like  a symmetrical  distribution  around  some  predetermined  mean.  That  may  have  been  the intention, but it does not mimic a returning sea trout population, which is usually more like 

 

26  

that  seen  in  the  sea  trout  catch  data  (

 

Figure 5.3).  Since  the draft EIA was prepared  the Panteg  trap data  (EA, 2002) have been made available with a NRW recommendation to use those  instead of  the original STRIKER data.  These  are  shown  for  sea  trout  in  Fig  5.3  and  convey  a  distribution  for  fish  >35cm similar  to  the  catch  data,  but  like  the  STRIKER  data  have  a  symmetrical  structure.  This suggests  that  the Panteg  trap may be under‐sampling  the  smaller whitling. This might be due to the  location of the trap which  is 18kms upstream of the Barrage, coupled with the generality that smaller sea trout tend to spawn in the lower reaches of rivers (Jonsson and Jonsson, 2006).  

  

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Percentage

Length class (cm)

SEA TROUTSea trout catch STRIKER Panteg

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Percentage

Length class (cm)

SALMON

Salmon catch

 

27  

 

Figure 5.3 Size distribution data from observed 2012 rod catch returns (source EA), pooled for the Tawe, Neath and Afan (see also Fig 5) compared with the size distributions used in 

the STRIKER model (Table A2.1) and the Panteg data for sea trout 

 Smolt data are harder to find, but Cefas have recently assembled data for ICES and NASCO on life histories of salmon in English and Welsh rivers which might be informative.   For sea trout smolts, size data have been gathered from sites around the Irish Sea as part of the CSTP and showed that the average sea trout smolt length is around 180mm. Smolt age and size varies with latitude (age and size tending to with latitude (e.g. Jonson and Jonsson, 2006); but the data cover France and Spain (Harris and Milner, 2006) so it should be possible to  establish  realistic  distribution  statistics  for  the  Swansea  rivers.  A  salmon  smolt  size (presumed  fork  length?)  range  of  83‐164mm  is  reported  (p21)  and  seems  about  right (although 83mm  is very  small), however no  sea  trout  smolt  size data are  reported.   Note that salmon smolts are smaller than sea trout smolts of the same age. The STRIKER smolt size distribution was assumed to be the same  for salmon and sea trout. The overall range (10‐25cm) will  cover  all  the  smolts,  but  the  distribution will  have  under‐represented  the larger sea trout.  Under  representing  larger  size classes will have  reduced  the predicted mortality  rates  for mechanical injury in particular as mortality increases with increasing length. It is not possible 

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Percentage

Length class (cm)

SEA TROUTSea trout catch STRIKER Panteg

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Percentage

Length class (cm)

SALMON

Salmon catch

 

28  

however, without re‐running the model to determine what  level of effect altering the size classes would have on mortality predictions. 

5.9 Model outputs and conclusions 

All  predictions  of  fish  injury  from  the modelling  outputs  have  been  taken  to  represent mortality events, which  is a  recommended approach  for modelling of  this  type. The main comments regarding  the model outputs and conclusions mirror  those discussed  in section 5.1 in that the limitations and uncertainty in the modelling approach and data inputs are not discussed  at  all  within  the  document.  Furthermore,  that  the  model  is  deterministic presenting  single mortality  rates  for  each  species/lifestage  only  rather  than  a  range  of potential rates borne from the uncertainty in the modelling approach. Presenting a range of rates would provide a better indication of the uncertainty in the approach and allow a more informed  interpretation  of  how  the  impacts  upon  the  populations  could  in  fact  vary especially when  combined with  the  further uncertainty within  the outputs of  the  turbine encounter model.  There  should  be  some  acknowledgment  within  the  conclusions  that  the  predicted mortalities  cannot  be  considered  as  complete  compound mortalities  due  to  the  aspects discussed  above  for  which  it  is  not  possible  to  quantitatively  assess  risk  in  particular cavitation  and  post  passage  effects  and  sluice  passage  discussed  below.  The  predicted mortality  rates  should  therefore  be  considered  as minimum  estimates  as  post  passage effects in particular predation resulting from disorientation may well increase the observed mortality rates. 

5.10 Sluice passage and injuries There  is  no  empirical  information  available  from  which  to  quantitatively  inform  the prediction of mortality rates  from sluice passage. Any assessment could  therefore only be qualitative.    

 

29  

6 FISH, INCLUDING RECREATIONAL AND COMMERCIAL FISHERIES (CHAPTER 9.0) 

It is understood that the assessment in general has adopted a Rochdale Envelope approach whereby  it  is  acknowledged  that  the  design  of  the  scheme  and  the  assessment  of environmental  impacts  is an  iterative process and  the exact design  is still evolving.  In  this situation  the  EIA  usually  therefore  adopts  a  cautions  worse  case  approach  to  the assessment. This  is often complex with differing scenarios having different  implications for the different groups of receptors under consideration. 

It is not clear from the information to date how a worse case approach has been adopted in relation  to  the assessment of  the design of  the  scheme upon  fish.  In  the absence of  this information it is therefore assumed that the alignment, design and operation of the turbines in  particular will  not  alter  for  the  final  scheme  in  a way  that  could  potentially  result  in greater impact upon migratory fish populations. 

It is recommended that the final EIA details how the scheme assessed represents the worse case for the fish receptors for clarity. 

6.1 Section 9.4.3 Study area 

See section 3.1 above for text relating to study area and the rivers  included within the far‐field zone.   

6.2 Section 9.4.8 Assessment of the significance of fish mortality through tidal turbines 

 There  is  a  precedent  in  the  UK  for  assessment  of  tidal  range  power  schemes  on  fish, 

including, migratory  salmonids  in particular  the DECC  Severn  Tidal Power  Scheme  (APEM 

2010c).  In  that  assessment matrix  projection models were  used  to model  the  effects  of 

turbines  on  salmon  populations,  in  addition  taking  into  account  the  long  term  effects  of 

climate  change  to  explore  those  cumulative  effects  during  the  lifetime  of  the  scheme.   

Leslie matrix projection models were used based on  the approach used  for  turbine  strike 

mortality  in  a  freshwater HEP  context  (Ferguson  et  al.,2008;  Lundqvist  et  al.,  2008),  but 

incorporating  density‐dependent  freshwater mortality  and  parameterised  realistically  for 

the  Severn  estuary  salmon  stocks.  Such  an  approach  should  be  possible  for  salmon  in 

relation to this scheme. Sea trout may be more problematic because of the complexity of 

their life cycle and the difficulty of parameterisation (Ferguson et al., 2008).   

The application of life history‐based models would recognise that the actual effect on stocks is not a  function of  just  the number of  fish killed, but of  the number of eggs  lost and  the translation  of  that  into  the  longer  term  rate  population  increase.  Numbers  alone  may underestimate effects if mortality is positively size selective.  For  sea  trout  a  simpler  approach may  help  in which  the  losses  are  enumerated  not  by numbers  but  by  future  life  time  egg  losses  of  killed  fish.  Larger  sea  trout  tend  to  be predominantly  female, and  thus  to carry more eggs  than smaller  fish. An example of how this might  be  done  for  sea  trout  is  shown  below,  using  data  from  the  Celtic  Sea  Trout Project.  In  this case  the  rod catch  size distribution data  for 2012  (Fig 6) were used.   Loss estimates were  reworked  using  data  summarised  in  the Report  Table A2.1,  in which  the 

 

30  

total turbine‐related  loss was 7.6%.   The % mortality rate (%M) was extended to the wider size  distribution  of  the  catch  data  by  the  equation %M  =  0.2069.  length  (cm)  ‐  0.6914 (established  from  the  reported %M  data  in  Table  A2.1).    Future  lifetime  egg  deposition (LTEGGS)  estimates  were  available  for  the  River  Tywi  (based  on  survival,  sex  ratio  and maturation derived through the CSTP) using the equation: LTEGGS = (‐70.523.X2)+( 1867.5.X)  ‐1879, where X = mean wt(lbs).    The  estimates  of  total  %  loss  were  surprisingly  similar  for  the  two  approaches  (length weighted vs egg weighted  loss), and  for  the  two size distributions  (catch vs STRIKER). The egg weighted method gave marginally higher losses as expected (10.8% vs 8.5%for the 2012 size data for example (Figure 6.1). The spread of losses over the size ranges were however, different due to the combined effects of the initial size distributions, inflated by the LTEGG‐size relationship (Figure 6.1) and the size selective turbine mortality.  The potential is for the impact on the recruitment potential from  larger fish to be underestimated by the STRIKER model, using just size frequency data and with the assumed distribution.   

 

Figure 6.1 % loss due to turbine related mortality, based on observed catch data (left) and STRIKER assumed size distributions (right). While the total losses were similar (range 8.5‐10.8%) the EGG weighted approach resulted in losses being distributed more across the 

larger fish of both size distributions 

 The significance of such size‐bias effects  is not however, known. When combined with the encounter  rates  (assuming  those  are  accurate)  the  final  losses  are  still  small  and not, on their own,  likely to cause detectable  long term changes  in the salmonid stocks.   The  losses however, need  to be  set alongside effects of potentially  increased predation and  there  is considerable uncertainty  in all  these estimates.    It  is  in  the area of  the encounter rates  in particular where there  is most uncertainty and even  if  it may not be possible to model the uncertainty some greater recognition of this is advised.  In  light  of  the  discussions  above  and  given  the  inherent  uncertainty  in  quantitatively assessing  impacts where multiple modelling approaches are required with uncertain  input parameters  and  a  number  of  impacts  that  can  only  be  qualitatively  assessed  such  as predation, a more qualitative assessment criteria may be more appropriate in this instance 

0.0

1.0

2.0

3.0

4.0

5.0

32.5 37.5 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5 87.5 92.5

% lo

ss

Length, midclass(cm)

Losses based on catch size distribution 2012

Lwtd%loss(total=8.5%) EGGwtd%loss (total=10.8%)

0.0

1.0

2.0

3.0

4.0

5.0

32.5 37.5 42.5 47.5 52.5 57.5 62.5 67.5 72.5 77.5 82.5 87.5 92.5

% lo

ss

Length, midclass(cm)

Losses based on STRIKER size distrbution

Lwtd % loss (total=8.6%) EGG wtd % loss (total=9.0%)

 

31  

than the qualitative magnitudes used. An example of such parameters used within the DECC Severn Tidal Power Scheme study are provided within Table 6.1 as an example. 

Table 6.1 Thresholds for magnitude of effects from DECC Severn Tidal Power Scheme 

Magnitude  Definition 

High  A permanent or long‐term effect on the extent/integrity of a species population or 

assemblage. If adverse, this is likely to threaten its sustainability/favourable 

conservation status; if beneficial, this is likely to enhance its conservation status  

Medium  A permanent or long‐term effect on the integrity of a species population or 

assemblage. If adverse, this is unlikely to threaten its sustainability/favourable 

conservation status; if beneficial, this is likely to be sustainable but is unlikely to 

enhance its conservation status 

Low  A permanent or long‐term reversible effect on the integrity of a species population 

or assemblage whose magnitude is detectable but will not threaten or enhance its 

integrity 

Very Low  A short‐term but reversible effect on the integrity of a species population or 

assemblage that is within the normal range 

 

6.3 Section 9.5.3 Operational phase effects 

Increased predation 

There is discussion regarding potential increased predation upon smolts from bass which is ruled out on the basis of limited seasonal overlap with bass. There is however, no discussion of potential predation  from other  species upon  all  life  stages  including marine mammals known  to  use  the  area  such  as  harbour  porpoise  and  grey  seals.  There  is  also  no consideration of  avian predators especially  those  that  could utilise  the  lagoon wall  as  an attack point. This  impact upon disoriented fish passing out of the turbines requires further consideration and at present may have been under estimated. 

IBM fish encounter modelling 

Detailed discussion of  this modelling  approach  is  contained within  section  4  above. Only additional  information  contained within  this  chapter  not  included within  appendix  9.3  is discussed below. 

Table 9.13 provides information on the behaviours modelled within the IBM for each of the fish species/groups. This indicates that the ontogenic target of the model for all life stages of salmon and sea trout was migration in and out of the rivers Tawe and Neath, Wye, Usk and Severn.  There  is  no  indication  however, within  appendix  9.3  of  this  being  the  case.  The model does not appear  to go outside of Swansea Bay  to encompass  the Wye and Usk  for instance other than a brief mention of an additional olfactory cue from east to west. There is  however,  no  presentation  of  the  outputs  of  this  addition  of  conclusions  from  them  in terms of potential impacts upon the populations. 

It is considered unlikely that the distinct split between adults homing to the Tawe and Neath as demonstrated by Figure 9.15 in this chapter would occur in reality without some element of  searching and  ‘straying’ behaviour. A  less distinctive  splitting behaviour  could  result  in increased interaction with the turbines and resultant impacts. 

It  is  acknowledged  in  9.5.3.37  that  Tawe  Barrage  is  likely  to  have  a  significant  effect  on migratory  fish  movement  but  no  further  comment  is  given  to  how  if  at  all  this  was considered within the model or the model outputs and resultant impact assessment. 

 

32  

Fish modelling for designated sites 

There  is  no mention  of  the  Severn  Estuary  European  designated  sites  (SAC  and  Ramsar) within the list of designated sites. 

Fish injury mechanisms in tidal power turbines 

The  results  in  table 9.18  represent  those  impacts  from passage  through  the  turbines  that can  be  quantified  and  forms  the  basis  of  the  impact  assessment  judgements.  It  is recommended  that  this  section  also  contain  some  discussion  of  the  fact  that  these  are effectively minimum estimates of mortality as they do not take account of other impacts for which  it  is  not  possible  to  determine  a  quantitative  assessment  of  impact  such  as  sluice passage, predation etc. 

Summary of impacts on fish and shellfish 

In  the  tables  summarising  the  potential  environmental  effects  on  salmon  and  sea  trout some information is not yet complete within the version reviewed. In particular information is missing  for significance, confidence, mitigation and  residual significance and confidence level  for  a  number  of  operational  phase  impacts  such  as;  Increased  predation  and entrainment and injury from turbines. 

Presumably on the basis of the assessment criteria detailed in table 9.5 of the chapter with all mortality  rates  coming  out  as  less  than  1%  impacts  for  entrainment  and  injury  from turbines has been classed as Low magnitude. As discussed above  it  is  recommended  that where possible these impacts are assessed in the context of impacts upon the populations. 

 

    

 

33  

7 MITIGATION (OFFSETTING) 

7.1 Chapter 9 

There  are  a  number  of mitigation measures  identified within  chapter  9  of  the  draft  EIA. Those suitable for mitigating impacts upon salmon and sea trout are as follows:  

Waterborne  noise  –  measures  to  reduce  the  impact  of  underwater  noise  and vibration during construction are discussed  in particular  low‐noise piling techniques where  feasible  and  ‘soft‐start’  procedures.  These  are  both  valid  techniques  for reducing  impacts  upon  fish.  In  addition  however,  other  options  could  also  be considered  such  as  using  sound  absorption/reflection  techniques  such  as  bubble screens.  The most  appropriate  techniques would however, have  to be  researched further for the specific techniques to be used for this scheme. 

Behavioural  fish guidance – The use of an Acoustic Fish Deterrent  (AFD) has been proposed for the scheme and fish mortality calculated on the basis of its use which it is assumed are the mortality rates that will be taken forward for the residual impacts assessment.  It  is agreed that  in some circumstances high deflection efficiencies can be  observed  for  salmonids  with  appropriately  designed  and  operated  acoustic deterrent systems. There is no discussion however, of how the examples provided in the  text  relate  to  such a  large and  likely unprecedented  situation as  is  likely  to be experienced  for  the Swansea  lagoon. Consideration would need  to be given  to  the approach  velocities  at  the  point  at  which  the  acoustic  deterrents  could  be realistically  operated  in  front  of  the  turbines. Approach  velocities will  have  to  be kept  low  to  allow  fish  that  respond  to  the  deterrent  to  alter  their  behaviour  and direction of travel and move away from the deterrent and as a result the turbines. More information would therefore have to be provided on the intended design and operation  of  the  scheme  and  the  approach  velocities  that would  be  experienced before  expected  efficiencies  can  realistically  be  applied  to  the  assessment.  It  is considered likely however, that due to the likely unprecedented scale that would be required  in  this  case  and  the  additional  complications  resulting  from  the environmental conditions that efficiencies could be lower than observed elsewhere. Results from any similar case studies with data on salmonids would be beneficial for assessing whether the deflection efficiencies stated could realistically be achieved in this case. 

Suspended  sediment  and  deposition  –  the  measures  proposed  look  to  be appropriate for this scheme. 

Increases in light emissions ‐ the measures proposed look to be appropriate for this scheme.  

7.2 Potential opportunities 

If  impacts  are  deemed  to  be  below moderate  and  have  no  significant  impact  upon  the populations then there is no legal requirement to undertake mitigation for the scheme.    

 

34  

If measures  are  required  then  options might  include  activities  on  “impacted”  rivers  or offsets  elsewhere.  In  any  event  the most  crucial  recommendation  is  that  the  associated monitoring  is properly designed to detect the effectiveness of the mitigation as well as to evaluate  residual  impacts  of  the  scheme,  with  the  intention  of  follow‐up  adaptive management, as far as the scheme design allows.  Further, the mitigation should be planned jointly  with  the  stakeholders  because  early  inclusion  and  ownership  are  essential  to successful long term delivery. 

In principle, mitigation should be designed to compensate for the anticipated unavoidable significant losses from the Lagoon Scheme. These have not yet been estimated satisfactorily; but should be based on population models as  far as data and other constraints allow and should be assessed  to optimise  the  spatial distribution of mitigation, within and between catchments. 

Potential options that can be considered as ‘mitigation’ or more commonly now ‘offsetting’ include measures to prevent impacts, reduce them or offset them. Measures to prevent and reduce impacts are usually directly connected with the design and operation of the scheme where as offsetting measures are in connection with the population as a whole and may not be at all associated with the scheme itself. 

Potential options under each of the categories above are discussed below. It must be noted however, that these are discussed on the basis of the limited information available to date and  would  need  to  be  assessed  in  more  detail  for  this  specific  scheme  with  greater information on the planned design and operational regime of the scheme.  Options to prevent and reduce impacts 

Potential prevent and reduce options in addition to those already identified within chapter 9 may include: 

Timing  of  construction works  –  avoiding  key migration  or  residence  periods may 

prevent or reduce any impacts resulting from construction works. 

Timing of operational generation – it may be possible for some schemes to alter the 

timing of generation to reduce  impacts during key sensitive periods. This  is unlikely 

to  be  realistic  for  a  tidal  power  scheme  however,  as  there  are  so many  different 

species and  life stages to consider and generation  is obviously dictated by the tidal 

cycle.  It  is  unlikely  to  be  economically  acceptable  to  alter  generation  in  any 

significant way as to have a true reduction upon impacts. 

Efficiency of operation – As efficiency of the turbines reduces  injuries and mortality 

of  fish passing  through  them  tends  to  also  increase.  It  is  therefore  recommended 

that where possible periods of  lower efficiency are reduced or avoided to decrease 

impacts upon fish passing through the turbines. 

Passage easement – in some cases there are advantages to easing passage in and out 

of  the  lagoon  through measures such as  increased permeability and dedicated  fish 

passage structures. The preference for this scheme however, would most likely to be 

 

35  

to keep migratory salmonids out and as such this may not be a beneficial measure in 

this circumstance. 

Fish exclusion and diversion structures – The use of AFD’s have been proposed  for 

the  scheme  and  are  discussed  in  section  7.1  above.  Alternative  fish  exclusion 

measures  for  migratory  salmonids  would  be  the  operation  of  physical  screen 

structures. Further  information would be required however, to assess whether this 

would  be  a  feasible  option  in  relation  to  the  approach  velocities  likely  to  be 

experienced in front of the turbines. Given the scale of the scheme this would likely 

be  a  complex  and  costly  (both during  construction  and ongoing operation) option 

that may not be practical in terms of effective and safe fish protection. 

Predator  control  –  If  predation  is  considered  to  be  a  significant  impact  upon 

migratory salmonid populations as a result of the scheme then there may be some 

benefit  in  assessing options  for predator  control where possible. Acceptable  long‐

term options for this are however likely to be limited. 

Offsetting options 

It may be possible to improve salmonid populations in ways not directly connected with the scheme  to  effectively  mitigate  for  losses  resulting  from  it.  The  majority  of  effective measures  are  likely  to be most  feasible within  the  freshwater  environment.  It  should be noted however, that improvements to freshwater habitats are commonly conducted within river  catchments  as  part  of  ongoing  management  programmes  implemented  by  the statutory  authorities  and  others  to  meet  the  requirements  of  national  and  European legislation such as the Water Framework Directive to meet Good Ecological Status/Potential. Measures  proposed  as  mitigation  under  this  scheme  may  therefore  represent  an additionality  conflict  as  there  may  already  be  an  obligation  to  undertake  them  under another driver.  For example the  lower reach of the Tawe which  is designated as a Heavily Modified Water Body due to flood protection is currently graded as moderate ecological potential although with  no  specific  fish  assessment.  It  is  therefore  likely  that  measures  will  need  to  be undertaken to reach the  intended classification of good ecological potential by 2027 which may include measures to improve fish stocks. Given the presence of Tawe Barrage it is likely that this would include an element of improved fish passage past this structure. There may not however, be  funds available  to undertake  this work. Fish passage easement past  this structure as a mitigation measure may therefore have additionality conflict as the measure should  be  undertaken  in  the  future  anyway.  Many  measures  identified  as  potential mitigation  options  for  this  scheme would  therefore  have  to  be  discussed with  NRW  to determine if they are realistic options.  Habitat restoration  Barrier removal The extent and  location of  these will determine  their  value  in  increasing  fish production. NRW has a barrier database and doubtless  these opportunities will be apparent  to  them. There  is  likely to be a  lot of scope  in the target rivers, which have been subject to human 

 

36  

influence  for  centuries.  A  key  aspect  to  consider  is  the  ranking  of  factors  limiting  fish passage.  These might include flow regimes or water quality barriers as well as downstream physical barriers. Cost benefit appraisal is vital and there is Defra guidance on this as well as a functioning EA fish pass/barrier group.  Riparian and in channel works to increase carrying capacity Evaluation of the potential of the opportunities for in channel works will require a survey of the existing catchments to assess and quantify habitat quality. As for barriers NRW should have a full  inventory of the opportunities, but may not have this  in a quantified form that allows estimation of the benefits accruing. Note that there are many other, wider ecological benefits from restoring naturalness to banks beyond simply salmonid production.   Habitat enhancement  “Enhancement”  takes  improvement  beyond  the  notionally  pristine  natural  state  of  the rivers. This might include increasing in‐channel habitat complexity by installing structures, or installation  of  specific  habitat  types  deemed  to  be  bottle  necks  such  as  spawning  beds.  These  can be  costly  to  install and  to maintain;  therefore  the need and  cost‐effectiveness should be carefully assessed. It is not normally as useful as habitat “restoration”.  Stocking Likely to be a popular option with anglers, because it appears to be simple and effective.  It can work and has a place, but has substantial costs and can bring significant ecological and genetic risks.  It is essential to seek good objective advice on this and any stocking should be managed as part of an agreed catchment scale stocking programme, and always as a second preferred option after habitat management. Stocking of badly reared fish or of any fish into waters having poor environmental quality from whatever cause is a waste of money.  There are very many advisory texts and a recent (2013) AST workshop on this topic.    Fishing quality enhancement Physical access  to angling  locations may be  limited  in  some  sections and  this will  require negotiation with  the  riparian  interests,  local angling owners,  clubs, NRW and  river  trusts.  Caution  is  needed  to  avoid  over‐exploitation  (manageable  by  catch  controls)  and  to minimise conflicts of interests amongst fishery types (e.g. trout vs salmon) and other water users.     

 

37  

8 MONITORING 

8.1 Monitoring of impacts and a basis for compensation claims 

Article 5(3) of the European EIA Directive contains no explicit monitoring requirements, but these are implicit  in the  identification of “measures to prevent, reduce and where possible offset  any  significant  adverse effects”. Predicted  impacts  should be monitored  as well  as delivery of  commitments  in  the Environmental  Statement.  It  is  likely  that  the Competent Authorities will  also  attach monitoring  conditions  to  the  scheme  consents.  Furthermore, best  practice  for  adaptive management  necessitates  an  appropriate,  well  designed  and effective monitoring programme to inform the environmental optimisation of the scheme.   The mitigation measures proposed for this scheme should ensure that no significant impacts arise.  Nevertheless  residual  impacts  may  arise.  Pre‐agreed  compensation  needs  to  be assessed for  its effectiveness (IEEM, 2010). Other factors could  lead to changes  in fisheries which might  lead  to  unexpected  compensation  claims  and monitoring  should  be  able  to disentangle causal factors.    A good monitoring programme is therefore, beneficial at several levels and is integral to the Compensation,  Mitigation  and  Monitoring  Agreement  (CMMA)  (IEEM,  2010)  and  is particularly  desirable  in  this  case, which  is  the  first  of  such  large  lagoon  schemes  in  the British Isles.  Potential impacts of the scheme arise in two stages: construction and long term operations. The monitoring of the impacts of the scheme requires: 

Identification  of  agreed  indicators  and  their  geographical  extent  that  reflect  the 

priority receptors, or acceptable surrogates. 

Setting of predetermined performance targets 

A statistically scoped survey programme of performance with predetermined  levels 

of  compliance  that  identify  significant  change  in  the  face  of  the  inevitable 

uncertainty. 

A  feedback mechanism  that unambiguously  links monitoring  results  to  changes  in 

operational practice or mitigation.  

A transparent and prompt reporting procedure  

These principles apply to construction and operational phases, but the time scale and detail of monitoring would be different and appropriate to each.   Indicators The salmonid receptors (salmon and sea trout) each have two components:  

The fishery (the exploitation through catch and release or harvest) of the fish stock 

The fish stocks (comprising multiple populations)  

Potential  indicators with a qualitative ranking of their value for the context of this scheme and likely feasibility are detailed within Table 8.1 below.  

 

38  

Table 8.1 Summary of potential monitoring indicators for salmonid fisheries and stocks. Rankings are based on combination of information value and feasibility (1 High, 2 Medium) 

Receptor  Attribute  Indicators  Method / data source 

Ranking  Comment 

Fisheries  Rod catch (EA stats) 

Annual and Monthly catch Size (wt) distribution 

EA/NRW catch statistics, using individual fish records 

1  For each of the Tawe, Neath, Afan  AND local S. Wales rivers as controls (and for other indicators)  

  Rod catch per effort CPUE  (EA stats) 

Annual effort from EA/NRW statistics 

EA/NRW annual statistics (see note) 

1  At present effort (e.g. angler days) is only collected on annual basis. Monthly or daily would be highly desirable hence log books. 

  Catch and CPUE (log books) 

Daily to annual    2  Log books were used on Tawe 1988‐2002. Hard to sustain, labour intensive but useful. 

  Participation  Local and visitor numbers Licence sales Days fished Satisfaction rating 

EA/NRW licence sales,  Socio‐economic survey 

2  Need to identify the indicators usefully within scheme impact 

Stocks  Adult run   Catch Catch per effort Catch size distribution Panteg trap (Tawe only) 

  1    

Statistical modelling of confounding factors (e.g. effort, exploitation rate, river flow) is essential. NB Panteg trap is high in system (18kms upstream of Swansea) may not cover all returning groups (this needs to be assessed) and cannot be operated at high flows 

  Egg deposition  Annual eggs / area  Use EA/Cefas annual statistics 

1  Salmon only 

 

39  

  Juvenile populations 

Density ( N/area) of fish   Timed fry surveys  1  EF surveys must be fully statistically scoped to assess power AND be stratified by a one‐off catchment scale habitat survey 

  Smolt production  Density of parr (age 1,2,3) Annual (April May) production of pre‐smolts 

Quantitative electrofishing surveys 

2  (ditto, juvenile EF). Data to be reported for stratified sub‐catchments and summed 

  Smolt output   Annual numbers of smolts from whole river, or proportionally important sub‐catchments 

Screw traps  2  Valuable when they work; but costly to run and prone to river flow vulnerability 

  Smolt mortality  Annual encounters and losses through turbine strike 

Netting surveys to assess numbers of fish passing through the turbines and their survival, Video of turbines, Tracking studies, Sensor fish monitoring 

1  It may be possible to assess the number of fish passing through the turbines and the subsequent survival and injuries of those individuals through a netting capture technique. Mechanisms for accounting for handling mortalities and injuries would have to be considered within the monitoring design. It is recommended that consideration of how this could be done is incorporated into the design of the scheme to allow necessary net frames etc. to be built into the design rather than having to try and retrofit at a later date. Fish interactions with the turbines could also be monitored through a visual assessment of their presence and behaviour with the use of video or DIDSON type cameras depending on water clarity. Tracking studies could also be undertaken 

 

40  

to monitor the route of passage of individuals passed or into the scheme. If monitoring of fish passing through the turbines was not possible it may be appropriate to use a surrogate ‘sensor fish’ which is an electronic device which can be passed through a turbine and detect encounters of blade strike, shear, pressure etc. which could then be compared with biological data to determine if the rates of injury/mortality calculated using the STRIKER model were accurate. It would not however, give an indication of the number of individuals passing through the turbines and as such would have to be used in combination with another technique such as tracking. 

  Adult mortality  Annual encounters and losses through turbine strike 

Netting surveys to assess numbers of fish passing through the turbines and their survival, Video of turbines 

1  As above. 

 

41  

Some of  the detail  in  Table  8.1 would  vary between  salmon  and  trout because  their  life cycles  are  different  in  important  aspects.    Sea  trout  have  partially migrating  populations (Chapman  et  al.,  2012)  and  in  the  freshwater  juvenile  stage  are  indistinguishable  from resident  brown  trout;  they  are  in  fact  the  same  species  and  interbreed.  The  boundaries between anadromous migrants and non‐migrants are imprecise and so parr surveys are less valuable for estimating future smolt production than  in the case of salmon.     Costs can be attached to these options, but the minimum would comprise: 

1. The rod catch and effort (numbers and size distributions). They service both fisheries 

and stocks evaluation; but note the essential  inclusion of the factor analysis for the 

stock application. 

2. Panteg  trap  (assuming  appropriate  review,  cf  its  functionality  and  application  to 

catchment scale assessment has been questioned, Environment Agency(2002)) 

3. The time fry surveys, appropriately stratified 

4. The  salmon egg deposition indices, these are produced anyway by Cefas/ NRW 

Fisheries monitoring has suffered significant decline from reduced resourcing in NRW and its predecessors,  yet  is  necessary  for  proper  delivery  of most  environmental  and  fisheries management.  Given  the  growing  body  of  opinion  that  new  developments  should  try  to deliver  net  ecological  gain  (IEEM,  2010)  the  wider  benefits  of  a  robust  monitoring programme  extend  beyond  the  immediate  scheme.  Also,  there  is  a  body  of  motived stakeholders  who  could  be  brought  collaboratively  into  some  aspects  of  monitoring (trapping, logbooks, electro‐fishing) and this is highly recommended. 

8.2 Monitoring the effectiveness of mitigation measures 

Many  of  the  monitoring  options  discussed  above  would  also  aid  in  assessing  the effectiveness  of  mitigation  measures  whilst  otherwise  would  require  dedicated  specific monitoring  techniques.  Monitoring  techniques  would  need  to  be  defined  once  specific mitigation measures are identified and developed.    

 

42  

9 STATEMENT OF TRUTH 

We confirm that insofar as the facts stated in our report are within our own knowledge, we have made clear which they are and we believe them to be true, and that the opinions we have expressed represent our true and complete professional opinion.    

 

43  

10 REFERENCES 

APEM (2010a). Severn Tidal Power SEA Topic Paper: Migratory and Estuarine Fish. Annex 5: Fish Passage through Tidal Power Turbines.  APEM (2010b). Severn Tidal Power SEA Topic Paper: Migratory and Estuarine Fish. Annex 1: Evaluation of Plan Alternatives.  APEM (2010c). Severn Tidal Power SEA Topic Paper: Migratory and Estuarine Fish. Annex 4: Migratory Fish Life Cycle Models.  Aprahamian, M.W., Jones, G.O. & Gough, P.J. (1998). Movement of adult Atlantic salmon in the Usk estuary, Wales. Journal of Fish Biology 53, 221‐225.  Cefas/ EA (2013) Annual Assessment of Salmon Stocks and Fisheries  in England and Wales 2012. EA Bristol, 138pp.  Chapman, B.B., Hulthén, K.,Brodersen, J., Nilsson,P.A., Skov, C., Hansson, L,‐A and Brönmark, C.  (2012) Partial migration  in  fishes:  cause  and  consequences.  Journal of  Fish Biology 81, 456‐478.  Cowx,  I.G. and Fraser, D.  (2004). Monitoring the Atlantic salmon  (Salmo salar). Conserving Natura 2000 Rivers Monitoring Series No. 7. English Nature, Peterborough.  Davidsen, J.G. et al., (2013). Homing behaviour of Atlantic salmon (Salmo salar) during final phase of marine migration and river entry. Canadian Journal of Fish and Aquatic Sciences, 70(5), pp.794–802.  Davidson, I.C., Cove, R.J., Milner, N.J. & Purvis, W.K (1996) Estimation of Atlantic salmon (Salmo salar  L.) and  sea  trout  (Salmo  trutta  L.)  run  size and angling exploitation on  the Welsh Dee using mark‐recapture  and  trap  indices.  In:  Stock  Assessment  in  Inland  Fisheries  (Cowx,  I.G Ed.).Fishing News Books, Blackwell Science, Oxford, 293‐307.  Deng,  Z.,  Carlson,  T.J.,  Ploskey, G.R. &  Richmond, M.C.  (2005).  Evaluation  of  blade‐strike models  for  estimating  the  biological  performance  of  large  Kaplan  hydro  turbines.  Pacific Northwest  National  Laboratory  Technical  Report  PNNL‐15370  to  the  US  Department  of Energy.  Environment Agency (2002) River Tawe Fisheries Performance Annual report, Environment Agency, Llandarcy.  Ferguson, J.W., Ploskey, G.R., Leonardsson, K., Zabel, R.W. & Lundqvist, H. (2008) Combining turbine  blade‐strike  and  life‐cycle models  to  assess mitigation  strategies  for  fish  passing dams. Canadian Journal of Fisheries and Aquatic Sciences. 65, 1568‐1585.  Gee, A. S., Milner, N. J. (1980) Analysis of 70 year catch statistics for Atlantic Salmon (Salmo salar) in the river Wye and implications for management of stocks. J. Appl. Ecol. 17, 41‐57  

 

44  

 Gough,  P.G,  Winstone,  A.J.  and  Hilder,  P.G.  (1992)  Spring  salmon:  a  review  of  factors affecting the abundance and catch of spring salmon from the River Wye and elsewhere, and proposals  for  stock maintenance  and  enhancement.  National  Rivers  Authority  Technical Report No. 2. NRA, Cardiff.  Harris, G.S. (2002) Sea Trout Stock Description: the Structure and Composition of Adult Sea Trout  Stocks  from  16  Rivers  in  England  and Wales.  Environment  Agency  R&D  Technical Report W224. 93pp.  Harris,  G.S.  &  Milner,  N.J.  (2006).  Sea  trout:  Biology,  conservation  and  management. Proceedings  of  First  International  Sea  Trout  Symposium,  Cardiff,  July  2004.  Blackwell Scientific Publictaions, Oxford, 499pp.  Hawkins, G.W., Urqhart, G.G. & Shearer, W.M. (1979) The coastal movements of returning Atlantis  salmon  Salmo  salar  (L.)  Scottish  Fisheries  Research  Report  Number  15  1979, Department of Agriculture and Fisheries for Scotland.  IEEM (2010)  Guidelines for Ecological Impact Assessment  in Britain and Ireland: Marine and Coastal. Institute of Ecology and Environmental  Management.  Jones,  G.  (1994)  A  Review  of  the Welsh Microtagging  Programme  1984‐1993.  Nationla Rivers Authority Welsh Region Report. 76pp  Jonsson, B. and Jonsson, N.  (2006)  Life‐history effects of migratory costs in anadromous brown trout. Journal of  Fish Biology 69, 860–869.  Lundqvist,  H.,  Rivinoja,  P.,  Leonardsson,  K.  &  McKinnell,  S.  (2008)  Upstream  passage problems for wild Atlantic salmon (Salmo salar L.) in a regulated river and its effect on the population. Hydrobiologia  602,11–127  Karppinen P., Erkinaro J., Niemela E., Moen K. & Økland F. (2004) Return migration of one‐sea‐winter Atlantic salmon in the Tana River. Journal of Fish Biology 64, 1179–1192.  Malcolm, I.A. Malcolm, Godfrey,J. & Youngson, A.F.  (2010) Review of migratory routes and behaviour of Atlantic salmon, sea trout and European eel in Scotland’s coastal environment: implications  for  the development of marine  renewables.  Scottish Marine  and  Freshwater Science Vol 1 No 14.Gee, A. S., Milner, N.  J.  (1980) Analysis of 70 year catch statistics  for Atlantic Salmon (Salmo salar) in the river Wye and implications for management of stocks. J. Appl. Ecol. 17, 41‐57  Mee, D.M., Kirkpatrick, A.J. & Stonehewer, R.O. (1996). Barrages – engineering design and environmental impacts. International Conference 10‐13 September 1996, Cardiff. 395‐408.  Moore, A. (1997). The Movements of Atlantic salmon (Salmo salar L.) and sea trout (Salmo trutta L.) smolts in the impounded estuary of the R.Tawe, South Wales. Environment Agency R & D Technical Report W81. 

 

45  

 Moore, A.,  Ives,  S., Mead, T.A., Talks,  L.  (1998). The migratory behaviour of wild Atlantic salmon (Salmo salar L.) smolts in the River Test and Southampton Water, southern England, Hydrobiologia 371/372: 295‐304.  Ploskey,  G.R.  &  Carlson,  T.J.  (2004).  Comparison  of  blade‐strike  modelling  results  with empirical data. Pacific Northwest National Laboratory Technical Report PNNL – 14603 to the US Department of Energy.  Ploskey, G.R., Johnson, G.E., Giorgi, A.E., Johnson, R.L., Stevenson, J.R., Schilt, C.R., Johnson, P.N. & Patterson, D.S. (2007). Synthesis of biological research on  juvenile fish passage and survival at Bonneville Dam  through 2005. Pacific Northwest National Laboratory Technical Report prepared for the U.S. Army Corps of Engineers and the U.S. Department of Energy. PNNL‐15041.  Quinn,  T.P.  (1993) A  review  of  homing  and  straying  of  wild  and  hatchery‐produced salmon.  Fisheries Research 18, 29‐44.  Russell,  I.C.,  Moore,  A.,  Ives,  S.,  Kell,  L.T.,  Ives,  M.J.  &  Stonehewer,  R.O.  (1998).  The migratory  behaviour  of  juvenile  and  adult  salmonids  in  relation  to  an  estuarine  barrage. Hydrobiologia 371/372. 321‐333.  Shelton,  R.G.  (Ed)  (2001)  Proceedings  of  Atlantic  Salmon  Trust  Workshop,  Lowestoft, November 2001.  Solomon,  D.J.  (1994)  Sea  trout  Investigations.  Phase  1,  Final  Report.  National  Rivers Authority R&D Report 318. NRA, Bristol  Swain, A.  (1982). The migrations of salmon  (Salmo salar L.)  from  three rivers entering  the Severn estuary. J. Cons. Int. Explor. Mer, 40 (1): 76‐80.  Thorstad, E  . B  . Økland, F. Johnsen, B  . O. & Næsje, T. F. (2003) Return migration of adult Atlantic salmon, Salmo salar, in relation to water diverted through a power station. Fisheries Management and Ecology, 2003, 10, 13–22.  Thorstad, E.B., Økland F., Aarestrup K. & Heggberget T.O. (2008) Factors affecting the within river spawning migration of Atlantic salmon, with emphasis on human  impacts. Reviews  in Fish Biology and Fisheries 18, 345–371.  Turnpenny, A.W.H. (1998). Chapter 23: mechanisms of fish damage in low‐head turbines: an experimental appraisal. Jungwirth, M., Schmutz, S. & Weiss, S. (ed.) Fish migration and fish bypasses. Fishing News Books, Oxford 300‐314.  Turnpenny, A.W.H., Davis, M.H., Fleming,  J.M. & Davies,  J.K.  (1992). Experimental  studies relating to the passage of fish and shrimps through tidal power turbines. Technical Report for AEA Technology, Harwell National Power PLC.  

1

Phil Jones

From: Phil Jones [[email protected]]Sent: 10 July 2014 18:05To: 'Katherine Chapman'Cc: Andrew Kelton FL <[email protected]>; Ray Lockyer PASAS

<[email protected]>Subject: RE: Swansea Bay Tidal Lagoon - attachments to PASAS submission

Follow Up Flag: Follow upFlag Status: Blue

Salmon and Sewin Rod Catches.p...

Katherine

Thanks, that's very helpful.

I see that our written representation also made it into the first batch, together with our attachments. The Excel workbook that we submitted (of rod catch statistics) actually contained 9 worksheets, the first 4 of which print on 3 pages each, 1 of which ("chart data") prints on 2 pages and four of which (charts) print on 1 page each. Only one page appears in our published representation (the first page of the "chart data" sheet).

To help you to put this right I've assembled all the pages of all the worksheets in the attached 14-page .PDF which you might want to substitute for the single page published at the moment. In the course of doing that I've noticed a couple of glitches, which I've ironed out. I've also excluded the "chart data" sheet, which is just an intermediate sheet and won't help anyone looking at the content. I hope that's OK. The actual .XLS workbook that I sent you is OK but it's probably better to give people this PDF.

RegardsPhil

-----Original Message-----From: Katherine Chapman [mailto:[email protected]] Sent: 10 July 2014 14:26To: [email protected]: [email protected]; [email protected]: RE: Swansea Bay Tidal Lagoon

Mr Jones,

We are aiming to get as many submissions published this afternoon as possible. The representation from NRW is within the first batch that we have prepared.

Many thanksKatherine

[...PINS sig snipped...]

-----Original Message-----From: Phil Jones [mailto:[email protected]] Sent: 10 July 2014 11:57To: Katherine ChapmanCc: [email protected]; [email protected]: Swansea Bay Tidal Lagoon

Dear Katherine

2

No doubt you're now snowed under with written representations, etc, and have a huge job preparing them for publication on the website.

Could we please ask that you give priority to publication of the representations of Natural Resources Wales? Most interested parties will be anxious to see what they've said.

RegardsPhil

=====================================================Phil Jones, Director / Treasurer44 Bwllfa Rd, Ynystawe, Swansea, SA6 5ALTel: 01792 843951 Mob: 07957 154992

Pontardawe and Swansea Angling Society Ltd www.pasas.org.uk Reg'd in Wales No 6736638 Reg'd Office: 8 Bwllfa Rd, Ynystawe, Swansea, SA6 5AL =====================================================

[...PINS disclaimers snipped...]

Declared Salmon Catches, Rod

RIVER 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

Aber 1 1 6 1 4 1 1 1 1Aeron 8 9 27 5 9 9 34 8 20 52 4 2 6 4 11 8 3Afan 1 1 1 15 2 7 19 10Alaw 3AlwenAmmanAngleseyArth 1 3 4 1 1Artro 3 5 1 4 1 11 15 12 6 3 7 1 5 8 8 7CefniClwyd catchment 70 112 88 65 99 103 145 160 207 281 97 103 71 17 122 167 63Conwy catchment 266 380 405 401 478 272 401 472 413 733 342 428 249 81 195 226 199CothiCresswellDee catchment 507 580 707 582 520 273 486 739 633 1019 273 427 376 164 455 729 499Dulas 1Dwyfach 1 2 1 4 5 14 6Dwyfawr 108 69 72 56 45 31 82 64 68 96 32 67 14 14 9 42 18Dwyryd 25 38 40 35 48 12 33 45 31 59 25 37 15 1 23 29 21Dyfi catchment 386 287 266 179 293 263 441 229 416 638 223 301 176 74 222 274 158Dysynni 17 14 15 13 10 4 17 9 13 33 6 20 11 11 8 16 2EbbwEdenE / W Cleddau 104 99 96 126 104 40 115 87 66 142 61 17 34 31 76 86 41ElwyElyErch 8 1 4 3 3 3 2 1 5 1 2 1Glaslyn 27 40 41 33 29 6 62 59 73 85 76 73 48 18 47 51Gwaun 1 1 2Gwendraeth Fach / Fawr 1 3 1 5 6 2 2GwiliGwyrfai 7 10 11 12 22 3 13 9 23 36 1 8 1 1 5 5 3IrfonKenfig 1 7 1LledrLeri 2 1LuggLlugwyLlyfni 38 47 43 22 33 13 42 24 28 54 29 12 7 3 19 33 22Loughor 14 12 9 7 15 5 25 12 9 26 7 9 5 5 8 13 1Mawddach catchment 258 221 224 149 264 141 131 233 286 365 331 304 145 39 115 291 126Neath 4 1 4 4 10 4 15 5 33 52 12 25 8 1 14 52 16Nevern 13 43 18 16 23 22 14 20 19 38 37 22 15 5 25 69 56Ogmore / Ewenny 1 14 4 9 3 6 41 37 24 39 11 19 12 14 59 73 50Ogwen 56 69 39 51 73 79 83 122 146 197 151 87 99 16 95 111 76Others 204 734 175 85 70 44 26 14 15 19 10 15 25 2 44 8 1Rheidol 41 17 15 22 60 24 54 73 106 126 81 48 24 2 18 46 50Rhydir 2 3 1 1 3 2Rhymney 1 1 10 2 1Seiont 38 66 43 183 103 51 49 63 82 305 72 84 40 7 30 31 24Soch 2 4 1Solva 1 6Taf 148 258 150 134 156 25 129 107 77 165 24 35 65 17 64 153 32Taff 2 15 12 38 114 4 72 38 10 43 87 62Tawe 20 32 65 33 41 47 107 32 55 91 25 85 55 42 20 189 146Teifi 545 545 679 517 807 282 850 857 934 1889 331 536 414 133 433 736 307Tywi catchment 1094 960 915 829 1033 602 943 568 757 1446 544 471 485 147 388 896 523Usk 345 799 874 447 481 155 831 561 328 1385 326 265 316 101 735 1068 518WnionWye 2135 4195 5693 2228 2460 1263 3613 3832 3223 6401 2300 1757 1746 1849 2050 2338 1048Wyre 8 6 3 23 8 12 5 3 2Ystwyth 13 11 9 31 61 8 24 9 22 56 14 24 1 11 23 9UnknownWales total 6503 9672 10742 6287 7372 3802 8871 8498 8202 15983 5454 5370 4524 2809 5332 7876 4145

Tawe as %age of total 0.31 0.33 0.61 0.52 0.56 1.24 1.21 0.38 0.67 0.57 0.46 1.58 1.22 1.50 0.38 2.40 3.52Tawe rank 20 20 14 17 19 12 12 19 17 17 18 11 12 8 19 9 8

Neath as %age of total 0.06 0.01 0.04 0.06 0.14 0.11 0.17 0.06 0.40 0.33 0.22 0.47 0.18 0.04 0.26 0.66 0.39Neath rank 28 30 28 28 25 26 27 31 19 22 22 19 25 28 23 17 23

Afan as %age of total 0.01 0.01 0.02 0.33 0.07 0.13 0.24 0.24Afan rank 34 37 34 19 25 30 25 24

Declared Salmon Catches, Rod

RIVER

AberAeronAfanAlawAlwenAmmanAngleseyArthArtroCefniClwyd catchmentConwy catchmentCothiCresswellDee catchmentDulasDwyfachDwyfawrDwyrydDyfi catchmentDysynniEbbwEdenE / W Cleddau ElwyElyErchGlaslynGwaunGwendraeth Fach / FawrGwiliGwyrfaiIrfonKenfigLledrLeriLuggLlugwyLlyfniLoughorMawddach catchmentNeathNevernOgmore / EwennyOgwenOthersRheidolRhydirRhymneySeiontSochSolvaTafTaffTaweTeifiTywi catchmentUskWnionWyeWyreYstwythUnknownWales total

Tawe as %age of totalTawe rank

Neath as %age of totalNeath rank

Afan as %age of totalAfan rank

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

32 3 1 6 6 7 12 12 18 2 1 3 2 3 10

11 14 24 8 7 8 7 7 10 6 5 3 9 15 18 10 15

12

4 4 6 3 1 4 4 3 4 7 5 2 3 11

42 24 110 71 60 74 49 35 77 18 31 135 176 79 228 153 49214 118 134 89 199 220 110 147 260 162 157 192 190 144 327 172 104

40

433 433 627 390 359 616 493 421 1080 812 605 683 885 510 793 778 7131

520 23 11 12 18 11 8 7 31 11 14 9 18 4 26 16 1020 20 20 10 6 17 33 16 42 17 22 10 21 5 4 8 3

238 118 148 106 134 145 49 46 160 114 169 159 197 84 168 186 1147 8 11 2 7 2 5 1 5 2 2 2 3 5 4 82

130 50 60 34 58 46 34 36 51 40 32 72 102 78 75 46 57

502

1 132 40 21 11 9 11 19 4 30 9 17 29 43 22 22 29 26

12 2

61 1 4 1 1 1 1 2 3

101 6

34

23

23 38 28 9 12 11 22 14 9 2 4 1 3 3 34 7 7 11 16 13 13 8 38 29 10 39 51 30 60 38 18

140 131 140 146 127 130 121 101 206 126 116 111 94 51 136 133 8112 20 50 45 64 70 90 35 73 37 85 53 99 62 76 77 5622 14 17 18 27 30 19 34 45 27 65 46 38 17 43 22 2255 89 92 82 81 62 51 27 107 33 39 54 76 51 106 49 4259 85 110 54 101 122 68 43 114 125 52 101 121 65 109 84 787 18 25 7 10 9 10 5 23 19 7 11 3

59 44 34 27 25 30 15 12 50 38 27 31 62 16 18 31 222

224 26 32 18 39 39 9 12 99 57 50 35 32 12 41 19 29

50 76 58 69 83 99 41 32 178 103 95 64 92 61 223 105 6048 10 19 44 66 18 4 11 15 28 14 21 20 53 102 8265 81 96 70 47 113 148 61 155 164 184 183 195 113 230 109 65

854 555 531 554 584 616 507 333 1062 472 539 518 571 325 923 577 441559 322 408 356 420 227 390 432 795 507 631 737 720 441 917 599 344579 494 680 539 872 857 616 305 1115 772 724 1158 1157 491 579 707 1065

251838 733 793 567 592 733 357 460 788 683 519 675 1099 620 346 706 1022

10 23 32 11 18 11 8 1 9 3 5 10 3 5 11 10 915 1

5469 3622 4325 3369 4049 4351 3312 2647 6648 4408 4254 5136 6085 3345 5539 4784 4737

1.19 2.24 2.22 2.08 1.16 2.60 4.47 2.30 2.33 3.72 4.33 3.56 3.20 3.38 4.15 2.28 1.379 11 11 11 16 10 6 8 10 6 6 7 7 7 7 10 11

0.22 0.55 1.16 1.34 1.58 1.61 2.72 1.32 1.10 0.84 2.00 1.03 1.63 1.85 1.37 1.61 1.1823 21 15 14 13 13 9 12 15 15 11 15 12 12 14 14 14

0.20 0.39 0.55 0.24 0.17 0.18 0.21 0.26 0.15 0.14 0.12 0.06 0.15 0.45 0.32 0.21 0.3224 24 21 26 26 27 27 23 26 25 27 27 24 21 22 23 26

RIVERS TAWE, NEATH, AFAN - DECLARED CATCHES, ANNUAL - SALMON

0

50

100

150

200

250

300

350

Tawe 20 32 65 33 41 47 107 32 55 91 25 85 55 42 20 189 146 65 81 96 70 47 113 148 61 155 164 184 183 195 113 230 109 65 72

Neath 4 1 4 4 10 4 15 5 33 52 12 25 8 1 14 52 16 12 20 50 45 64 70 90 35 73 37 85 53 99 62 76 77 56 46

Afan 0 0 0 0 0 0 0 1 0 1 0 1 15 2 7 19 10 11 14 24 8 7 8 7 7 10 6 5 3 9 15 18 10 15 7

Wales / 50 130 193 215 126 147 76 177 170 164 320 109 107 90 56 107 158 83 109 72 87 67 81 87 66 53 133 88 85 103 122 67 111 96 95 63

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Declared Sewin Catches, Rod

RIVER 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

Aber 3 4 5 4 10 2 4 2 4 36 7 1 3Aeron 678 686 794 942 328 694 1216 695 985 1032 204 190 470 367 548 537Afan 10 10 3 7 97 133 268 214 32 155 300 50 152 295Alaw 2AlwenAmmanAnglesey 16 4 6Arth 60 41 52 11 15 117 28 157 79 6 1 1 12Artro 151 193 108 128 124 33 150 230 201 214 140 48 101 28 47 108Cefni 6CleifonClwyd catchment 1058 704 768 891 1514 1447 1744 1654 1548 1078 596 368 237 89 605 597ColwynConwy catchment 475 496 411 324 422 230 390 608 794 479 224 276 247 57 158 295CothiCresswell 43 6 53CychDee catchment 58 43 36 58 161 92 140 155 124 146 76 84 41 67 103 398Dulas 4 20 22 12 4 43Dwyfach 10 5 29 83 62 27 56 166 50 21 4 7Dwyfawr 2390 1776 2650 1605 1615 429 964 1281 1592 1693 696 688 513 60 274 1236Dwyryd 79 229 170 134 83 51 78 219 217 209 213 138 175 43 90 191Dyfi catchment 2320 2349 2418 1963 1434 984 1287 1755 2393 2601 1074 891 1117 413 1331 1987Dysynni 208 173 143 115 201 101 147 192 460 398 242 276 189 143 604 670EbbwEdenE / W Cleddau 561 494 553 1010 849 1238 866 966 2300 1222 446 365 346 139 1418 1214ElwyEly 6Erch 34 85 76 27 47 32 51 63 63 39 6 9 8 1 35EwennyGlaslyn 470 694 360 367 435 403 307 239 728 786 408 544 631 106 176 536Gwaun 8 1 5 6 2 36 26 27 41 17 8 14Gwendraeth Fach / Fawr 107 58 37 76 33 114 258 518 776 93 69 212 124 26 393GwiliGwyrfai 66 34 57 33 96 7 70 32 123 53 9 5 5 2 4 25IthonKenfig 2 2 9LledrLeri 4 2 2 7 8 2Llyfni 902 302 833 633 575 141 399 1070 511 803 131 57 60 9 206 808Loughor 103 162 204 125 96 88 287 83 428 407 87 156 176 70 176 314Mawddach catchment 1320 1453 1226 1110 1018 620 452 1391 1306 1548 1205 527 608 134 640 1338Neath 67 37 36 48 41 30 85 74 346 565 91 186 224 49 210 313Nevern 117 173 155 357 487 380 245 204 413 976 390 275 188 109 477 1182Ogmore / Ewenny 291 271 161 207 252 352 803 634 1061 974 221 393 342 207 395 583Ogwen 203 123 156 98 306 178 194 224 259 128 49 59 70 5 24 36Others 1309 2330 1064 746 627 123 169 96 326 241 92 81 85 11 167 232Rheidol 1017 524 502 888 962 660 532 625 814 819 410 176 137 17 134 717Rhydir 2 9 3 2 1 1 2Rhymney 6 7 8 14 11 6 6 19 29 16Seiont 412 445 666 643 862 186 337 290 476 489 127 117 132 9 56 125Soch 1 8 1Solva 37 14Taf 225 465 513 580 491 198 325 463 427 497 98 108 115 45 143 273Taff 84 135 257 227 208 22 85 61 40 130 111Tawe 585 365 385 443 490 719 658 469 1011 525 317 450 301 132 208 677Teifi 2572 2630 2504 2497 2786 2649 2558 2498 4999 3554 1236 813 1140 671 1566 3704TmymynTywi catchment 4534 4480 4862 4915 6312 5911 5079 3948 9580 7134 3907 2243 3109 1379 2821 4946UnknownUsk 28 30 38 55 43 89 95 68 31 56 95 64 41 14 81 265WnionWye 9 16 17 68 29 54 60 12 29 17 3 38 94Wyre 3 5 7 1 79 8 81 101 7 15 11Ystwyth 399 495 512 559 697 105 524 248 626 437 96 55 89 3 313 218OthersWales total 22641 22444 22485 21632 23561 18406 20856 21308 35727 30685 13203 10034 11586 4635 13350 24524

Tawe as %age of total 2.58 1.63 1.71 2.05 2.08 3.91 3.15 2.20 2.83 1.71 2.40 4.48 2.60 2.85 1.56 2.76Tawe position 11 16 16 15 14 6 9 13 9 16 11 7 10 9 14 10

Neath as %age of total 0.30 0.16 0.16 0.22 0.17 0.16 0.41 0.35 0.97 1.84 0.69 1.85 1.93 1.06 1.57 1.28Neath rank 25 29 30 28 31 31 30 29 22 15 25 15 14 19 13 19

Afan as %age of total 0.04 0.04 0.01 0.04 0.47 0.62 0.75 0.70 0.24 1.54 2.59 1.08 1.14 1.20Afan rank 32 32 35 35 28 26 24 24 31 18 11 18 20 20

Declared Sewin Catches, Rod

RIVER

AberAeronAfanAlawAlwenAmmanAngleseyArthArtroCefniCleifonClwyd catchmentColwynConwy catchmentCothiCresswellCychDee catchmentDulasDwyfachDwyfawrDwyrydDyfi catchmentDysynniEbbwEdenE / W Cleddau ElwyElyErchEwennyGlaslynGwaunGwendraeth Fach / FawrGwiliGwyrfaiIthonKenfigLledrLeriLlyfniLoughorMawddach catchmentNeathNevernOgmore / EwennyOgwenOthersRheidolRhydirRhymneySeiontSochSolvaTafTaffTaweTeifiTmymynTywi catchmentUnknownUskWnionWyeWyreYstwythOthersWales total

Tawe as %age of totalTawe position

Neath as %age of totalNeath rank

Afan as %age of totalAfan rank

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

6 11 854 152 196 481 568 280 364 777 422 396 205 35 306 151 96 126

115 254 223 286 195 188 166 103 162 168 153 63 158 161 120 104

7 431 36 30 37 24 40 94 63 44 30 29 23 17 24 12 28

491 528 717 1730 765 708 1319 868 982 1085 782 490 728 949 880 1498

435 304 232 514 351 391 583 630 572 468 489 282 585 434 423 498

1 1

141 152 148 265 159 177 283 414 249 265 303 253 276 192 181 49311 9 150

227 766 389 1337 765 1027 1261 1111 1246 347 691 235 455 145 187 552294 200 101 153 181 124 367 381 147 70 50 57 48 78 60 26721 752 1316 1787 2070 2032 2185 1793 1474 1362 1439 974 1459 1215 1425 2093221 499 552 729 464 435 406 343 688 471 502 284 410 315 420 396

33 30 3 4 16 16 6 4 6

433 425 578 1123 1297 755 651 869 738 439 937 227 511 681 496 564

124 33

491 491 553 393 436 383 240 1096 534 567 592 489 682 520 533 82611 3 186 15 10 114 111 58 99 154 101 59 56 61 71 67 10 47

5 5 4 23 1 2 3 22 4 4 9 7

1

1328 358 288 1035 182 384 542 290 518 187 221 108 257 63 85 13428 109 184 392 509 322 258 550 577 369 538 184 277 361 258 247

808 1145 714 934 1448 1020 1974 1529 1196 1127 1024 367 594 325 411 70473 138 194 332 340 535 673 782 400 532 393 298 487 317 492 493

414 598 180 756 893 584 1078 846 1125 606 722 539 415 674 488 755334 479 810 911 646 677 547 878 572 584 784 193 386 418 463 23263 99 129 182 88 104 112 193 148 130 177 86 170 65 146 2877 28 137 140 25 68 72 94 120 186 177 201 85

772 536 390 431 927 473 693 703 961 551 741 744 587 231 238 1971

13 1 4 11 7 10 14 55 28 17 9 11 23 28 26 2038 30 53 50 54 26 89 85 82 112 29 19 21 28 69 71

19 79 250 481 540 273 224 562 475 204 528 204 280 447 377 29592 133 91 236 229 105 174 90 71 62 55 14 45 115 67 54

247 246 447 294 404 136 373 424 272 173 372 153 243 144 241 4261212 2325 2146 3605 3809 3235 3694 4841 3997 3126 4342 1954 1774 1746 2058 2177

2300 1838 2462 4593 6242 4134 2056 4554 4175 2587 4698 2037 3271 2570 2833 2758

170 222 190 410 611 520 125 290 320 238 244 184 129 191 100 119

14 28 16 43 16 19 45 27 24 36 84 42 39 48 39 25

50 49 150 593 259 211 223 256 83 276 107 19 376 132 166 185

10693 13117 13914 24401 24616 19439 20991 25689 22519 16840 21477 10643 15290 12839 13498 16598

2.31 1.88 3.21 1.20 1.64 0.70 1.78 1.65 1.21 1.03 1.73 1.44 1.59 1.12 1.79 2.5714 16 10 21 17 23 15 17 20 23 17 19 21 21 15 13

0.68 1.05 1.39 1.36 1.38 2.75 3.21 3.04 1.78 3.16 1.83 2.80 3.19 2.47 3.64 2.9721 21 18 20 19 10 9 11 18 10 16 9 10 13 7 11

1.08 1.94 1.60 1.17 0.79 0.97 0.79 0.40 0.72 1.00 0.71 0.59 1.03 1.25 0.89 0.6319 15 16 22 22 21 24 26 22 24 24 22 24 18 21 25

RIVERS TAWE, NEATH, AFAN - DECLARED CATCHES, ANNUAL - SEWIN

0

200

400

600

800

1,000

1,200

Tawe 585 365 385 443 490 719 658 469 1,011 525 317 450 301 132 208 677 247 246 447 294 404 136 373 424 272 173 372 153 243 144 241 426 196 139 146

Neath 67 37 36 48 41 30 85 74 346 565 91 186 224 49 210 313 73 138 194 332 340 535 673 782 400 532 393 298 487 317 492 493 444 403 546

Afan 0 10 10 3 0 7 97 133 268 214 32 155 300 50 152 295 115 254 223 286 195 188 166 103 162 168 153 63 158 161 120 104 142 130 64

Wales / 50 453 449 450 433 471 368 417 426 715 614 264 201 232 93 267 490 214 262 278 488 492 389 420 514 450 337 430 213 306 257 270 332 345 292 240

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Declared Salmon Catches, Rod, 5 Yr Averages

RIVER 79 to 83 80 to 84 81 to 85 82 to 86 83 to 87 84 to 88 85 to 89 86 to 90 87 to 91 88 to 92 89 to 93

Aber 2 2 2 2 2 1 1 1 1 1 0Aeron 12 12 17 13 16 25 24 17 17 14 5Afan 0 0 0 0 0 0 0 1 3 4 5Alaw 1 1 0 0 0 0 0 0 0 0 0Alwen 0 0 0 0 0 0 0 0 0 0 0Amman 0 0 0 0 0 0 0 0 0 0 0Anglesey 0 0 0 0 0 0 0 0 0 0 0Arth 0 0 0 0 1 2 1 1 2 1 0Artro 3 2 3 6 8 9 9 9 6 4 5Cefni 0 0 0 0 0 0 0 0 0 0 0Clwyd catchment 87 93 100 114 143 179 178 170 152 114 82Conwy catchment 386 387 391 405 407 458 472 478 433 367 259Cothi 0 0 0 0 0 0 0 0 0 0 0Cresswell 0 0 0 0 0 0 0 0 0 0 0Dee catchment 579 532 514 520 530 630 630 618 546 452 339Dulas 0 0 0 0 0 0 0 0 0 0 0Dwyfach 1 1 2 2 5 6 6 5 4 1 0Dwyfawr 70 55 57 56 58 68 68 65 55 45 27Dwyryd 37 35 34 35 34 36 39 39 33 27 20Dyfi catchment 282 258 288 281 328 397 389 361 351 282 199Dysynni 14 11 12 11 11 15 16 16 17 16 11Ebbw 0 0 0 0 0 0 0 0 0 0 0Eden 0 0 0 0 0 0 0 0 0 0 0E / W Cleddau 106 93 96 94 82 90 94 75 64 57 44Elwy 0 0 0 0 0 0 0 0 0 0 0Ely 0 0 0 0 0 0 0 0 0 0 0Erch 4 3 3 2 3 2 2 2 2 1 0Glaslyn 34 30 34 38 46 57 71 73 71 56 43Gwaun 0 0 0 0 0 0 0 0 1 1 1Gwendraeth Fach / Fawr 1 1 2 2 1 2 2 2 2 2 0Gwili 0 0 0 0 0 0 0 0 0 0 0Gwyrfai 12 12 12 12 14 17 16 15 14 9 3Irfon 0 0 0 0 0 0 0 0 0 0 0Kenfig 0 0 0 0 0 2 2 2 2 1 0Lledr 0 0 0 0 0 0 0 0 0 0 0Leri 0 0 0 0 1 0 0 0 0 0 0Lugg 0 0 0 0 0 0 0 0 0 0 0Llugwy 0 0 0 0 0 0 0 0 0 0 0Llyfni 37 32 31 27 28 32 35 29 26 21 14Loughor 11 10 12 13 13 15 16 13 11 10 7Mawddach catchment 223 200 182 184 211 231 269 304 286 237 187Neath 5 5 7 8 13 22 23 25 26 20 12Nevern 23 24 19 19 20 23 26 27 26 23 21Ogmore / Ewenny 6 7 13 19 22 29 30 26 21 19 23Ogwen 58 62 65 82 101 125 140 141 136 110 90Others 254 222 80 48 34 24 17 15 17 14 19Rheidol 31 28 35 47 63 77 88 87 77 56 35Rhydir 0 1 1 1 1 2 1 1 1 1 0Rhymney 0 0 0 0 0 0 0 0 0 2 3Seiont 87 89 86 90 70 110 114 121 117 102 47Soch 0 0 1 1 1 1 1 0 0 0 0Solva 0 0 0 0 1 1 1 1 1 0 0Taf 169 145 119 110 99 101 100 82 73 61 41Taff 0 0 3 6 13 36 37 48 53 48 33Tawe 38 44 59 52 56 66 62 58 62 60 45Teifi 619 566 627 663 746 962 972 909 821 661 369Tywi catchment 966 868 864 795 781 863 852 757 741 619 407Usk 589 551 558 495 471 652 686 573 524 479 349Wnion 0 0 0 0 0 0 0 0 0 0 0Wye 3342 3168 3051 2679 2878 3666 3874 3503 3085 2811 1940Wyre 3 3 8 8 10 10 10 6 4 2 1Ystwyth 25 24 27 27 25 24 25 25 23 19 10Unknown 0 0 0 0 0 0 0 0 0 0 0Wales total 8115 7575 7415 6966 7349 9071 9402 8701 7907 6828 4698

Tawe as %age of total 0.47 0.58 0.79 0.75 0.77 0.73 0.66 0.66 0.79 0.87 0.97Tawe rank 16 16 15 15 16 16 17 17 16 13 12

Neath as %age of total 0.06 0.06 0.10 0.11 0.18 0.24 0.25 0.29 0.33 0.29 0.26Neath rank 28 28 29 29 26 26 25 23 21 22 24

Afan as %age of total 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.06 0.11Afan rank 38 41 41 39 41 41 41 40 33 31 29

Declared Salmon Catches, Rod, 5 Yr Averages

RIVER

AberAeronAfanAlawAlwenAmmanAngleseyArthArtroCefniClwyd catchmentConwy catchmentCothiCresswellDee catchmentDulasDwyfachDwyfawrDwyrydDyfi catchmentDysynniEbbwEdenE / W Cleddau ElwyElyErchGlaslynGwaunGwendraeth Fach / FawrGwiliGwyrfaiIrfonKenfigLledrLeriLuggLlugwyLlyfniLoughorMawddach catchmentNeathNevernOgmore / EwennyOgwenOthersRheidolRhydirRhymneySeiontSochSolvaTafTaffTaweTeifiTywi catchmentUskWnionWyeWyreYstwythUnknownWales total

Tawe as %age of totalTawe rank

Neath as %age of totalNeath rank

Afan as %age of totalAfan rank

90 to 94 91 to 95 92 to 96 93 to 97 94 to 98 95 to 99 96 to 00 97 to 01 98 to 02 99 to 03 00 to 04

0 0 1 1 1 1 1 0 0 0 06 6 6 5 3 3 4 5 6 9 119 11 10 12 16 13 13 12 11 7 80 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 06 6 6 6 6 5 4 4 4 2 20 0 0 0 0 0 0 0 0 0 0

96 88 82 84 81 62 61 68 73 58 59236 190 183 190 178 151 151 152 150 153 187

0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0

430 445 456 510 544 476 448 485 497 456 5940 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0

29 19 21 22 23 17 17 15 12 11 1521 18 19 23 22 18 15 15 17 16 23

209 181 193 202 187 154 149 130 116 96 10713 10 9 8 9 6 7 6 5 3 40 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0

49 54 53 57 53 43 46 50 46 42 450 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0

37 33 30 38 38 31 23 18 14 11 151 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 04 3 3 3 2 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0

15 17 20 27 29 24 22 20 16 14 148 6 6 7 6 6 9 11 12 12 18

179 143 142 161 166 137 137 135 133 125 13720 18 19 23 30 29 38 50 64 61 6627 34 35 37 36 25 20 21 22 26 3135 42 50 65 72 74 80 81 74 61 6682 79 71 85 88 77 82 94 91 78 9019 16 12 16 12 12 13 14 12 8 1128 28 35 43 47 43 38 32 26 22 260 0 0 0 0 0 0 0 0 0 03 3 3 1 0 0 0 0 0 0 0

38 26 23 27 27 25 28 31 27 23 400 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0

67 66 63 75 74 57 67 77 70 65 8750 48 50 50 45 37 37 31 30 26 2078 90 92 100 115 92 72 81 95 88 105

450 405 493 577 597 560 616 568 558 519 620477 488 503 538 542 434 413 347 360 365 453497 548 600 679 668 562 633 688 713 638 753

0 0 0 0 0 0 0 0 0 0 01948 1806 1825 1601 1350 996 905 684 608 542 586

1 0 0 0 0 0 0 0 0 0 012 9 11 15 19 17 19 19 16 10 90 0 0 0 0 0 0 0 0 0 0

5182 4937 5126 5289 5087 4186 4167 3943 3881 3546 4201

1.51 1.83 1.80 1.89 2.27 2.19 1.72 2.06 2.44 2.48 2.4911 9 9 9 9 9 11 10 9 9 9

0.39 0.37 0.37 0.43 0.59 0.68 0.92 1.26 1.64 1.71 1.5822 21 22 21 19 18 15 14 14 12 12

0.17 0.21 0.19 0.23 0.31 0.32 0.31 0.31 0.28 0.21 0.1927 25 26 26 25 25 26 26 27 28 28

Declared Salmon Catches, Rod, 5 Yr Averages

RIVER

AberAeronAfanAlawAlwenAmmanAngleseyArthArtroCefniClwyd catchmentConwy catchmentCothiCresswellDee catchmentDulasDwyfachDwyfawrDwyrydDyfi catchmentDysynniEbbwEdenE / W Cleddau ElwyElyErchGlaslynGwaunGwendraeth Fach / FawrGwiliGwyrfaiIrfonKenfigLledrLeriLuggLlugwyLlyfniLoughorMawddach catchmentNeathNevernOgmore / EwennyOgwenOthersRheidolRhydirRhymneySeiontSochSolvaTafTaffTaweTeifiTywi catchmentUskWnionWyeWyreYstwythUnknownWales total

Tawe as %age of totalTawe rank

Neath as %age of totalNeath rank

Afan as %age of totalAfan rank

01 to 05 02 to 06 03 to 07 04 to 08 05 to 09 06 to 10 07 to 11 08 to 12 09 to 13

0 0 0 0 0 0 0 0 010 9 7 5 2 2 2 4 38 7 6 7 8 10 11 13 130 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 03 4 3 4 4 3 2 2 10 0 0 0 0 0 0 0 0

51 42 59 87 88 130 154 137 107180 167 184 192 169 202 205 187 170

0 0 0 0 0 0 0 8 80 0 0 0 0 0 0 0 0

684 682 720 813 699 695 730 736 6370 0 0 0 0 0 0 0 00 0 0 0 0 0 1 1 1

14 14 14 17 11 14 15 15 1225 26 21 22 15 12 10 8 5

103 108 130 160 145 155 159 150 1193 3 2 3 3 3 3 4 40 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0

41 39 46 59 65 72 75 72 590 0 0 0 0 0 0 10 100 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

15 16 18 26 24 27 29 28 290 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 10 0 0 0 0 0 0 1 11 1 1 1 1 1 1 1 20 0 0 0 0 0 0 2 20 1 1 1 1 1 0 0 00 0 0 0 0 0 0 7 70 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 1

12 9 6 3 2 2 2 2 220 20 25 33 32 38 44 39 33

137 134 132 131 100 102 105 99 8761 64 57 69 67 75 73 74 6331 38 43 44 39 42 33 28 2756 51 52 62 51 65 67 65 5294 80 87 103 93 90 96 91 7413 11 11 10 7 4 4 3 329 28 32 42 35 31 32 30 240 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

43 45 51 55 37 34 28 27 220 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

91 90 94 106 83 107 109 108 9910 12 14 18 20 27 42 56 59

128 142 149 176 168 181 166 142 118598 583 585 632 485 575 583 567 520470 551 620 678 607 689 683 604 546733 706 815 985 860 822 818 800 676

0 0 0 0 0 0 0 5 5604 561 625 753 719 652 689 759 698

0 0 0 0 0 0 0 0 06 5 6 6 5 7 8 8 90 3 3 3 3 3 0 0 0

4273 4254 4619 5306 4646 4872 4978 4898 4314

3.00 3.35 3.23 3.32 3.61 3.72 3.33 2.91 2.738 7 7 7 7 7 7 8 8

1.43 1.50 1.23 1.31 1.45 1.54 1.47 1.51 1.4712 12 13 13 13 13 14 13 13

0.18 0.16 0.13 0.12 0.16 0.21 0.22 0.27 0.3027 27 26 25 24 24 23 23 22

RIVERS TAWE, NEATH AND AFAN - DECLARED CATCHES, 5 YR AVERAGES - SALMON

0

20

40

60

80

100

120

140

160

180

200

Tawe 38 44 59 52 56 66 62 58 62 60 45 78 90 92 100 115 92 72 81 95 88 105 128 142 149 176 168 181 166 142 118

Neath 5 5 7 8 13 22 23 25 26 20 12 20 18 19 23 30 29 38 50 64 61 66 61 64 57 69 67 75 73 74 63

Afan 0 0 0 0 0 0 0 1 3 4 5 9 11 10 12 16 13 13 12 11 7 8 8 7 6 7 8 10 11 13 13

Wales / 50 162 152 148 139 147 181 188 174 158 137 94 104 99 103 106 102 84 83 79 78 71 84 85 85 92 106 93 97 100 98 86

79 to 83

80 to 84

81 to 85

82 to 86

83 to 87

84 to 88

85 to 89

86 to 90

87 to 91

88 to 92

89 to 93

90 to 94

91 to 95

92 to 96

93 to 97

94 to 98

95 to 99

96 to 00

97 to 01

98 to 02

99 to 03

00 to 04

02 to 05

02 to 06

03 to 07

04 to 08

05 to 09

06 to 10

07 to 11

08 to 12

09 to 13

Declared Sewin Catches, Rod, 5 Yr Averages

RIVER 79 to 83 80 to 84 81 to 85 82 to 86 83 to 87 84 to 88 85 to 89 86 to 90 87 to 91 88 to 92 89 to 93 90 to 94

Aber 3 5 5 5 4 4 10 11 10 10 9 2Aeron 686 689 795 775 784 924 826 621 576 453 356 422Afan 5 6 23 48 101 144 149 160 194 150 138 190Alaw 0 0 0 0 0 0 0 0 0 0 0 0Alwen 0 0 0 0 0 0 0 0 0 0 0 0Amman 0 0 0 0 0 0 0 0 0 0 0 0Anglesey 0 0 0 0 0 0 3 4 5 5 5 2Arth 33 36 47 45 66 79 77 54 49 17 2 3Artro 141 117 109 133 148 166 187 167 141 106 73 66Cefni 0 0 0 0 0 0 0 0 0 1 1 1Cleifon 0 0 0 0 0 0 0 0 0 0 0 0Clwyd catchment 987 1065 1273 1450 1581 1494 1324 1049 765 474 379 379Colwyn 0 0 0 0 0 0 0 0 0 0 0 0Conwy catchment 426 377 355 395 489 500 499 476 404 257 192 207Cothi 0 0 0 0 0 0 0 0 0 0 0 0Cresswell 0 0 0 0 0 0 9 10 20 20 20 12Cych 0 0 0 0 0 0 0 0 0 0 0 0Dee catchment 71 78 97 121 134 131 128 117 94 83 74 139Dulas 0 0 1 5 9 12 12 11 7 3 1 9Dwyfach 25 38 41 51 79 72 64 59 50 16 6 2Dwyfawr 2007 1615 1453 1179 1176 1192 1245 1190 1036 730 446 554Dwyryd 139 133 103 113 130 155 187 199 190 156 132 127Dyfi catchment 2097 1830 1617 1485 1571 1804 1822 1743 1615 1219 965 1148Dysynni 168 147 141 151 220 260 288 314 313 250 291 376Ebbw 0 0 0 0 0 0 0 0 0 0 0 0Eden 0 0 0 0 0 0 0 0 0 0 0 0E / W Cleddau 693 829 903 986 1244 1318 1160 1060 936 504 543 696Elwy 0 0 0 0 0 0 0 0 0 0 0 0Ely 0 0 0 0 0 0 0 0 0 1 1 1Erch 54 53 47 44 51 50 44 36 25 13 5 11Ewenny 0 0 0 0 0 0 0 0 0 0 0 0Glaslyn 465 452 374 350 422 493 494 541 619 495 373 399Gwaun 4 4 10 15 19 26 29 24 21 16 8 4Gwendraeth Fach / Fawr 56 62 64 104 200 340 352 343 334 255 105 165Gwili 0 0 0 0 0 0 0 0 0 0 0 0Gwyrfai 57 45 53 48 66 57 57 44 39 15 5 8Ithon 0 0 0 0 0 0 0 0 0 0 0 0Kenfig 0 0 0 1 3 3 2 2 2 0 0 0Lledr 0 0 0 0 0 0 0 0 0 0 0 0Leri 1 1 1 2 3 4 4 4 3 2 0 0Llyfni 649 497 516 564 539 585 583 514 312 212 93 228Loughor 138 135 160 136 196 259 258 232 251 179 133 178Mawddach catchment 1225 1085 885 918 957 1063 1180 1195 1039 804 623 649Neath 46 38 48 56 115 220 232 252 282 223 152 196Nevern 258 310 325 335 346 444 446 452 448 388 288 446Ogmore / Ewenny 236 249 355 450 620 765 739 657 598 427 312 384Ogwen 177 172 186 200 232 197 171 144 113 62 41 39Others 1215 978 546 352 268 191 185 167 165 102 87 115Rheidol 779 707 709 733 719 690 640 569 471 312 175 236Rhydir 0 0 2 3 3 3 3 2 1 1 1 0Rhymney 0 0 1 3 4 7 9 9 9 11 14 15Seiont 606 560 539 464 430 356 344 300 268 175 88 88Soch 0 0 2 2 2 2 2 0 0 0 0 0Solva 0 0 0 0 7 10 10 10 10 3 0 0Taf 455 449 421 411 381 382 362 319 249 173 102 137Taff 0 17 44 95 141 182 170 160 121 83 68 85Tawe 454 480 539 556 669 676 596 554 521 345 282 354Teifi 2598 2613 2599 2598 3098 3252 2969 2620 2348 1483 1085 1579Tmymyn 0 0 0 0 0 0 0 0 0 0 0 0Tywi catchment 5021 5296 5416 5233 6166 6330 5930 5362 5195 3554 2692 2900Unknown 0 0 0 0 0 0 0 0 0 0 0 0Usk 39 51 64 70 65 68 69 63 57 54 59 93Wnion 0 0 0 0 0 0 0 0 0 0 0 0Wye 5 7 20 26 37 46 45 37 34 24 20 36Wyre 3 3 18 19 35 54 55 42 43 27 7 5Ystwyth 532 474 479 427 440 388 386 292 261 136 111 136Others 0 0 0 0 0 0 0 0 0 0 0 0Wales total 22553 21706 21388 21153 23972 25396 24356 22191 20247 14029 10562 12826

Tawe as %age of total 2.01 2.21 2.52 2.63 2.79 2.66 2.45 2.50 2.57 2.46 2.67 2.76Tawe rank 16 13 11 11 10 11 11 11 11 12 13 13

Neath as %age of total 0.20 0.18 0.22 0.26 0.48 0.87 0.95 1.14 1.39 1.59 1.44 1.53Neath rank 29 30 29 29 28 22 22 21 18 17 16 17

Afan as %age of total 0.02 0.03 0.11 0.23 0.42 0.57 0.61 0.72 0.96 1.07 1.30 1.48Afan rank 34 35 34 31 29 28 28 26 23 23 17 18

Declared Sewin Catches, Rod, 5 Yr Averages

RIVER

AberAeronAfanAlawAlwenAmmanAngleseyArthArtroCefniCleifonClwyd catchmentColwynConwy catchmentCothiCresswellCychDee catchmentDulasDwyfachDwyfawrDwyrydDyfi catchmentDysynniEbbwEdenE / W Cleddau ElwyElyErchEwennyGlaslynGwaunGwendraeth Fach / FawrGwiliGwyrfaiIthonKenfigLledrLeriLlyfniLoughorMawddach catchmentNeathNevernOgmore / EwennyOgwenOthersRheidolRhydirRhymneySeiontSochSolvaTafTaffTaweTeifiTmymynTywi catchmentUnknownUskWnionWyeWyreYstwythOthersWales total

Tawe as %age of totalTawe rank

Neath as %age of totalNeath rank

Afan as %age of totalAfan rank

91 to 95 92 to 96 93 to 97 94 to 98 95 to 99 96 to 00 97 to 01 98 to 02 99 to 03 00 to 04 02 to 05 02 to 06

2 4 3 3 3 2 0 0 0 0 0 2395 332 297 284 290 335 378 494 482 448 433 367182 173 208 235 215 229 212 188 163 157 150 130

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 0 03 4 4 4 1 1 0 0 0 0 0 1

63 50 50 48 32 33 45 52 53 54 52 381 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0

404 462 588 813 846 890 1048 1078 928 992 1007 8410 0 0 0 0 0 0 0 0 0 0 0

238 250 285 356 367 358 414 494 505 529 548 4880 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0

150 172 188 221 173 180 206 260 256 278 303 29710 10 9 9 0 0 0 0 0 0 0 02 2 2 2 2 2 0 0 0 0 0 0

462 513 578 791 697 857 956 1100 1082 998 931 726159 164 175 188 186 152 185 241 240 218 203 141

1114 1041 1221 1313 1329 1591 1878 1973 1911 1769 1651 1408365 427 509 534 493 536 517 475 467 469 482 458

0 7 13 13 13 13 7 5 8 9 8 80 0 0 0 0 0 0 0 0 0 0 0

710 726 814 755 771 836 881 939 862 690 727 6420 0 0 0 0 0 0 0 0 0 0 01 1 0 0 0 0 0 0 0 0 0 0

14 19 18 18 11 7 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0

388 360 449 493 473 451 401 510 538 564 606 6565 3 3 3 3 1 0 0 0 0 0 0

152 113 90 108 51 62 78 107 105 94 94 860 0 0 0 0 0 0 0 0 0 0 08 8 9 12 8 7 7 10 6 6 7 60 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0

282 342 398 563 438 449 486 487 383 384 352 265153 139 162 205 244 303 333 406 443 415 458 444706 813 929 988 1010 1052 1218 1381 1433 1369 1370 1049174 157 186 210 215 308 415 532 546 584 556 481474 556 570 626 568 602 698 831 905 848 875 768372 400 520 623 636 705 718 732 664 652 673 60240 45 70 102 112 120 123 136 129 137 152 147

100 89 114 109 67 80 88 80 76 108 130 115355 435 510 569 611 551 583 645 751 676 730 740

0 0 0 0 0 0 0 0 0 0 0 017 16 13 9 7 7 9 19 23 25 25 2472 52 60 59 45 43 54 61 67 79 79 650 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0

119 112 153 220 274 325 354 416 415 348 399 39587 101 111 133 156 159 167 167 134 100 90 58

313 302 365 382 328 305 331 326 322 276 323 2791659 1896 2191 2598 2619 3024 3298 3837 3915 3779 4000 3652

0 0 0 0 0 0 0 0 0 0 0 02911 2657 2873 3228 3487 3854 3897 4316 4232 3501 3614 3610

0 0 0 0 0 0 0 0 0 0 0 0114 150 186 251 321 391 371 391 373 299 243 255

0 0 0 0 0 0 0 0 0 0 0 033 35 38 39 23 24 28 30 26 30 43 432 0 0 0 0 0 0 0 0 0 0 0

135 127 156 212 220 252 287 308 206 210 189 1480 0 0 0 0 0 0 0 0 0 0 0

12958 13264 15120 17330 17348 19097 20672 23027 22651 21096 21503 19434

2.42 2.28 2.41 2.21 1.89 1.60 1.60 1.42 1.42 1.31 1.50 1.4314 15 14 14 15 19 20 20 20 21 19 19

1.34 1.18 1.23 1.21 1.24 1.61 2.01 2.31 2.41 2.77 2.59 2.4818 20 19 22 21 18 13 11 11 11 12 13

1.41 1.31 1.37 1.35 1.24 1.20 1.02 0.81 0.72 0.75 0.70 0.6717 17 17 18 22 22 22 24 24 24 25 25

Declared Sewin Catches, Rod, 5 Yr Averages

RIVER

AberAeronAfanAlawAlwenAmmanAngleseyArthArtroCefniCleifonClwyd catchmentColwynConwy catchmentCothiCresswellCychDee catchmentDulasDwyfachDwyfawrDwyrydDyfi catchmentDysynniEbbwEdenE / W Cleddau ElwyElyErchEwennyGlaslynGwaunGwendraeth Fach / FawrGwiliGwyrfaiIthonKenfigLledrLeriLlyfniLoughorMawddach catchmentNeathNevernOgmore / EwennyOgwenOthersRheidolRhydirRhymneySeiontSochSolvaTafTaffTaweTeifiTmymynTywi catchmentUnknownUskWnionWyeWyreYstwythOthersWales total

Tawe as %age of totalTawe rank

Neath as %age of totalNeath rank

Afan as %age of totalAfan rank

03 to 07 04 to 08 05 to 09 06 to 10 07 to 11 08 to 12 09 to 13

2 2 2 2 0 0 0273 219 159 143 165 166 148141 141 131 121 137 131 112

0 0 0 0 0 0 00 0 0 0 0 1 10 0 0 0 0 0 00 0 0 0 0 0 01 1 1 1 0 1 1

29 25 21 21 23 21 210 0 0 0 0 0 10 0 0 0 0 0 0

813 807 766 909 1005 1056 10170 0 0 0 0 0 0

479 452 443 444 484 444 4610 0 0 0 0 0 00 0 0 0 0 4 40 0 0 0 0 5 5

269 258 241 279 330 366 4190 0 0 0 1 4 40 0 0 30 48 50 50

595 375 343 315 327 285 43874 61 59 54 47 45 36

1342 1290 1302 1433 1768 1898 2009471 396 386 365 396 388 411

4 2 2 2 3 5 40 0 0 0 0 0 0

570 559 570 496 556 521 4390 0 0 0 0 85 850 0 0 0 0 1 10 0 0 0 0 4 40 0 0 0 0 0 0

573 570 563 610 648 603 6710 0 0 4 4 11 11

70 63 53 51 51 47 410 0 0 0 0 31 313 3 4 3 5 4 50 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 2 20 0 0 0 1 1 1

258 167 147 129 154 129 136389 346 324 265 258 253 195862 687 544 480 578 536 558422 405 397 417 447 430 476681 591 568 574 566 598 532504 473 449 338 417 475 443142 126 129 151 181 189 206137 113 93 57 60 20 20717 571 508 399 321 290 310

0 0 0 0 0 0 018 18 19 22 20 16 1153 42 33 42 62 68 690 0 0 0 0 0 00 0 0 0 0 0 0

338 333 367 321 346 336 25649 58 59 59 89 80 58

243 217 231 241 250 229 2303039 2588 2375 1942 2147 2176 2107

0 0 0 0 0 0 03354 3033 3082 2694 2808 2561 2399

0 0 0 0 0 0 0223 197 170 145 130 131 112

0 0 0 0 0 28 2845 50 50 39 42 44 430 0 0 0 0 0 0

172 182 160 176 224 183 1650 0 0 0 0 7 7

17354 15418 14749 13774 15100 14963 14797

1.40 1.41 1.56 1.75 1.66 1.53 1.5520 19 18 18 18 18 17

2.43 2.63 2.69 3.03 2.96 2.87 3.2114 12 12 10 10 11 8

0.81 0.91 0.89 0.88 0.91 0.88 0.7624 23 23 24 23 22 23

RIVERS TAWE, NEATH AND AFAN - DECLARED CATCHES, 5 YR AVERAGES - SEWIN

0

100

200

300

400

500

600

700

800

Tawe 454 480 539 556 669 676 596 554 521 345 282 354 313 302 365 382 328 305 331 326 322 276 323 279 243 217 231 241 250 229 230

Neath 46 38 48 56 115 220 232 252 282 223 152 196 174 157 186 210 215 308 415 532 546 584 556 481 422 405 397 417 447 430 476

Afan 5 6 23 48 101 144 149 160 194 150 138 190 182 173 208 235 215 229 212 188 163 157 150 130 141 141 131 121 137 131 112

Wales / 50 451 434 428 423 479 508 487 444 405 281 211 257 259 265 302 347 347 382 413 461 453 422 430 389 347 308 295 275 302 299 296

79 to 83

80 to 84

81 to 85

82 to 86

83 to 87

84 to 88

85 to 89

86 to 90

87 to 91

88 to 92

89 to 93

90 to 94

91 to 95

92 to 96

93 to 97

94 to 98

95 to 99

96 to 00

97 to 01

98 to 02

99 to 03

00 to 04

02 to 05

02 to 06

03 to 07

04 to 08

05 to 09

06 to 10

07 to 11

08 to 12

09 to 13

1

Salmon stock performance in Wales 2013 1. Introduction

• This report examines salmon stock performance on the 23 principal salmon rivers in Wales for

2013 (including the border rivers Severn, Wye and Dee) based on compliance with Conservation Limits. These rivers are listed in Table 1 and included among the 32 main salmon and sea trout rivers in Wales shown on the map in Fig 1.

• Under Ministerial Direction, each of these 23 rivers (alongside 40 rivers in England - excluding

the above border rivers) (i) have produced Salmon Action Plans; (ii) assess and report on compliance with Conservation Limits annually and (iii) utilise the latter in reviewing Net Limitation Orders and byelaws.

• This report fulfils the second of these requirements and informs the third; i.e. it serves to assess

the conservation status of individual river stocks and helps to ensure that Natural Resources Wales has appropriate fisheries management measures in place. The latter principally take the form of voluntary or mandatory controls on exploitation by net and rod fisheries as directed by the Decision Structure (Appendix I).

• A more comprehensive annual report on the status of salmon stocks and fisheries in England

and Wales - including compliance with Conservation Limits – has been produced jointly by Cefas, the Environment Agency and Natural Resources Wales for 2013. This is also a requirement under Ministerial Direction which, aside from informing domestic fisheries management, fulfils reporting obligations to ICES (the International Council for the Exploration of the Sea) and NASCO (North Atlantic Salmon Conservation Organisation) for the purposes of North Atlantic scale assessment of salmon stock status. This is used to help regulate international fisheries in Greenland and the Faroes, and for the provision of wider management advice.

• The status of sea trout stocks in Wales is examined in an equivalent annual report to this one,

but, in the absence of Conservation Limits or similar ‘biological reference points’ for this species, is based solely on measures of rod fishery performance.

2. Conservation Limits and compliance assessment • Conservation Limits (CLs) are based on estimates of the salmon producing capacity of individual

catchments. They are expressed in terms of egg numbers and are set to help ensure that adequate numbers of fish go on to spawn.

• Compliance assessment involves (i) producing estimates (from rod catches or more direct

methods e.g. use of traps or fish counters) of the numbers of salmon returning each year and their likely egg contribution and (ii) undertaking formal statistical assessment of compliance status against the CL. The latter procedure is designed to achieve the ‘management objective’: that stocks meet or exceed their CL four years out of five, on average.

• Compliance assessment is carried out on a rolling ten-year series of egg deposition estimates

(ending with the latest year) and examines the linear trend in egg numbers (projected forward five years in time) as well as the likelihood that a river stock is statistically passing or failing its management objective in any one year.

• River stocks which are statistically passing of failing their management objective (i.e. there is a

greater than 95% chance they are in one of these categories) are classed as ‘not at risk’ or ‘at

2

risk’, respectively. River stocks in an intermediate position are classed as either ‘probably not at risk’ or ‘probably at risk’ depending on whether the likelihood of them passing their management objective is greater or less than 50%, respectively.

• In terms of the Decision Structure (Appendix I), it is the ‘at risk’ status projected 5-years beyond

the current year which is the most important performance measure, as well as the severity of the upward or downward trend in egg numbers. These statistics, along with compliance status in the current year and angling catch-and-release levels, are summarised in Table 1. Assessment results for the last four years are shown in Table 2 to track changes in projected compliance status from 2015 to 2018.

Table 1 Catch and release statistics, latest 10-year trends in egg numbers, and CL compliance status in the current year (2013) and projected in 5 years time (2018) for the 23 principal salmon rivers in Wales. Table 2 Projected CL compliance status for the latest and previous three assessments (i.e. 2015-2018) for the 23 principal salmon rivers in Wales

Projected compliance Projected compliance Projected compliance Projected complianceNumber River 2015 2016 2017 201833 Severn Prob at risk Prob at risk Prob at risk Prob at risk34 Wye At risk At risk At risk Prob at risk35 Usk Prob at risk Prob at risk Prob not at risk Prob at risk36 Taff & Ely At risk At risk At risk Prob at risk37 Ogmore Prob at risk Prob at risk Prob at risk At risk40 Tawe Prob at risk Prob at risk Prob at risk At risk43 Tywi Prob not at risk Prob not at risk Prob at risk Prob at risk44 Taf Prob not at risk Prob not at risk Prob at risk At risk45 E&W Cleddau Prob not at risk Prob at risk Prob at risk At risk47 Teifi Prob not at risk Prob not at risk Prob at risk Prob at risk50 Rheidol Prob at risk Prob at risk At risk At risk46 Nevern Prob at risk Prob at risk At risk At risk51 Dyfi Prob at risk Prob not at risk Prob at risk At risk52 Dysinni* At risk At risk At risk At risk53 Mawddach Prob at risk Prob not at risk Prob not at risk Prob at risk55 Dwyryd* At risk At risk At risk At risk56 Glaslyn Prob not at risk Prob not at risk Prob not at risk Prob not at risk57 Dwyfawr* At risk At risk At risk At risk60 Seiont Prob not at risk Prob not at risk Prob at risk At risk61 Ogwen Prob not at risk Prob not at risk Prob not at risk Prob at risk62 Conwy Not at risk Not at risk Not at risk Prob not at risk63 Clwyd Prob not at risk Prob not at risk Prob not at risk Prob at risk64 Dee Prob at risk At risk At risk At risk

% Rod released: Current compliance Projected complianceNumber River 2010 2011 2012 2013 2013 2018 Trend

33 Severn 56.4 61.2 74.3 68.6 Prob at risk Prob at risk Uncertain - Trend:34 Wye 86.0 92.5 100.0 100.0 At risk Prob at risk Uncertain + p<0.05 ---35 Usk 64.3 64.2 68.1 70.5 Prob at risk Prob at risk Uncertain - - p<0.10 ---36 Taff & Ely 79.2 87.3 97.6 100.0 At risk Prob at risk Up +++ 0.10<=p<0.30 --37 Ogmore 63.2 77.6 58.1 62.5 At risk At risk Uncertain - - 0.30<=p<0.50 -40 Tawe 45.7 33.9 36.9 35.6 At risk At risk Down - - - 0.70=>p>0.50 +43 Tywi 46.0 44.4 39.5 51.7 Prob at risk Prob at risk Uncertain - - - 0.90=>p>0.70 ++44 Taf 26.5 33.3 30.0 30.0 At risk At risk Uncertain - - p>0.90 +++45 E&W Cleddau 57.3 45.7 47.4 71.8 At risk At risk Uncertain + p>0.95 +++47 Teifi 42.4 46.4 46.9 58.8 Prob at risk Prob at risk Uncertain - -50 Rheidol 44.4 58.1 31.8 72.7 At risk At risk Uncertain - -46 Nevern 18.6 31.8 36.4 60.6 At risk At risk Uncertain - - * Mean rod catch <2051 Dyfi 32.1 42.5 34.8 52.3 At risk At risk Uncertain - - -52 Dysinni* 25.0 100.0 75.0 80.0 At risk At risk Uncertain -53 Mawddach 63.2 55.6 60.7 44.4 Prob at risk Prob at risk Uncertain -55 Dwyryd* 75.0 0.0 0.0 25.0 At risk At risk Down - - -56 Glaslyn 59.1 62.1 73.1 53.2 Prob not at risk Prob not at risk Uncertain +++57 Dwyfawr* 42.3 43.8 20.0 66.7 At risk At risk Uncertain - -60 Seiont 22.0 47.4 34.5 37.5 At risk At risk Down - - -61 Ogwen 40.5 29.8 34.6 22.9 Prob not at risk Prob at risk Uncertain - - -62 Conwy 53.2 51.7 53.9 57.7 Not at risk Prob not at risk Uncertain - - -63 Clwyd 65.8 71.9 73.7 80.0 Prob at risk Prob at risk Uncertain +64 Dee 55.3 54.2 74.4 81.2 At risk At risk Uncertain - - -

3

Fig 1 Main salmon and sea trout rivers in England and Wales

3. Management response

• In line with the Decision Structure, steps should be taken to significantly reduce or even eliminate net and rod fishery exploitation (i.e. the numbers of fish killed) on those rivers projected to be “at risk’ in 5 years time (i.e. 2018 in the current assessment), or “probably at risk with a downward trend”. Where possible (principally on rod fisheries), voluntary measures to control exploitation should be promoted in the first instance before considering mandatory action. For example, for rivers in the ‘at risk’ category, angling catch-and-release (C&R) levels of 90% or more, achieved by voluntary means, would normally be considered an adequate level of control. Once the need for intervention has been identified then usually a maximum a period of three years would be given for C&R levels to meet or exceed the 90% level before mandatory action for 100% C&R is instigated. This requirement may cease if compliance status improves within the 3-year period. For rivers where the long-term (1994-2013) average rod catch is less than 20 salmon (namely the Dysinni, Dwyryd and Dwyfawr – see Table 1) mandatory measures will not be required but anglers should still be encouraged to achieve C&R levels of >90% by

4

voluntary means. Timely intervention to protect stocks is particularly important on the SAC rivers for Atlantic salmon (namely: Wye, Usk, Teifi, Mawddach, Gwyrfai and Dee).

• For rivers which have been in the “not at risk” category for 5 consecutive years, consideration

should be given to relaxing fishing controls - including on net fisheries, where these exist. • Recovering rivers should considered as “at risk” unless assessment information is available and

indicates otherwise. Voluntary C&R levels of 100% should be encouraged at the same time as working on the necessary environmental improvements. If these rivers have the potential to develop rod fisheries with average catches of >20 salmon, then mandatory measures may need to be considered.

• Water Framework Directive (WFD) Good Ecological Status (GES) assessments for salmon

(where available) for catchment water bodies should be considered alongside CL compliance results as part of the management decision making process.

Appendix I: Developing fishing controls for salmon fisheries in England & Wales ("The Decision Structure")

Identify range of options to maximise benefits whilst maintaining <5% probability of failure. Do not increase exploitation if trend is negative or if working to an interim target.

What is the probability of failing the management objective in five year’s time?

p < 5% 5% < p < 50% 50% < p < 95% P > 95%

Is the trend in salmon spawning stock stable and positive?

Can socio-economic value be increased through a change in fishing controls whilst ensuring probability of failure does not rise above 5% and will such controls be supported?

Can socio-economic value be increased through a change in fishing controls without increasing exploitation and will such controls be supported?

Identify range of options to maximise benefits and to ensure sufficient spawning escapement to move to <5% probability of failure within five years.

Identify range of options to ensure observed trend in spawning escapement is reversed within five years.

Select option(s) Select option(s) Select option(s) Select option(s) No change to controls

No change to controls

Identify range of options to ensure sufficient spawning escapement to move to <50% probability of failure within five years – look to maintain socio-economic benefits where possible.

Identify range of options to urgently achieve zero exploitation by both rods and nets – (include 100% C&R) – look to maintain socio-economic benefits where possible.

Yes

Yes

Yes No

No

No

Page 1 of 3

2013 Wales sea trout fishery performance results Table 1 - Overall changes in 2013 compared to 2012 Category No in 2012 No in 2013 Change Not at risk 9 10 +1 Probably not at risk 7 5 -2 Probably at risk 8 7 -1 At risk 3 5 +2 Table 2 - Changes by Region/river: Category change Region/Catchment UP At risk to Probably at risk Dwyryd Probably at risk to Probably not at risk Rheidol. Probably not at risk to Not at risk Taff, Llyfni DOWN Not at risk to Probably not at risk Neath Probably Not at Risk to Probably at risk Tawe, Nevern Probably at risk to At risk Tywi, Taf, E&W Cleddau

Page 2 of 3

Table 3 – Sea trout fishery assessment for 2012 and 2013 in Wales: Region River 2013 2012 NRW Usk At risk At risk Taff Not at risk Probably not at risk Ogmore Not at risk Not at risk Afan Probably not at risk Probably not at risk Neath Probably not at risk Not at risk Tawe Probably at risk Probably not at risk Loughor At risk At risk Tywi At risk Probably at risk Taf At risk Probably at risk E&W Cleddau At risk Probably at risk Nevern Probably at risk Probably not at risk Teifi Probably not at risk Probably not at risk Aeron Probably at risk Probably at risk Ystwyth Probably at risk Probably at risk Rheidol Probably not at risk Probably at risk Dyfi Not at risk Not at risk Dysynni Not at risk Not at risk Mawddach Not at risk Not at risk Dwyryd Probably at risk At risk Glaslyn Not at risk Not at risk Dwyfawr Probably not at risk Probably not at risk Llyfni Not at risk Probably not at risk Seiont Probably at risk Probably at risk Ogwen Not at risk Not at risk Conwy Probably at risk Probably at risk Clwyd Not at risk Not at risk Dee Not at risk Not at risk

Page 3 of 3

0.015

0.010

0.005

200820001992

0.10

0.05

0.00

0.4

0.2

0.0

200820001992

0.50

0.25

0.00

0.35

0.25

0.15

0.3

0.2

0.1

0.3

0.2

0.1

0.3

0.2

0.1

200820001992

0.30

0.15

0.00

0.50

0.25

0.00200820001992

0.45

0.30

0.15

0.30

0.15

0.00

Wye

Year

Usk Taff Rhymney

Ogmore Afan Neath Tawe

Loughor Gwendraeth Tywi Taf

Scatterplot of Wye, Usk, Taff, Rhymney, Ogmore, Afan, ... vs Year

0.5

0.3

0.1

200820001992

0.6

0.4

0.2

0.3

0.2

0.1

200820001992

0.6

0.4

0.2

1.0

0.5

0.0

0.6

0.4

0.2

0.9

0.6

0.3

0.6

0.4

0.2

200820001992

0.6

0.4

0.2

0.5

0.3

0.1

200820001992

0.9

0.6

0.3

1.2

0.8

0.4

E&W Cleddau

Year

Nevern Teifi Aeron

Ystwyth Rheidol Dyfi Dysynni

Mawddach Artro Dwyryd Glaslyn

Scatterplot of E&W Cleddau, Nevern, Teifi, Aeron, Ystwyth, ... vs Year

0.9

0.6

0.3

200820001992

0.9

0.6

0.3

0.30

0.15

0.00

0.2

0.1

0.0

0.3

0.2

0.1

200820001992

0.3

0.2

0.1

200820001992

0.6

0.4

0.2

0.06

0.04

0.02

Dwy faw r

Year

Lly fni Gwy rfai

Seiont O gwen C onwy

C lwy d Dee

Scatterplot of Dwyfawr, Llyfni, Gwyrfai, Seiont, Ogwen, ... vs Year

Page 1 of 6

EXAMINING AUTHORITY’S FIRST ROUND OF QUESTIONS

No To Question Response / Comments by Pontardawe and Swansea Angling Society Ltd

1.10 Applicant a) Given there is no generation capacity proposed to be stated in the DCO how can the project be said to be a Nationally Significant Infrastructure Project under ss14 and 15 PA2008? b) Does the applicant intend that the DCO will state the generating capacity before it is made?

We refer to this point in our written representation: We aren’t satisfied that the scheme meets the definition of a “nationally significant infrastructure project” for the purposes of the Planning Act 2008:

• Section 15(3) says “A generating station is […a nationally significant infrastructure project…] if— (a) it is an offshore generating station, and (b) its capacity is more than 100 megawatts.”

• “Capacity” is not defined in the Planning Act 2008 or other relevant legislation.

• The Planning Inspectorate (PINS) has said that it believes that “"capacity", as used in the PA2008, probably … means the rated maximum gross output, or 'nameplate capacity', of the station”.

• We believe that in the context of the contribution that a project can make to national renewable energy needs, a station’s maximum achievable annual average production (46 MW in this case) is more relevant than the nominal capacity of the turbines.

• PINS has also said “the Planning Inspectorate, on behalf of the Secretary of State, is only able to decide whether development consent is required for a project, under PA 2008 s.55, once an application has been formally submitted.”

We therefore ask the Examining Authority to make a ruling on this.

7.1 Applicant Paragraph 9.7.4.19 concludes that during the operational phase : … the overall predicted long-term impact on the salmon and sea trout fishery is expected to be of Low magnitude with a significance value of Minor, and a confidence of Probable. The basis for the assessment is summarised in paragraph 9.7.4.18, in the following terms: The impact of the operational phase on salmon and sea trout smolt and adult migration, including entrainment and injury in the turbines, has been assessed as being of Minor significance post

Re Question (b) – Please see our written representation.

Page 2 of 6

No To Question Response / Comments by Pontardawe and Swansea Angling Society Ltd

mitigation. This is due to the low proportion of fish that are predicted to pass through the turbines, the relatively fish-friendly design (small number of blades, slow rotation rate and minimum gap runner) of the turbines and the proposed deployment of fish deterrent systems as a mitigation measure. a) Does the NRW’s “concern over levels of evidence and explanations to support confidence on impacts predicted” expressed in the letter of 11 April 2014 apply to the above assessment? And if so what further analysis is needed to bolster confidence in the assessment made? b) What aspects of this assessment and these conclusions are not accepted by those making representations on behalf of fishing interests?

7.2 Applicant An attachment setting out a fisheries analysis report is referred to within the Relevant Representations from the Usk Fishing Association and from Fish Legal and several other fishing clubs/angling societies. The Panel has not received this attachment and requests that a copy be submitted into the examination.

Attached. This was a review commissioned by Fish Legal, the Angling Trust, Pontardawe & Swansea Angling Society Ltd, Tawe & Tributaries Angling Association Ltd and Afan Valley Angling Club. It was commissioned after receipt of the Draft Environment Statement in November 2013. Fish Legal advised the applicant of this in their letter of 17 December 2013 responding to the ES. The applicant submitted the DCO application on 7 February 2014, before receipt of the review by fisheries interests on 10 February 2014. Fish Legal supplied a copy of the review to the Planning Inspectorate (and to the applicant) with their letter of 3 March. The applicant has been asked by fisheries interests to respond to the points made in the review.

7.3 Interested parties

Does the ES address the requirements for on-going monitoring, review and mitigation of the effects of the Project upon fish populations?

No. Please see our written representation.

Page 3 of 6

No To Question Response / Comments by Pontardawe and Swansea Angling Society Ltd

7.16 Applicant Several local fishing clubs have stated that no consultations have taken place to date. When will you consult with them (Neath and Dulais Angling Club RR, Pontardawe and Swansea Angling Society RR, Afan Valley Angling Club RR, Mond Angling Club RR)?

We actually said in our relevant representation: “The developer has failed to consult us properly (in accordance with its own consultation strategy), denying that we might have grounds to claim compensation for effects on our fishing rights. The consent application has been submitted prematurely, before we were able to discuss our expert fisheries analysis with them. We have had no discussions about monitoring, mitigation or compensation arrangements, as required. Responses to our representations (in our own name and by Fish Legal) have been unsatisfactory.”

It was obvious to us from the outset that we were “category 3 affected persons” for the purposes of sections 42 and 44 of PA2008, as we have property rights which might be injuriously affected by the development. We alerted the applicant to this in April 2012. The Examining Authority has recently confirmed this by accepting Tawe & Tributaries Angling Association Ltd, who failed to register an interest by the due date, as a category 3 affected party under section 102A PA2008. The developers had a consultation strategy which included minimum levels of engagement with such persons but they failed to include us and treated us as non-statutory consultees. We were not notified of the publication of the PEIR – we had to rely on public notices in the press. We received no reply to our response to the PEIR in August 2013. After making representations at a public meeting in October 2013 we were given a copy of the draft ES in November 2013 with a request to reply within one month. Replies to our PEIR response were provided in early December and confirmed that our points had not been fully addressed. Fish Legal responded to the draft ES on 17 December, drawing attention to PINS advice that

“The overriding intention of the legislation is to ensure that detailed matters are consulted upon and solutions or mitigation negotiated with the local community, landowners, statutory consultees and local authorities before submission of the application for development consent.”

The letter pointed out that this was not happening and included a detailed legal

Page 4 of 6

No To Question Response / Comments by Pontardawe and Swansea Angling Society Ltd

argument that our consultation status was not being correctly recognised. The letter also advised the applicant that we were commissioning an independent expert review (by APEM Ltd) which we would discuss with them in due course. We received no response. Before we received the independent review (10 February 2014) and were able to engage in meaningful discussions, the developers had submitted their application for consent (7 February 2014). Their application included a denial, in Chapter 10 of the Consultation Report, that we were “category 3 affected persons”. Comments in Chapter 10 to the effect that we have in any case been properly consulted are rejected. Fish Legal made a submission to PINS on 3 March 2014 that the applicants had not complied with their consultation obligations and that the application should not be accepted. This argument was not accepted by PINS and the application was accepted on 6 March 2014. The applicants failed to notify us (and other fishery interests) of the acceptance of the application in accordance with section 56 PA2008 but on 12 April 2014 they certified under section 58 PA2008 that they had complied with the requirements of section 56. As we were satisfied that we (and many others like us) were “category 3 affected persons”, and as we believed that the applicants should have known this, their certificate appeared to us to have been false and to have been given knowingly or at least recklessly. We reported this to PINS but they said that offences under section 58 were not a matter for them. We can provide the correspondence, if required. The current position is that, whilst we have been disadvantaged by having to seek out information which should have been provided to us, other fishery owners with property rights like ours (including at least three persons from whom we lease fishing) have been excluded from the process completely and probably know nothing about the application and this examination. We maintain that the applicant has failed to comply with its obligations to “category 3 affected persons” and that it has wrongly certified compliance with section 56.

Page 5 of 6

No To Question Response / Comments by Pontardawe and Swansea Angling Society Ltd

7.22 NRW Table 9.41 provides figures for reported salmon catches on the Rivers Afan, Neath and Tawe between 2002 and 2011. This question is primarily for NRW but other parties may wish to comment. a) Are figures for 2012 and 2013 available from NRW and can figures for reported catches on the Neath and Tawe stretching back to 1964 be provided please? b) Can comparable figures be provided for reported catches of sea trout on the Rivers Neath and Tawe? c) If the results are presented graphically as 5 year moving averages, are there any identifiable trends that emerge? d) Are there detectable changes for reported catches on the Tawe as a result of the construction of the barrage in 1992 and modification of the fish pass in 2001?

An Excel workbook providing details of reported rod catches from the 1970s to 2013 is provided herewith. This has been compiled and updated by us over many years from catch statistics published by the Welsh Water Authority, National Rivers Authority, Environment Agency and Natural Resources Wales. During that time there have been slight variations in the way various rivers have been reported but they don’t affect data for the Tawe, Neath and Afan. We are reliably informed by fisheries staff who were around at the time that there are no catch data for the Tawe, Afan and Neath before those shown in the workbook. Because of pollution there were no migratory fish in the Tawe for many decades up to the 1960s – the first reported salmon for over 80 years was caught in 1961. The workbook includes, on separate sheets:

• annual figures for both salmon and sea trout (sewin)

• 5 year rolling averages for both salmon and sea trout

• charts of the annual figures, comparing those for the Tawe, Neath and Afan with those for the whole of Wales

• similar charts of the 5 year rolling averages. Identifiable trends:

• In some years the similarities between results on the various rivers are striking.

• Over the whole period the improvement in Tawe salmon catches, compared with other rivers, has been striking but that has changed in the last 3 years

• Neath sea trout catches have dramatically overtaken Tawe catches since the mid 90s

We’ll leave it to NRW to say whether they believe there are detectable changes as a result of the construction of the Barrage in 1992 and the modifications to the fish pass in 2001. We also provide herewith two NRW papers: “Salmon stock performance in Wales 2013_2.docx” and “Sea trout stock performance 2013.docx”.

Page 6 of 6

No To Question Response / Comments by Pontardawe and Swansea Angling Society Ltd

7.23 Applicant Application of “IBM fish encounter modelling” is described in paragraphs 9.5.3.30-8 of Chapter 9 of the ES: Fish including Recreational and Commercial Fisheries and output from the model (a still-frame example from the adult salmon model video) is illustrated in Figure 15. Para 9.5.3.38 (Doc 6.2.9) states that: The model shows that olfactory trails from the two rivers remain quite distinct with the Lagoon in place and turbines and sluices operating, allowing adult salmon to home to their natal rivers with minimal distraction. Results demonstrated that there is no significant effect on olfactory trails as a result of water being drawn in to the Lagoon and released again. a) What level of confidence should the panel have in the output from this model? b) What would be needed to produce an assessment that would be more firmly based?

The Examining Authority should not give too much credence to the output of the models, nor attach too much importance to olfactory trails, which are but one of the factors influencing salmon and sea trout behaviour close to their home river. Please see our written representation. We do not accept that “olfactory trails from the two rivers remain quite distinct with the Lagoon in place and turbines and sluices operating, allowing adult salmon to home to their natal rivers with minimal distraction” We agree with ES Appendix 9.5 (“Accuracy And Limitations”) where it refers to “a clear distinction between precision and accuracy” and “the potential false impression of accuracy due to precision”.

13.44 Applicant Can the applicant confirm that all affected persons have been consulted with reference to the correct land plans and Book of Reference entries in respect of land in which they have an interest?

As explained in reply to Question 7.16, we maintain that category 3 affected persons have NOT been properly consulted, nor identified in the Book of Reference.